首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A stem cell's microenvironment, or “niche,” is a critical regulator of its behaviour. In the adult mammalian spinal cord, central canal ependymal cells possess latent neural stem cell properties, but the ependymal cell niche has not yet been described. Here, we identify important similarities and differences between the central canal ependymal zone and the forebrain subventricular zone (SVZ), a well-characterized niche of neural stem cells. First, direct immunohistochemical comparison of the spinal cord ependymal zone and the forebrain SVZ revealed distinct patterns of neural precursor marker expression. In particular, ependymal cells in the spinal cord were found to be bordered by a previously uncharacterized sub-ependymal layer, which is relatively less elaborate than that of the SVZ and comprised of small numbers of astrocytes, oligodendrocyte progenitors and neurons. Cell proliferation surrounding the central canal occurs in close association with blood vessels, but unlike in the SVZ, involves mainly ependymal rather than sub-ependymal cells. These proliferating ependymal cells typically self-renew rather than produce transit-amplifying progenitors, as they generate doublets of progeny that remain within the ependymal layer and show no evidence of a lineage relationship to sub-ependymal cells. Interestingly, the dorsal pole of the central canal was found to possess a sub-population of tanycyte-like cells that express markers of both ependymal cells and neural precursors, and their presence correlates with higher numbers of dorsally proliferating ependymal cells. Together, these data identify key features of the spinal cord ependymal cell niche, and suggest that dorsal ependymal cells possess the potential for stem cell activity. This work provides a foundation for future studies aimed at understanding ependymal cell regulation under normal and pathological conditions.  相似文献   

2.
The subventricular zones (SVZs) are essential sources of new cells in the developing brain and remnants of these germinal zones persist into adulthood. As these cells have the capacity to replenish neurons and glia that are turning over, many investigators have assessed the SVZ's role in replacing neural cells eliminated by brain injuries. A review of the literature reveals that the progenitors within the SVZs are vulnerable to chemical, radiation and ischemia-induced damage, whereas the neural stem cells are resilient. With moderate insults, the SVZ can recover, but it cannot recover after more severe injury. Thus, the vulnerability of these cells has important ramifications when considering therapeutic interventions for the treatment of brain tumors and for the prospect of recovery after ischemia. The cells of the perinatal and adult SVZ not only have the capacity to replenish their own numbers, but they also have the capacity to replace neurons and glia after ischemic and traumatic brain injuries. Moreover, the mechanisms underlying these regenerative responses are beginning to be revealed. By reviewing, comparing and contrasting the responses of the SVZs to different injuries, our goal is to provide a foundation from which current and future studies on the potential of the SVZs for cell replacement can be evaluated.  相似文献   

3.
The adult mammalian brain contains neural stem cells that are capable of generating new neurons and glia over the course of a lifetime. Neural stem cells reside in 2 germinal niches, the subventricular zone (SVZ) and the dentate gyrus subgranular zone. These primary progenitors have been identified in their niche in vivo; these cells have characteristics of astrocytes. Recent studies have shown that adult SVZ stem cells are derived from radial glia, the stem cells in the developing brain, which in turn are derived from the neuroepithelum, the earliest brain progenitors. Thus, SVZ stem cells are a continuum from neuroepithelium to radial glia to astrocytes, and are contained within what has been considered the lineage for astrocytes. However, it seems that only a small subset of the astrocytes present in the adult brain have stem cell properties. Recent findings have shown that SVZ stem cell astrocytes express a receptor for platelet-derived growth factor (PDGF), suggesting that the ability to respond to specific growth factor stimuli, such as PDGF, epidermal growth factor and others, may be unique to these stem cell astrocytes. Intriguingly, activation of these same signaling pathways is widely implicated in brain tumor formation. Since the adult brain has very few proliferating cells capable of accumulating the numerous mutations required for transformation, the adult neural stem and/or progenitor cells may be likely candidates for the brain tumor cell of origin. Indeed, activation of the PDGF or epidermal growth factor pathways in adult neural stem or progenitor cells confers tumor-like properties on these cells, lending support to this hypothesis.  相似文献   

