首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Park SY  Ki CS  Kim HJ  Kim JW  Sung DH  Kim BJ  Lee WY 《Archives of neurology》2005,62(7):1118-1121
BACKGROUND: Hereditary spastic paraplegia (HSP), a genetically and clinically heterogeneous group of neurodegenerative disorders, is characterized by progressive lower limb weakness and spasticity. Among the 8 loci associated with the autosomal dominant uncomplicated HSP (AD-HSP), the spastin (SPG4) and atlastin (SPG3A) genes have been known to account for approximately 40% and 10% of all cases, respectively. OBJECTIVE: To investigate the contribution of these 2 genes in the occurrence of HSP in Korean patients. DESIGN: Clinical and genetic study. SETTING: Tertiary care center. PATIENTS: Eighteen patients with uncomplicated HSP (11 AD and 7 sporadic) underwent screening for gene mutation. MAIN OUTCOME MEASURES: Mutations in the SPG4 and SPG3A genes as detected by direct sequencing of all coding exons and flanking intronic sequences. RESULTS: We identified 8 different SPG4 mutations, 7 of which have not been reported elsewhere. Among the detected mutations were 3 missense mutations, 2 in-frame deletions, 2 frameshift mutations, and 1 splice-site mutation. No mutation was found in the SPG3A gene. CONCLUSION: Compared with previous studies, a higher frequency of SPG4 gene mutations in AD-HSP (7/11; 64%) was observed, suggesting that a mutation analysis for the SPG4 gene might be helpful for molecular diagnosis of AD-HSP in Korean patients.  相似文献   

2.
Hereditary spastic paraplegias (HSPs) are clinically and genetically highly heterogeneous. The key symptom of spastic paraparesis of lower limbs can be complicated by a variety of signs and symptoms including cognitive impairment, optic atrophy, cerebellar ataxia, peripheral nerve involvement, or seizures. At least 48 loci have been identified, termed SPG1-SPG48. Ten genes for autosomal dominant HSP are currently known, SPG4 being by far the most common subtype accounting for ~50% of cases. SPG3 is especially common in young-onset cases. Autosomal recessive HSP seems to be even more heterogeneous. The known 12 autosomal recessive HSP genes collectively explain about one third of cases only. The most common causes for pure autosomal recessive HSP are SPG7 and SPG5. Mental retardation and thin corpus callosum on magnetic resonance imaging point toward SPG11 and SPG15. The authors provide an overview on clinical, neurophysiologic, and neuroradiologic characteristics of the more common HSP subtypes. More details are given in the tables for quick reference, and a genetic testing strategy is proposed.  相似文献   

3.
Following the association of hereditary spastic paraparesis (HSP) with mutation in the paraplegin gene (SPG7) and mitochondrial dysfunction, we wished to investigate whether mitochondrial dysfunction might be associated with other forms of HSP. Five cases of HSP caused by mutation in the spastin gene (SPG4) and nine cases with HSP with mutation in the spastin and paraplegin genes excluded (non-SPG4/SPG7), were investigated for mitochondrial dysfunction. Muscle tissue from the HSP groups and a control group was analysed histochemically and spectrophotometrically for mitochondrial dysfunction. A significant decrease in mitochondrial respiratory chain complexes I and IV was demonstrated in the non-SPG4/SPG7 group. No abnormality was detected in the SPG4 group. We therefore conclude that there is evidence for mitochondrial dysfunction in non-SPG4/SPG7 HSP. There is no evidence for mitochondrial dysfunction in the pathogenesis of spastin-related HSP.  相似文献   

