首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phosphorylation of the carboxyl terminus of pp60c-src, the product of the c-src protooncogene, at Tyr-527 suppresses its tyrosine kinase activity and transforming potential. It has been proposed that the phosphorylated carboxyl terminus of pp60c-src inhibits kinase activity by binding to the SH2 (src homology 2) domain. We have synthesized peptides corresponding to the carboxyl-terminal 13 residues of pp60c-src phosphorylated and nonphosphorylated at Tyr-527. A highly transforming mutant, pp60c-src(F527), in which Tyr-527 is mutated to Phe, bound to the phosphorylated peptide immobilized to Affi-Gel 10. Binding of the phosphorylated peptide was abolished by deletion of residues 144-175 in the SH2 domain but not by deletion of residues 93-143, which removes most of the SH3 domain. The phosphorylated peptide also bound to pp60v-src, the transforming protein of Rous sarcoma virus. Only traces of pp60v-src and pp60c-src(F527) bound to the corresponding nonphosphorylated c-src peptide. Normal pp60c-src bound much less efficiently to the phosphorylated peptide than did pp60c-src(F527). A phosphorylated peptide corresponding to the carboxyl terminus of the c-fgr protein also bound to pp60c-src(F527), but with weaker affinity. Furthermore, the phosphorylated synthetic carboxyl-terminal pp60c-src peptide markedly inhibited phosphorylation of pp60c-src(F527) during cytoskeletal kinase assays. These results provide direct evidence for models in which the phosphorylated carboxyl terminus of pp60c-src binds intramolecularly or intermolecularly to the SH2 domain of the c-src protein.  相似文献   

2.
The major site of tyrosine phosphorylation of the transforming protein of Rous sarcoma virus, pp60v-src (tyrosine-416), is different from the major site of tyrosine phosphorylation of its nontransforming normal cellular counterpart, pp60c-src. We have shown that antibodies against a synthetic peptide modeled on the carboxyl-terminal 13 residues of pp60c-src specifically immunoprecipitate the major phosphotyrosine tryptic peptide of pp60c-src from both chicken and rat fibroblasts. These experiments localize the major site of tyrosine phosphorylation to one or more of the three tyrosine residues in the carboxyl-terminal tryptic peptide at positions 511, 519, and 527 of the amino acid sequence of chicken pp60c-src. Tyrosines-519 and -527 are in the carboxyl-terminal 19-amino acid segment of pp60c-src that is deleted and replaced by an unrelated sequence in pp60v-src. It is possible that phosphorylation of tyrosine in the carboxyl-terminal tryptic peptide may be involved in the normal regulation of pp60c-src. The absence of this phosphorylation site in pp60v-src may, in part, contribute to its oncogenic properties.  相似文献   

3.
The transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src) appear to be protein kinases that phosphorylate tyrosine in a variety of protein substrates. In addition, pp60v-src and pp60-c-src are themselves phosphorylated on serine and tyrosine. It is likely that these phosphorylations serve to regulate the function(s) of pp60v-src and pp60c-src. We have therefore characterized the sites of tyrosine phosphorylation in the two proteins. Tyrosine phosphorylation of pp60v-src in infected cells occurs mainly (if not entirely) at residue 419 in the deduced amino acid sequence of the protein. Surrounding this residue is the sequence Leu-Ile-Glu-Asp-Asn-Glu-Tyr(P)-Thr-Ala-Arg. This peptide is distinguished by the fact that three out of the four amino acids that precede the phosphorylated tyrosine are acidic in nature. These results define what may prove to be a widely used site for tyrosine phosphorylation in the regulation of cellular function. The same site was phosphorylated when partially purified pp60v-src was used in a phosphotransfer reaction in vitro. The results with pp60c-src were more complex. The site of tyrosine phosphorylation in vitro appeared to be the same as that found in pp60v-src. By contrast, phosphorylation of pp60c-src in vivo apparently occurred at a different, and currently unidentified, tyrosine residue. It is therefore possible that pp60v-src and pp60c-src respond differently to regulatory influences in the intact cell.  相似文献   

4.
Avian and viral p60src proteins were expressed from a galactose-inducible promoter in the yeast Saccharomyces cerevisiae. Both the viral and cellular src proteins produced in yeast cells were myristoylated at their amino termini, as is the case for src proteins expressed in chicken embryo fibroblasts. The viral src protein produced in yeast autophosphorylated at tyrosine-416 in vivo and had approximately the same level of in vitro kinase activity as p60v-src expressed in Rous sarcoma virus-transformed cells. Unlike p60c-src expressed in chicken cells, which is phosphorylated on tyrosine in vivo almost exclusively at tyrosine-527, p60c-src expressed in yeast was phosphorylated 2.5-3 times more at tyrosine-416 than at tyrosine-527. The specific activity of the p60c-src produced in yeast was 2.5-5.0 times higher than that of p60c-src overexpressed from a retroviral vector in chicken cells, implicating the altered state of in vivo phosphorylation in modulation of the in vitro kinase activity. The expression of p60v-src substantially slowed down the growth of the yeast cells, suggesting that phosphorylation of yeast proteins essential for cell growth may have interfered with their proper functioning.  相似文献   