4.
5.
In the adult rodent brain, constitutive neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus, where multipotent neural stem/progenitor cells generate new neurons. Using Western blotting and immunohistochemistry for established markers, we demonstrated that the expression of 3-phosphoglycerate dehydrogenase (Phgdh), an enzyme involved in de novo synthesis of l-serine, was upregulated in the SVZ. The expression was selective to cells having morphological features and expressing markers of astrocyte-like primary neural stem cells (type B cells) and their progeny, actively proliferating progenitors (type C cells). By contrast, Phgdh protein expression was virtually absent in committed neuronal precursors (type A cells) derived from type C cells. High levels of Phgdh were also expressed by glial tube cells located in the rostral migratory stream (RMS). Interestingly, ensheathment of type A cells by these Phgdh-expressing cells was persistent in the SVZ and RMS, suggesting that l-serine mediates trophic support for type A cells via these glial cells. In vitro neurosphere assays confirmed that growth-factor-responsive, transient amplifying neural progenitors in the SVZ, but not differentiated neurons, expressed Phgdh. In the aged brain, a decline in Phgdh expression was evident in type B and C cells of the SVZ. These observations support the notion that availability of l-serine within neural stem/progenitor cells may be a critical factor for neurogenesis in developing and adult brain.  相似文献   

6.
Shc(s) family of adaptor molecules has been implicated in several physiological functions. In particular, our previous studies have shown major roles in the mechanisms that control the transition from proliferating neural stem cells (NSCs) to postmitotic neurons in the mammalian brain. In the adult brain, ShcA expression is mainly restricted to a subpopulation of cells in the subventricular zone (SVZ) neurogenic area, enlightening a potential role for this molecule in the establishment/maintenance of this adult NSC niche. In order to investigate this matter, here we took advantage of Cre/lox technology with the purpose of interfering with (or delete) ShcA function in nestin-expressing neural progenitors in vivo. Our analyses revealed signs of anatomical disorganization in the adult brain at the boundary between the striatum and the corpus callosum and reduced thickness both at the ventricular level and through the rostral migratory stream. Analysis of cell proliferation and cell death unveiled a prominent reduction of the former and no substantial alterations of the latter. Ultrastructural studies showed SVZ anatomical disarray and manifest variation in the SVZ cell type composition. In conclusion, these results provide evidence for a role of ShcA in the assembly and/or maintenance of the SVZ NSC niche in the adult brain.  相似文献   

7.
Thyroid hormones (THs) are fundamental in regulation of growth and development, particularly of the brain. THs are required for full proliferative activity of neural stem cells in the subventricular zone (SVZ) of adult mouse brains, and also affect the normal fate of progenitor cells: apoptosis. Transthyretin (TTR) is a TH distributor protein in the blood and cerebrospinal fluid. TTR secretion by the choroid plexus is involved in transport of THs from blood into cerebrospinal fluid. We investigated the regulation of neural stem cell cycle in the SVZ of adult TTR null mice. Markers for neural stem cell mitosis that are reduced during hypothyroidism, did not differ between genotypes. However, in TTR null mice the level of apoptosis, the fate of most progenitor cells, was as low as that in brains of hypothyroid wildtype mice. Thus, lack of TTR results in reduced availability of TH to progenitor cells in the SVZ. We show that proliferation and apoptosis in the SVZ neural stem cell niche are differentially affected by the lack of TTR synthesis.  相似文献   

8.
9.
The Mrj co‐chaperone is expressed throughout the mouse conceptus, yet its requirement for placental development has prohibited a full understanding of its embryonic function. Here, we show that Mrj?/? embryos exhibit neural tube defects independent of the placenta phenotype, including exencephaly and thin‐walled neural tubes. Molecular analyses revealed fewer proliferating cells and a down‐regulation of early neural progenitor (Pax6, Olig2, Hes5) and neuronal (Nscl2, SCG10) cell markers in Mrj?/? neuroepithelial cells. Furthermore, Mrj?/? neurospheres are significantly smaller and form fewer secondary neurospheres indicating that Mrj is necessary for self‐renewal of neural stem cells. However, the molecular function of Mrj in this context remains elusive because Mrj does not colocalize with Bmi‐1, a self‐renewal protein. Furthermore, unlike in Mrj?/? placentas, intermediate filament‐containing aggregates do not accumulate in Mrj?/? neuroepithelium, ruling out nestin as a substrate for Mrj. Regardless, Mrj plays an important role in neural stem cell self‐renewal. Developmental Dynamics 238:2564–2574, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
目的 研究生后不同日龄小鼠喙端迁移流(RMS)的发育,神经干细胞增殖和凋亡的规律。方法 利用Caspase-8免疫荧光标记法和5’-溴脱氧尿嘧啶核苷(BrdU)法,对小鼠RMS内的神经干细胞增殖和凋亡进行研究(n =92)。结果 生后早期小鼠脑内,尤其是室管下区(SVZ)和RMS,存在大量的增殖细胞。随着小鼠年龄的增加,脑内干细胞逐渐减少,到成年,大脑皮质几乎见不到增殖的神经干细胞,但在SVZ和RMS仍可以看到许多增殖的神经干细胞。在RMS,神经干细胞增殖的同时伴随着细胞凋亡,干细胞的增殖与凋亡存在着正相关关系。结论 RMS的神经干细胞增殖与凋亡有重要的生理意义,通过细胞凋亡,RMS可以调节神经干细胞向嗅球迁移的数量,也可以调节干细胞向颗粒细胞分化。  相似文献   

