首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long‐term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting‐state functional connectivity (rs‐FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory‐motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory‐motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance‐related regions, which provides insights into the mechanism of brain plasticity in young adults.  相似文献   

2.
Professional musicians are a popular model for investigating experience-dependent plasticity in human large-scale brain networks. A minority of musicians possess absolute pitch, the ability to name a tone without reference. The study of absolute pitch musicians provides insights into how a very specific talent is reflected in brain networks. Previous studies of the effects of musicianship and absolute pitch on large-scale brain networks have yielded highly heterogeneous findings regarding the localization and direction of the effects. This heterogeneity was likely influenced by small samples and vastly different methodological approaches. Here, we conducted a comprehensive multimodal assessment of effects of musicianship and absolute pitch on intrinsic functional and structural connectivity using a variety of commonly used and state-of-the-art multivariate methods in the largest sample to date (n = 153 female and male human participants; 52 absolute pitch musicians, 51 non-absolute pitch musicians, and 50 non-musicians). Our results show robust effects of musicianship in interhemispheric and intrahemispheric connectivity in both structural and functional networks. Crucially, most of the effects were replicable in both musicians with and without absolute pitch compared with non-musicians. However, we did not find evidence for an effect of absolute pitch on intrinsic functional or structural connectivity in our data: The two musician groups showed strikingly similar networks across all analyses. Our results suggest that long-term musical training is associated with robust changes in large-scale brain networks. The effects of absolute pitch on neural networks might be subtle, requiring very large samples or task-based experiments to be detected.SIGNIFICANCE STATEMENT A question that has fascinated neuroscientists, psychologists, and musicologists for a long time is how musicianship and absolute pitch, the rare talent to name a tone without reference, are reflected in large-scale networks of the human brain. Much is still unknown as previous studies have reported widely inconsistent results based on small samples. Here, we investigate the largest sample of musicians and non-musicians to date (n = 153) using a multitude of established and novel analysis methods. Results provide evidence for robust effects of musicianship on functional and structural networks that were replicable in two separate groups of musicians and independent of absolute pitch ability.  相似文献   

3.
Musical training is associated with increased structural and functional connectivity between auditory sensory areas and higher-order brain networks involved in speech and motor processing. Whether such changed connectivity patterns facilitate the cortical propagation of speech information in musicians remains poorly understood. We here used magnetoencephalography (MEG) source imaging and a novel seed-based intersubject phase-locking approach to investigate the effects of musical training on the interregional synchronization of stimulus-driven neural responses during listening to naturalistic continuous speech presented in silence. MEG data were obtained from 20 young human subjects (both sexes) with different degrees of musical training. Our data show robust bilateral patterns of stimulus-driven interregional phase synchronization between auditory cortex and frontotemporal brain regions previously associated with speech processing. Stimulus-driven phase locking was maximal in the delta band, but was also observed in the theta and alpha bands. The individual duration of musical training was positively associated with the magnitude of stimulus-driven alpha-band phase locking between auditory cortex and parts of the dorsal and ventral auditory processing streams. These findings provide evidence for a positive relationship between musical training and the propagation of speech-related information between auditory sensory areas and higher-order processing networks, even when speech is presented in silence. We suggest that the increased synchronization of higher-order cortical regions to auditory cortex may contribute to the previously described musician advantage in processing speech in background noise.SIGNIFICANCE STATEMENT Musical training has been associated with widespread structural and functional brain plasticity. It has been suggested that these changes benefit the production and perception of music but can also translate to other domains of auditory processing, such as speech. We developed a new magnetoencephalography intersubject analysis approach to study the cortical synchronization of stimulus-driven neural responses during the perception of continuous natural speech and its relationship to individual musical training. Our results provide evidence that musical training is associated with higher synchronization of stimulus-driven activity between brain regions involved in early auditory sensory and higher-order processing. We suggest that the increased synchronized propagation of speech information may contribute to the previously described musician advantage in processing speech in background noise.  相似文献   

4.
Playing a musical instrument at a professional level is a complex multimodal task requiring information integration between different brain regions supporting auditory, somatosensory, motor, and cognitive functions. These kinds of task‐specific activations are known to have a profound influence on both the functional and structural architecture of the human brain. However, until now, it is widely unknown whether this specific imprint of musical practice can still be detected during rest when no musical instrument is used. Therefore, we applied high‐density electroencephalography and evaluated whole‐brain functional connectivity as well as small‐world topologies (i.e., node degree) during resting state in a sample of 15 professional musicians and 15 nonmusicians. As expected, musicians demonstrate increased intra‐ and interhemispheric functional connectivity between those brain regions that are typically involved in music perception and production, such as the auditory, the sensorimotor, and prefrontal cortex as well as Broca's area. In addition, mean connectivity within this specific network was positively related to musical skill and the total number of training hours. Thus, we conclude that musical training distinctively shapes intrinsic functional network characteristics in such a manner that its signature can still be detected during a task‐free condition. Hum Brain Mapp 37:536–546, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
One of the central questions in neuroscience is how communication in the brain is organized under normal conditions and how this architecture breaks down in neurological disease. It has become clear that simple activation studies are no longer sufficient. There is an urgent need to understand the brain as a complex structural and functional network. Interest in brain network studies has increased strongly with the advent of modern network theory and increasingly powerful investigative techniques such as "high-density EEG", MEG, functional and structural MRI. Modern network studies of the brain have demonstrated that healthy brains self-organize towards so-called "small-world networks" characterized by a combination of dense local connectivity and critical long-distance connections. In addition, normal brain networks display hierarchical modularity, and a connectivity backbone that consists of interconnected hub nodes. This complex architecture is believed to arise under genetic control and to underlie cognition and intelligence. Optimal brain network organization becomes disrupted in neurological disease in characteristic ways. This review gives an overview of modern network theory and its applications to healthy brain function and neurological disease, in particular using techniques from clinical neurophysiology, such as EEG and MEG.  相似文献   