4.
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders leading to progressive spasticity of the lower limbs. Clinically, HSPs are divided into "pure" and "complicated" forms. In pure HSP, the spasticity of the lower limbs is the sole symptom, whereas in complicated forms additional neurological and non-neurological features are observed. Genetically, HSPs are divided into autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) forms. Up to date, 30 different HSPs are linked to different chromosomal loci and 11 genes could be defined for AR-HSP, AD-HSP and XL-HSP. SPG11, an AR-HSP (synonym: HSP11), is a complicated HSP associated with a slowly progressive spastic paraparesis, mental impairment and the development of a thin corpus callosum (TCC) during the course of the disease. SPG11 has been previously linked to chromosomal region 15q13 - 15. First, we applied rigid diagnostic criteria to systematically examine 20 Turkish families with autosomal recessive HSP for characteristic features of SPG11. We detected four large Turkish families with AR-HSP and TCC consistent with SPG11. Subsequent genetic linkage analysis of those 4 families refines the SPG11 locus further down to a small region of 2.93 cM with a maximum lod score of 11.84 at marker D15S659 and will guide further candidate gene analysis.  相似文献   

5.
Background –  Hereditary spastic paraplegias (HSP) are neurodegenerative diseases mainly characterized by lower limb spasticity with additional neurological symptoms and signs in complicated forms. Among the many autosomal recessive forms, SPG11 appears to be one of the most frequent.
Objective –  Our objective was to select potential SPG11 patients based on phenotypes in our material, identify eventual disease-causing variants with the collaboration of laboratories abroad, estimate the frequency and spectrum of SPG11-mutations and describe their associated phenotypes.
Material and Methods –  Two isolated cases and two affected members of one family with cognitive impairment and confirmed thin corpus callosum on magnetic resonance imaging were selected from our database for inclusion into a multicenter study.
Results –  Mutations were found in the two isolated cases but not in the proband of the family. Conclusion – We present the first SPG11-HSP in the Norwegian population. SPG11 should be suspected in patients with isolated or recessive HSP, thin corpus callosum and mental retardation.  相似文献   

6.
BACKGROUND: Hereditary spastic paraplegia (HSP) is a group of genetically heterogeneous disorders characterized by progressive spasticity of the lower limbs. Mutations in the SPG4 gene, which encodes spastin protein, are responsible for up to 45% of autosomal dominant cases. OBJECTIVE: To search for disease-causing mutations in a large series of Italian patients with HSP. DESIGN: Samples of DNA were analyzed by direct sequencing of all exons in SPG4. Samples from a subset of patients were also analyzed by direct sequencing of all exons in SPG3A, SPG6, SPG10, and SPG13. SETTING: Molecular testing facility in Italy. PATIENTS: Sixty unrelated Italian patients with pure (n = 50) and complicated (n = 10) HSP. MAIN OUTCOME MEASURES: Mutations in SPG4, SPG3A, SPG6, SPG10, and SPG13. RESULTS: We identified 12 different mutations, 8 of which were novel, in 13 patients. No mutations of any of the other HSP genes tested were found in 15 patients with sporadic pure HSP who did not have mutations in the SPG4 gene. CONCLUSIONS: The overall rate of mutation in the SPG4 gene within our sample was 22%, rising to 26% when only patients with pure HSP were considered. The negative result obtained in 15 patients without mutations in SPG4 in whom 4 other genes were analyzed (SPG3A, SPG6, SPG10, and SPG13) indicate that these genes are not frequently mutated in sporadic pure HSP.  相似文献   