11.
Two monoclonal antibodies (Nilo1 and Nilo2) were generated after immunization of hamsters with E13.5 olfactory bulb-derived mouse neurospheres. They are highly specific for neural stem and early progenitor cell surface antigens. Nilo positive cells present in the adult mouse subventricular zone (SVZ) were able to initiate primary neural stem cell cultures. Moreover, these antibodies added to neurosphere cultures induced proliferation arrest and interfered with their differentiation. In the lateral ventricles of adult mice, Nilo1 stained a cell subpopulation lining the ventricle and cells located in the SVZ, whereas Nilo2 stained a small population associated with the anterior horn of the SVZ at the beginning of the rostral migratory stream. Co-staining of Nilo1 or Nilo2 and neural markers demonstrated that Nilo1 identifies an early neural precursor subpopulation, whereas Nilo2 detects more differentiated neural progenitors. Thus, these antibodies identify distinct neurogenic populations within the SVZ of the lateral ventricle.  相似文献   

12.
Production of new neurons throughout adulthood has been well characterized in two brain regions, the subventricular zone (SVZ) of the anterolateral ventricle and the subgranular zone (SGZ) of the hippocampus. The neurons produced from these regions arise from neural stem cells (NSCs) found in highly regulated stem cell niches. We recently showed that midline structures called circumventricular organs (CVOs) also contain NSCs capable of neurogenesis and/or astrogliogenesis in vitro and in situ (Bennett et al. [3]). The present study demonstrates that NSCs derived from two astrogliogenic CVOs, the median eminence and organum vasculosum of the lamina terminalis of the nestin-GFP mouse, possess the potential to integrate into the SVZ and differentiate into cells with a neuronal phenotype. These NSCs, following expansion and BrdU-labeling in culture and heterotopic transplantation into a region proximal to the SVZ in adult mice, migrate caudally to the SVZ and express early neuronal markers (TUC-4, PSA-NCAM) as they migrate along the rostral migratory stream. CVO-derived BrdU+ cells ultimately reach the olfactory bulb where they express early (PSA-NCAM) and mature (NeuN) neuronal markers. Collectively, these data suggest that although NSCs derived from the ME and OVLT CVOs are astrogliogenic in situ, they produce cells phenotypic of neurons in vivo when placed in a neurogenic environment. These findings may have implications for neural repair in the adult brain.  相似文献   

13.
14.
Immunoreactive highly polysialylated neural cell adhesion molecule (PSA-NCAM) expression was examined in the rat with repeated exposure to amygdaloid kindled generalized seizures (GS). In the sham control brain, PSA-NCAM staining was slightly observed in the subventricular zone (SVZ) of the striatum. The number of PSA-NCAM positive cells increased four times in the bilateral SVZ after three consecutive GS, with a further increase after 30 consecutive GS. As PSA-NCAM is involved in neural plasticity as well as migration of neural stem cells (NSC), expression of PSA-NCAM in the SVZ suggests that the recurrent GS may mainly contribute to reconstruction of synaptic network and could also contribute to NSC migration after kindling.  相似文献   

15.
Subependymal nodules (SENs) and subependymal giant cell astrocytomas (SEGAs) are common brain lesions found in patients with tuberous sclerosis complex (TSC). These brain lesions present a mixed glioneuronal phenotype and have been hypothesized to originate from neural stem cells. However, this hypothesis has not been tested empirically. Here, we report that loss of Tsc1 in mouse subventricular zone (SVZ) neural stem/progenitor cells (NSPCs) results in formation of SEN- and SEGA-like structural abnormalities in the lateral ventricle, the consequence of abnormal migration of NSPCs following Tsc1 loss.  相似文献   