5.
We have observed a modification of the cellular protein kinase pp60c-src, elicited in murine 3T3 fibroblasts by platelet-derived growth factor (PDGF). The modification occurred rapidly after addition of PDGF to the culture medium and was first detected as a reduction in the electrophoretic mobility of a portion of the pp60c-src molecules. A similarly modified form of the viral homologue pp60v-src occurs in vivo in the absence of stimulation by PDGF. The occurrence of modified forms of both pp60c-src and pp60v-src was associated with a novel phosphorylation at tyrosine in the amino-terminal domains of the proteins. The time-course and dose-response for this modification of pp60c-src paralleled PDGF-induced increases in phosphorylation of pp36, a major cellular substrate for several tyrosine-specific protein kinases. In parallel experiments, treatment of cells with PDGF increased the kinase activity of pp60c-src in an immunocomplex assay. These results suggest pp60c-src may play a role in the mitogenic response to PDGF.  相似文献   

6.
7.
NIH 3T3 mouse cells were transfected with plasmids that induce efficient expression of either (i) the Rous sarcoma virus v-src gene, (ii) the chicken c-src gene, or (iii) a recombinant gene combining the 5' portion of c-src with the 3' end of v-src. Focus formation in tissue culture and formation of large colonies in soft agar did not occur in cells transfected with c-src. Cells transfected with c-src expression plasmids did not form foci but were isolated using a coselectable biological marker. They display morphological and substrate-independent growth characteristics intermediate between those of normal and v-src-transformed mouse cells, and lysates from these cells have enhanced in vitro tyrosine kinase activity. Transfection with the c-src-v-src recombinant induced focus formation with an efficiency similar to that obtained with a v-src expression plasmid. These results imply that v-src-induced transformation does not result just from overexpression of an essentially normal cellular protein but, at least in part, depends on the mutations distinguishing the cellular and viral proteins.  相似文献   

8.
Heat-shock protein hsp90 governs the activity of pp60v-src kinase.   总被引:20,自引:1,他引:19       下载免费PDF全文
During or immediately after synthesis in vertebrate cells, the oncogenic protein-tyrosine kinase pp60v-src associates with the approximately 90-kDa heat-shock protein (hsp90). In this complex, pp60v-src is not functional as a kinase. When pp60v-src is subsequently found inserted into the plasma membrane, it is active as a kinase and is no longer associated with hsp90. We have taken advantage of genetic manipulations possible in Saccharomyces cerevisiae to investigate the function and specificity of the association between hsp90 and pp60v-src. Expression of pp60v-src is known to be toxic to S. cerevisiae cells. We find that this toxicity is due to a very specific effect on growth, arrest at a particular point in the cell cycle. In cells expressing v-src, a mutation that lowers the level of hsp90 expression (i) relieves cell cycle arrest and rescues growth, (ii) reduces the level of tyrosine phosphorylation mediated by pp60v-src, (iii) changes the pattern of tyrosine phosphorylation, and (iv) reduces the concentration of pp60v-src. We conclude that hsp90 does not simply suppress pp60v-src kinase activity during transit to the plasma membrane, as previously suggested, but also stabilizes the protein and affects both its activity and specificity. This function of hsp90 is highly selective for pp60v-src: the same hsp90 mutation has no effect on the activity or specificity of the exogenous pp160v-abl tyrosine kinase; similarly, it does not affect the specificity and has only a very small effect on the activity of the exogenous pp60c-src kinase.  相似文献   

9.
10.
Phosphorylation of pp60c-src by p34cdc2 at three amino-proximal serine/threonine residues is temporally correlated with, but insufficient for, mitotic activation of c-Src kinase. The direct cause of activation during mitosis appears to be temporally correlated partial dephosphorylation of Tyr-527, a residue whose phosphorylation strongly suppresses pp60c-src activity. Site-directed mutagenesis of the serine/threonine phosphorylation sites blocks half the mitosis-specific decrease in Tyr-527 phosphorylation and half the increase in pp60c-src kinase activity. We conclude that p34cdc2 partially activates pp60c-src by a two-step process in which its serine/threonine phosphorylations either sensitize pp60c-src to a Tyr-527 phosphatase or desensitize it to a Tyr-527 kinase. Furthermore, additional events, independent of these p34cdc2-mediated phosphorylations, participate in mitotic activation of pp60c-src.  相似文献   