7.
OBJECTIVE: To perform a clinical and genetic study of Tunisian families with autosomal recessive (AR) hereditary spastic paraplegia with thin corpus callosum (HSP-TCC). DESIGN: Linkage studies and mutation screening. SETTING: Reference Center for Neurogenetics in South and Center Tunisia. PARTICIPANTS: Seventy-three subjects from 33 "apparently" unrelated Tunisian families with AR HSP. MAIN OUTCOME MEASURES: Families with AR HSP-TCC were subsequently tested for linkage to the corresponding loci using microsatellite markers from the candidate intervals, followed by direct sequencing of the KIAA1840 gene in families linked to SPG11. RESULTS: We identified 8 Tunisian families (8 of 33 [24%]), including 19 affected patients, fulfilling the clinical criteria for HSP-TCC. In 7 families, linkage to either SPG11 (62.5%) or SPG15 (25%) was suggested by haplotype reconstruction and positive logarithm of odds score values for microsatellite markers. The identification of 2 recurrent mutations (R2034X and M245VfsX) in the SPG11 gene in 5 families validated the linkage results. The neurological and radiological findings in SPG11 and SPG15 patients were relatively similar. The remaining family, characterized by an earlier age at onset and the presence of cataracts, was excluded for linkage to the 6 known loci, suggesting further genetic heterogeneity. CONCLUSIONS: Autosomal recessive HSP-TCC is a frequent subtype of complicated HSP in Tunisia and is clinically and genetically heterogeneous. SPG11 and SPG15 are the major loci for this entity, but at least another genetic form with unique clinical features exists.  相似文献   

8.
Background: Hereditary spastic paraplegias (HSP) are a group of neurodegenerative disorders characterized by progressive lower extremity spastic weakness. SPG7, SPG4 and SPG3A are some of the autosomal genes recently found as mutated in recessive or dominant forms of HSP in childhood. SPG31 is more often associated with a pure spastic paraplegia phenotype, but genotype–phenotype correlation is still unclear. The aims of the current study was: (i) to verify the mutational frequency of SPG4, SPG3A, SPG31 and SPG7 genes in our very‐well‐selected childhood sample, and (ii) to improve our knowledge about the clinical and electrophysiological HSP phenotypes and their possible correlation with a specific mutation. Methods: A sample of 14 Italian children affected by pure HSP (mean age at diagnosis 5.9 years) was extensively investigated with electrophysiological, neuroradiological and genetic tests. Results: Three SPG4 mutations were identified in three patients: two novel missense mutations, both sporadic, and one multiexonic deletion already reported. A novel large deletion in SPG31 gene involving exons 2–5 was also detected in one young patient. No mutations in the SPG7 and in the SPG3A genes were found. Conclusions: Our data confirm that HSP represent a heterogeneous group of genetic neurodegenerative disorders, also in sporadic or autosomal recessive early onset forms. Multiplex Ligation‐dependent Probe Amplification‐based mutation screening for SPG4 and SPG31 genes would be added to sequencing‐based screening of SPG4, SPG31 and SPG3A genes in the routine diagnosis of HSP children.  相似文献   

9.
BACKGROUND: Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) is an autosomal recessive form of complicated HSP mainly characterized by slowly progressive spastic paraparesis and mental deterioration beginning in the second decade of life. The locus for HSP-TCC, designated SPG11, was mapped to chromosome 15q13-15 in some of the affected families from Japan, Europe, and North America, spanning an interval of 17.5 megabases (Mb). OBJECTIVE: To perform a clinical and genetic study of HSP-TCC. DESIGN AND SETTING: Case series; multi-institutional study. PATIENTS: Seven patients with HSP-TCC who belong to 3 consanguineous families of Arab origin residing in Israel. RESULTS: The 7 patients manifested a relatively similar combination of adolescence-onset cognitive decline and spastic paraparesis with TCC on brain magnetic resonance imaging. After excluding the SPG7 locus, we tested the 3 families for linkage to the SPG11, SPG21/MAST, and ACCPN loci associated with autosomal recessive disorders with TCC. Two families showed evidence for linkage to SPG11 (Z(max) = 5.55) and reduced the candidate region to 13 Mb. CONCLUSIONS: Our findings in HSP-TCC further confirm its worldwide distribution and genetic heterogeneity, and they significantly reduce the candidate SPG11 interval.  相似文献   