16.
Glycoconjugates are biopolymers that are broadly distributed in the central nervous system, including the cell surface of neural stem cells or neural precursor cells (NSCs/NPCs). Glycoconjugates can be recognized by carbohydrate‐binding proteins, lectins. Two lectins, Phaseolus vulgaris lectin agglutinin E‐form (PHA‐E4) and wheat germ agglutinin (WGA) have been reported to be useful in isolating NSCs/NPCs by fluorescence‐activated cell sorting (FACS) or immunopanning methods. In this study, we analyzed the lectin‐binding properties of NSCs/NPCs in two neurogenic regions of the adult mouse brain to determine whether PHA‐E4 and WGA exhibit specific binding patterns on sections and whether there are other lectins presenting the binding pattern similar to those of PHA‐E4 and WGA in lectin histochemistry. Among nine types of lectins, peanut agglutinin was localized to the white matter and four lectins bound to cells within the subventricular zone (SVZ) of the lateral ventricle. Lectin histochemistry combined with immunohistochemistry demonstrated that one lectin, Ricinus communis agglutinin, specifically detected type A neuronal precursors and that the remaining three lectins, Agaricus bisporus agglutinin (ABA), PHA‐E4, and WGA, recognized type B NSCs and type C transient amplifying cells in the SVZ. These three lectins also recognized type 1 quiescent neural progenitors and type 2a amplifying neural progenitors in the subgranular layer of the dentate gyrus. Lectin histochemistry of the neurosphere culture also yielded similar results. These observations suggest that, in addition to PHA‐E4 and WGA, ABA lectin may also be applicable in FACS or immunopanning for the isolation of NSCs/NPCs. Anat Rec, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The tailless (Tlx) gene encodes an orphan nuclear receptor that is expressed by neural stem/progenitor cells in the adult brain of the subventricular zone (SVZ) and the dentate gyrus (DG). The function of Tlx in neural stem cells of the adult SVZ remains largely unknown. We show here that in the SVZ of the adult brain Tlx is exclusively expressed in astrocyte-like B cells. An inducible mutation of the Tlx gene in the adult brain leads to complete loss of SVZ neurogenesis. Furthermore, analysis indicates that Tlx is required for the transition from radial glial cells to astrocyte-like neural stem cells. These findings demonstrate the crucial role of Tlx in the generation and maintenance of NSCs in the adult SVZ in vivo.  相似文献   

18.
The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.  相似文献   

19.
Neural stem cells persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ neural stem cell proliferation, self-renewal, and differentiation are not fully elucidated. In the present report, we describe a growth-stimulatory activity of liver explant-conditioned media on SVZ cell cultures and identify hepatocyte growth factor (HGF) as a major player in this effect. HGF exhibited a mitogenic activity on SVZ cell cultures in a mitogen-activated protein kinase (MAPK) (ERK1/2)-dependent manner as U0126, a specific MAPK inhibitor, blocked it. Combining a functional neurosphere forming assay with immunostaining for c-Met, along with markers of SVZ cells subtypes, demonstrated that HGF promotes the expansion of neural stem-like cells that form neurospheres and self-renew. Immunostaining, HGF enzyme-linked immunosorbent assay and Madin-Darby canine kidney cell scattering assay indicated that SVZ cell cultures produce and release HGF. SVZ cell-conditioned media induced proliferation on SVZ cell cultures, which was blocked by HGF-neutralizing antibodies, hence implying that endogenously produced HGF accounts for a major part in SVZ mitogenic activity. Brain sections immunostaining revealed that HGF is produced by nestin-expressing cells and c-Met is expressed within the SVZ by immature cells. HGF intracerebroventricular injection promoted SVZ cell proliferation and increased the ability of these cells exposed in vivo to HGF to form neurospheres in vitro, whereas intracerebroventricular injection of HGF-neutralizing antibodies decreased SVZ cell proliferation. The present study unravels a major role, both in vitro and in vivo, for endogenous HGF in SVZ neural stem cell growth and self-renewal.  相似文献   

20.
目的:探讨N-甲基-D-天冬氨酸(NMDA)受体亚单位NR2B特异性拮抗剂Ro25-6981对缺血再灌注大鼠脑室下区神经干细胞增殖的影响及可能的机制。方法:线栓法制作大鼠大脑中动脉栓塞2 h再灌注模型,随机分成假手术组、缺血再灌注对照组和Ro25-6981干预组。免疫组织化学显色观察脑室下区巢蛋白和增殖细胞核抗原(PCNA)阳性细胞数,行免疫印迹对缺血侧脑组织脑源性神经营养因子(BDNF)蛋白表达水平进行定量分析。结果:缺血再灌注后脑室下区巢蛋白和PCNA阳性细胞较假手术组增加,而Ro25-6981干预组巢蛋白和PCNA阳性细胞较缺血再灌注对照组减少。缺血再灌注损伤促进了缺血侧脑组织BDNF蛋白的表达,Ro25-6981干预下调了缺血侧脑组织BDNF蛋白的表达。结论:NMDA受体亚单位NR2B能促进脑室下区神经干细胞的增殖,可能与调节BDNF表达有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号