11.
12.
The tyrosine-specific protein kinase activity of pp60c-src molecules obtained from human colon carcinoma tissues and tumor-derived cell lines was found to be elevated over that from normal colon tissues or cultures of normal colon mucosal cells. The elevated pp60c-src protein kinase activity in tumor tissues and in cultured colon carcinoma cells does not appear to result solely from an increase in the abundance of the c-src-encoded protein, suggesting that the specific activity of the pp60c-src tyrosine phosphotransferase is enhanced. These results raise the possibility that activation of the pp60c-src protein kinase may contribute to the genesis of human colon tumors.  相似文献   

13.
A recombinant baculovirus was constructed for the production of the serine-specific protein kinase, pp90rsk (where rsk is ribosomal S6 kinase), in insect cells. The Xenopus pp90rsk expressed in the infected cells had nearly undetectable enzyme activity in contrast to the same enzyme coproduced with the v-src oncogene product pp60v-src. The transforming gene product pp60v-src very effectively activated pp90rsk, whereas the products of c-src and the myristoylation-minus nontransforming virus NY315 were markedly less effective. Only a fraction of the total pp90rsk population was activated, and it could be partially separated from unactivated protein by ion-exchange chromatography. When compared to the unactivated form, the activated enzyme displayed about a 4000-fold increase in the capacity to phosphorylate the ribosomal protein S6. The enhanced enzymatic activity appeared to be due to phosphorylation of pp90rsk.  相似文献   

14.
The protooncogene src encodes two proteins, designated pp60c-src+ and pp60c-src.pp60c-src+ is expressed only in neurons, whereas pp60c-src is expressed in neuronal and nonneuronal cells. pp60c-src+ differs from pp60c-src in that it contains an insert of 6 amino acids. To study the evolutionary conservation of the 6-amino acid insert, the expression of pp60c-src+ in the brain of animals from different classes was assayed by using pp60c-src+-specific antibodies raised against a synthetic peptide corresponding to the insert. pp60c-src+ was detected only in the brain of mammals, birds, and reptiles, but not amphibians and fish, whereas pp60c-src was present in the brain of all animals tested, including lobster (invertebrate). These findings indicate that pp60c-src+ may play a role in events associated with higher brain function, such as neuronal plasticity.  相似文献   

15.
Early embryonic avian tissue is resistant to transformation by Rous sarcoma virus. To determine the nature of this resistance, we examined the expression and properties of the Rous sarcoma virus transforming protein pp60v-src, in infected embryonic chicken limbs in ovo. Lysates from Rous sarcoma virus-infected limbs contained the viral structural protein p19gag, as detected by immunoblot analysis, and showed pp60v-src kinase activity in vitro. Immunoblot analysis of lysates with anti-phosphotyrosine antibodies revealed a number of phosphotyrosine-containing proteins present in lysates of Rous sarcoma virus-infected embryos but not in lysates of control, uninfected embryos. Anti-phosphotyrosine immunoreactivity was observed in frozen sections in the same cell types that expressed pp60v-src and p19gag. These studies demonstrate that pp60v-src is co-expressed with viral structural determinants in infected embryonic avian tissue. Furthermore, pp60v-src is active in ovo as a tyrosine-specific phosphotransferase, despite the apparent lack of sarcoma induction. The localization pattern of the major src gene substrate p36 (calpactin I) was compared with that of p19gag by double-label immunofluorescence and found to be generally nonoverlapping. These observations are consistent with the concept that the induction of tumors in ovo requires complementation between viral determinants and host factors. These host factors, which may be critical substrates of pp60v-src, are subject to developmental regulation in the avian embryo.  相似文献   

16.
GTPase-activating protein (GAP), which regulates the activities of Ras proteins, is implicated in mitogenic signal transduction by growth-factor receptors and oncoproteins with tyrosine kinase activity. Oncogenic viral Src (p60v-src) encoded in Rous sarcoma virus possesses elevated tyrosine kinase activity compared with its nononcogenic normal homolog, cellular Src (p60c-src). To examine molecular interactions between GAP and the two Src kinases, immunoprecipitates of Src or GAP prepared from cell lystates were resolved by gel electrophoresis and analyzed by an immunoblot procedure with antibodies to GAP or Src used as probes. Results suggest that p60c-src is associated with a complex containing GAP in immunoprecipitates from lysates of normal rat and chicken cells. However, GAP is not phosphorylated in p60c-src immunoprecipitates subjected to in vitro kinase reactions. By contrast, GAP undergoes tyrosyl phosphorylation in vitro when immunoprecipitates of p60v-src prepared from transformed cell lysates are incubated with ATP. Our findings suggest that p60v-src and p60c-src associate with complexes containing GAP and provide a biochemical link between both kinases and GAP/Ras signal transduction pathways. These results are consistent with the hypothesis that GAP has a role in mediating normal functions of p60c-src as well as oncogenic activities of p60v-src.  相似文献   