10.
Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) and mental impairment is a frequent subtype of complicated HSP, often inherited as an autosomal recessive (AR) trait. It is clear from molecular genetic analyses that there are several underlying causes of this syndrome, with at least six genetic loci identified to date. However, SPG11 and SPG15 are the two major genes for this entity. To map the responsible gene in a large AR-HSP-TCC family of Tunisian origin, we investigated a consanguineous family with a diagnosis of AR-HSP-TCC excluded for linkage to the SPG7, SPG11, SPG15, SPG18, SPG21, and SPG32 loci. A genome-wide scan was undertaken using 6,090 SNP markers covering all chromosomes. The phenotypic presentation in five patients was suggestive of a complex HSP that associated an early-onset spastic paraplegia with mild handicap, mental deterioration, congenital cataract, cerebellar signs, and TCC. The genome-wide search identified a single candidate region on chromosome 9, exceeding the LOD score threshold of +3. Fine mapping using additional markers narrowed the candidate region to a 45.1-Mb interval (15.4 cM). Mutations in three candidate genes were excluded. The mapping of a novel AR-HSP-TCC locus further demonstrates the extensive genetic heterogeneity of this condition. We propose that testing for this locus should be performed, after exclusion of mutations in SPG11 and SPG15 genes, in AR-HSP-TCC families, especially when cerebellar ataxia and cataract are present.  相似文献   

11.
Autosomal recessive hereditary spastic paraplegia (AR HSP) with thin corpus callosum (TCC) is a rare neurodegenerative disorder often caused by mutations in the gene encoding for spatacsin at the SPG11 locus on chromosome 15q. The disease is characterized by progressive spastic paraparesis and mental retardation which occur during the first two decades of life and frequently with peripheral neuropathy. Brain magnetic resonance imaging (MRI) reveals typical TCC with periventricular white matter changes. We describe two patients, of Turkish descent, from the same consanguineous family and affected with SPG11 in association with unusual early-onset parkinsonism. Parkinsonism occurred during the very early stages of SPG11 in both patients, being in one the inaugural symptom of the disease presented as a resting tremor with akinesia, rigidity and expressing an initial moderate levodopa-response that progressively weakened. The second patient presented a resting tremor with mild akinesia and no levodopa-response. Both patients were affected with progressive spastic paraparesis which had initially occurred at 15 and 12 years of age, respectively, in association with mild mental retardation and an axonal polyneuropathy. TCC with periventricular white matter changes (PWMC) was evident by MRI and 123I-ioflupane SPECT was abnormal. Genetic analysis detected for both patients a new c.704_705delAT, p.H235RfsX12 homozygous mutation in SPG11. This report provides evidence that parkinsonism may initiate SPG11-linked HSP TCC and that SPG11 may cause juvenile parkinsonism.  相似文献   

12.
AimTo investigate the clinical and genetic features of hereditary spastic paraplegia (HSP) type 3A (SPG3A) in Taiwan.MethodsMutational analysis of the ATL1 gene was performed for 274 unrelated Taiwanese HSP patients. The diagnosis of SPG3A was ascertained by the presence of a heterozygous pathogenic mutation in ATL1. The SPG3A patients received clinical, electrophysiological, and neuroimaging evaluations. Disease severity was assessed by using Spastic Paraplegia Rating Scale (SPRS) and disability score. Nineteen single nucleotide polymorphism (SNP) markers flanking ATL1 were genotyped for haplotype analysis of ATL1 p.R416C mutation.ResultsEighteen SPG3A patients from 11 families were identified. They typically presented a pure form HSP phenotype with disease onset ranging from age 1–68 years. Five heterozygous ATL1 mutations were identified, including p.R239C, p.V253I, p.Y336H, p.P342R and p.R416C. ATL1 p.R416C was the most common mutation and presented in five SPG3A pedigrees. Haplotype analyses demonstrated a shared haplotype in the 12 individuals carrying a p.R416C allele.ConclusionSPG3A accounts for 4% (11 out of 274) of HSP in the Taiwanese cohort. Patents with the ATL1 p.R416C mutation in Taiwan may descend from a common ancestor. This study defines the clinical and genetic features of SPG3A in Taiwan and provides useful information for the diagnosis and management, especially in patients of Han Chinese descent.  相似文献   

13.
Background and purpose: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative diseases. Mutations in the spastin (SPG4) gene are responsible for approximately 40% of autosomal dominant HSP (AD‐HSP) and 6.5–18% of sporadic cases. Methods: Spastin mutations were screened in 11 AD‐HSP families and 11 sporadic cases by direct sequencing and MLPA assay. Novel mutations were detected in 100 healthy controls by PCR‐RFLP. Results: We identified seven different spastin mutations in five probands and one sporadic patient. Two of seven mutations were novel. The c.458delT was a pathogenic mutation, but the effect of c.1724 G>T remained unknown. Conclusions: This study allowed us to estimate the frequency of the SPG4 mutations in Chinese at 45% (5/11) in families with AD‐HSP and 9% (1/11) in sporadic cases. In addition, our data showed p.T614I was not associated with congenital arachnoid cysts.  相似文献   

14.
15.
目的 探讨中国人群遗传性痉挛性截瘫11型(SPGll)基因突变频率及临床特点.方法 应用聚合酶链反应(PCR)结合直接测序方法对28个常染色体隐性遗传性痉挛性截瘫(ARHSP)家系先证者和14例散发痉挛性截瘫合并胼胝体发育不良患者进行SPG11基因突变分析.结果 共确诊10例SPG11家系,其中7个为ARHSP家系,3例为散发患者,共携带有13个SPG11基因新突变:c.5977C>T/p.Q1993X、c.4668T>A/p.Y1556X、c.6898_6899delCT/p.L2300AfsX23.38、c.3719_3720delTA/p.11240VfsX263、c.733_734delAT/p.M245VfsX246、c.7088_7089insATTA/p.Y2363X、c.2163_2164insT/p.1722Yfsx731、c.7101-7102insT/p.K2368X、c.6790_6791insC/p.12264PfsX2339、c.654_655delinsG/p.S218RfsX219、c.7151+4_7151+7delAGTA/p.K2384fsX2386、c.6355-21_6355-18delTCT、c.3004C>T/p.G1002X.SPG11在ARHSP家系的发病率约为25.0%(7/28),在ARHSP合并胼胝体发育不良(ARHSP-TCC)家系的发病率为6/6,在散发HSP-TCC患者中突变率为3/14.结论 对于中国人群而言,复杂型ARHSP和散发HSP-TCC患者应首先排除SPG11基因突变.  相似文献   

16.
Hereditary spastic paraplegia (HSP) type 15 is an autosomal recessive (AR) form of complicated HSP mainly characterized by slowly progressive spastic paraplegia, mental retardation, intellectual deterioration, maculopathy, distal amyotrophy, and mild cerebellar signs that has been associated with the Kjellin syndrome. The locus for this form of HSP, designated SPG15, was mapped to an interval of 19 cM on chromosome 14q22-q24 in two Irish families. We performed a clinical-genetic study of this form of HSP on 147 individuals (64 of whom were affected) from 20 families with AR-HSP. A genome-wide scan was performed in three large consanguineous families of Arab origin after exclusion of linkage to several known loci for AR-HSP (SPG5, SPG7, SPG21, SPG24, SPG28, and SPG30). The 17 other AR-HSP families were tested for linkage to the SPG15 locus. Only the three large consanguineous families showed evidence of linkage to the SPG15 locus (2.4 > Z (max) > 4.3). Recombinations in these families reduced the candidate region from approximately 16 to approximately 5 Mbases. Among the approximately 50 genes assigned to this locus, two were good candidates by their functions (GPHN and SLC8A3), but their coding exons and untranslated regions (UTRs) were excluded by direct sequencing. Patients had spastic paraplegia associated with cognitive impairment, mild cerebellar signs, and axonal neuropathy, as well as a thin corpus callosum in one family. The ages at onset ranged from 10 to 19 years. Our study highlights the phenotypic heterogeneity of SPG15 in which mental retardation or cognitive deterioration, but not all other signs of Kjellin syndrome, are associated with HSP and significantly reduces the SPG15 locus.  相似文献   