17.
v-src is an effective carcinogen when expressed from Rous sarcoma virus (RSV) in vivo. Whereas RSV tumors require sustained oncogene expression, their growth is largely a balance between viral recruitment of tissues and host immune destruction of infected cells. We have therefore examined the tumorigenic potential of v-src in the absence of viral recruitment and viral antigen expression. v-src was introduced with high efficiency into chicken wing web tissues using replication-defective (rd) retroviral vectors. Clonal sarcomas were induced rapidly, and, furthermore, v-src potentiated metastatic progression in approximately 0.1%-1% of tumor clones with unexpectedly short latency. rd vectors proved effective not only in transducing v-src into tissues but also as insertional markers of tumor clonality. The rd vector present in most primary and metastatic tumors was a highly truncated form of RSV derived by viral transmission of spliced v-src mRNA; this vector should thus avoid viral recruitment and host anti-viral immune reaction through its complete lack of viral structural genes. Under such conditions v-src maintains strong carcinogenicity in vivo when restricted to clonal tumor growth and can confer rapid metastatic potential on a discrete subset of tumor clones.  相似文献   

18.
We have examined the in vitro phosphorylation of cellular src protein (pp60c-src) molecules associated with the polyoma virus middle-sized tumor antigen in polyoma virus-transformed cells. These pp60c-src molecules possessed an enhanced tyrosyl kinase activity, migrated aberrantly on NaDodSO4/polyacrylamide gels, and contained a novel site of tyrosine phosphorylation within the amino-terminal region of the molecule. The pp60c-src molecules not associated with the middle-sized tumor antigen were phosphorylated exclusively on a tyrosine residue within the carboxyl-terminal domain of pp60c-src. A similar modified form of the middle-sized tumor antigen-associated pp60c-src protein was detected in lysates from polyoma virus-transformed cells labeled in vivo with [32P]orthophosphate in the presence of sodium orthovanadate, an inhibitor of phosphotyrosyl phosphatases.  相似文献   

19.
Differentiating rat neurons express high levels of the protooncogene product pp60c-src, a 60-kDa tyrosine kinase of unknown function encoded by c-src. pp60c-src was found to be concentrated at least 9-fold in membranes from a subcellular fraction of nerve growth cones, the motile tips of outgrowing neuronal processes. Indirect immunofluorescence staining of cultured chick retinal explants showed pp60c-src in neuronal growth cones and processes, with the antigen particularly concentrated in growth cones of long neurites. pp60c-src in growth cone membranes was an active tyrosine-specific protein kinase with elevated tyrosine-specific protein kinase activity and reduced electrophoretic mobility characteristic of the form of pp60c-src in central nervous system neurons. pp60c-src was present at lower levels in subcellular fractions from mature rat brain but synaptosomal membranes were not enriched. Preferential localization of an active form of pp60c-src in nerve growth cone membranes and persistence of pp60c-src in mature neurons suggest that this tyrosine kinase is important in growth cone-mediated neurite extension and synaptic plasticity.  相似文献   

20.
The oncogene of Rous sarcoma virus (v-src) arose by transduction of a cellular gene (c-src). In an effort to explore the mechanism of transduction, we have identified the splice acceptor site used in the genesis of mRNA for v-src, shown that an equivalent site is used in the splicing of mRNA for c-src, and determined the nucleotide sequence from the boundaries of homology between v-src and c-src. Our data indicate that (i) only a portion of c-src is represented within v-src, (ii) the leftward recombination between the genome of the transducing virus and c-src occurred in an intron of the cellular gene, (iii) v-src is in part a spliced version of the corresponding portion of c-src, and (iv) nucleotide sequences represented once in the genome of the transducing virus become duplicated to flank v-src. These findings indicate that the first step in transduction is probably recombination between DNA forms of the transducing viral genome and c-src and otherwise support the prevailing model for transduction by retroviruses. The carboxyl termini of the proteins encoded by v-src and c-src differ appreciably. An unidentified domain of 127 or 128 nucleotides is located at different positions in the genomes of two strains of RSV and gives evidence of being a foreign element that entered the viral genomes by genetic transposition independent of the transduction of src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号