17.
Objectives – The hereditary spastic paraplegias (HSP) are a genetically and clinically heterogeneous group of neurodegenerative disorders, mainly characterized by a progressive spasticity and weakness of the lower limbs. Mutations in the SPG4 and SPG3A genes are responsible for approximately 50% of autosomal dominant HSP. To genetically diagnose the Portuguese families with HSP, mutation analysis was performed for the SPG4 and SPG3A genes. Patients and methods – Analysis was performed by polymerase chain reaction, followed by denaturing high performance liquid chromatography (DHPLC), in 61 autosomal dominant (AD)‐HSP families and 19 unrelated patients without family history. Results – Ten novel mutations were identified: one in the SPG3A and nine in the SPG4 genes; three known mutations in the SPG4 were also found. Most of the novel mutations were frameshift or nonsense (80%), resulting in a dysfunctional protein. Conclusions – The SPG4 and SPG3A analysis allowed the identification of 10 novel mutations and the genetic diagnosis of approximately a quarter of our AD‐HSP families.  相似文献   

18.
Molecular characterization is important for an accurate diagnosis in hereditary spastic paraplegia (HSP). Mutations in the gene SPAST (SPG4) are the most common cause of autosomal dominant forms. We performed targeted next generation sequencing (NGS) in a SPAST-negative HSP sample. Forty-four consecutive HSP patients were recruited from an adult neurogenetics clinic in Sydney, Australia. SPAST mutations were confirmed in 17 subjects, and therefore 27 SPAST-negative patients were entered into this study. Patients were screened according to mode of inheritance using a PCR-based library and NGS (Roche Junior 454 sequencing platform). The screening panel included ten autosomal dominant (AD) and nine autosomal recessive (AR) HSP-causing genes. A genetic cause for HSP was identified in 25.9 % (7/27) of patients, including 1/12 classified as AD and 6/15 as AR or sporadic inheritance. Several forms of HSP were identified, including one patient with SPG31, four with SPG7 (with one novel SPG7 mutation) and two with SPG5 (including two novel CYP7B1 frameshift mutations). Additional clinical features were noted, including optic atrophy and ataxia for patients with SPG5 and ataxia and a chronic progressive external ophthalmoplegia-like phenotype for SPG7. This protocol enabled the identification of a genetic cause in approximately 25 % of patients in whom one of the most common genetic forms of HSP (SPG4) was excluded. Targeted NGS may be a useful method to screen for mutations in multiple genes associated with HSP. More studies are warranted to determine the optimal approach to achieve a genetic diagnosis in this condition.  相似文献   

19.
遗传性痉挛性截瘫伴胼胝体发育不良(HSP-TCC)是复杂型HSP的一种,临床特点为进行性双下肢痉挛伴胼胝体发育不良,多儿童及青少年发病,常伴智能障碍。HSP-TCC具有高度的遗传异质性,病理提示皮质脊髓束变性。目前已发现至少19个疾病基因,主要包括:SPG1、SPG11、SPG15、SPG21、SPG35、SPG44、PG47、SPG54、SPG56等。该文就近年来有关该病的遗传学研究进展进行了综述,以期有助于该病的鉴别与诊断。  相似文献   

20.
SPG78 is a subtype of hereditary spastic paraplegia(HSP) caused by ATP13A2 gene mutations. SPG78 was reported as complicated HSP in several cases, but was never associated with pure HSP. Here we report the first Chinese patient carrying a novel homozygous nonsense mutation in ATP13A2 presenting with pure HSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号