6.
Training‐induced neuroplasticity has been described in athletes' population. However, it remains largely unknown how regular training and sports proficiency modifies neuronal circuits in the human brain. In this study, we used voxel‐based morphometry and stepwise functional connectivity (SFC) analyses to uncover connectivity changes in the functional stream architecture in student‐athletes at early stages of sensorimotor skill training. Thirty‐two second‐year student‐athletes whose major was little‐ball sports and thirty‐four nonathlete controls were recruited for the study. We found that athletes showed greater gray matter volume in the right sensorimotor area, the limbic lobe, and the anterior lobe of the cerebellum. Furthermore, SFC analysis demonstrated that athletes displayed significantly smaller optimal connectivity distance from those seed regions to the dorsal attention network (DAN) and larger optimal connectivity distance to the default mode network (DMN) compared to controls. The Attention Network Test showed that the reaction time of the orienting attention subnetwork was positively correlated with SFC between the seeds and the DAN, while negatively correlated with SFC between the seeds and the DMN. Our findings suggest that neuroplastic adaptations on functional connectivity streams after motor skill training may enable novel information flow from specific areas of the cortex toward distributed networks such as the DAN and the DMN. This could potentially regulate the focus of external and internal attention synchronously in athletes, and consequently accelerate the reaction time of orienting attention in athletes.  相似文献   

7.
During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real‐time functional MRI (rtfMRI)‐based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI‐based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post‐training behavior. Our analysis revealed an “ROI‐network‐behavior” correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self‐regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real‐time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. Hum Brain Mapp 36:1705–1715, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age‐related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC–FC coupling in human aging as inferred from resting‐state blood oxygen‐level dependent functional magnetic resonance imaging and diffusion‐weighted imaging in a sample of 47 adults with an age range of 18–82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age‐dependency of regionwise SC–FC coupling and network‐level SC–FC relations. A specific pattern of SC–FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC–FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645–2661, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Increased number of neuroimaging studies has revealed association between age-related cognitive decline and alterations in the architecture of brain networks, while trials consistently confirmed benefits following cognitive training in the elderly. As a consequence, the present study aimed to investigate the potential moderating role of topological properties in brain structural network on training benefits. Among 32 community-dwelling older adults, 18 were randomly assigned to the training group to receive 24 sessions of multi-domain cognitive training (MDCT) over 12 weeks, and 14 to the control group. At baseline and 12-month follow-up, diffusion tensor imaging was acquired to construct the brain structural network, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Visual Reasoning Test (VRT) were performed to assess cognitive functions. Compared with controls, participants received MDCT achieved significant larger gain in terms of delayed memory with a trend of better global cognitive function. In addition, Sigma coefficient of small-worldness were reduced in the MDCT group relative to the control group. Correlation between changes in Sigma and in delayed memory index were found among controls, however, not among older adults received MDCT. Our results demonstrated the modulating effects of cognitive training on the small-world architecture of brain structural network. And the present study suggested a trade-off mechanism underlying the benefits of cognitive training among aged people, where brain sacrificed its cost-effectiveness of network wiring for better cognitive functions.  相似文献   

11.
Summary Clinical evidence and numerous results from animal experimentation indicate that cognitive functions have to be learned. Brain structures subserving these functions require sensory experience for their maturation. Genetic instructions are in principle not sufficient to specify neuronal connections with sufficient precision. Self-organization processes are implemented in addition which allow to optimize genetically determined blue prints of connectivity by making use of functional criteria. Thus, neuronal activity becomes an important shaping factor in the development of the structural and functional architecture of the forebrain. To the extent that this neuronal activity is modulated by sensory signals, environmental factors can influence the development of neuronal networks. Recent experiments indicate that these shaping processes are additionally controlled by modulatory systems. Both, the noradrenergic projection from the locus coeruleus and the cholinergic projection from the basal forebrain facilitate activity-dependent long-term changes of neuronal connections during development. The activity of these modulatory systems in turn depends on central states such as arousal, attention, and perhaps also motivation. It is inferred from this evidence that experience-dependent self-organization should not be considered as a passive imprinting process but rather as an active dialogue between the brain and its environment. The hypothesis is discussed that many developmental disturbances which are commonly attributed to deprivation are in fact due to defaults of the CNS which either lead to the formulation of wrong questions or to the reduction of exploratory drive.  相似文献   

12.
Playing a musical instrument changes the anatomy and function of the brain. But do these changes persist after music training stops? We probed this question by measuring auditory brainstem responses in a cohort of healthy young human adults with varying amounts of past musical training. We show that adults who received formal music instruction as children have more robust brainstem responses to sound than peers who never participated in music lessons and that the magnitude of the response correlates with how recently training ceased. Our results suggest that neural changes accompanying musical training during childhood are retained in adulthood. These findings advance our understanding of long-term neuroplasticity and have general implications for the development of effective auditory training programs.  相似文献   

13.
Analyzing and shaping human attentional networks.   总被引:12,自引:0,他引:12  
In this paper we outline a conception of attentional networks arising from imaging studies as connections between activated brain areas carrying out localized mental operations. We consider both the areas of functional activation (nodes) and the structural (DTI) and functional connections (DCM) between them in real time (EEG, frequency analysis) as important tools in analyzing the network. The efficiency of network function involves the time course of activation of nodes and their connectivity to other areas of the network. We outline landmarks in the development of brain networks underlying executive attention from infancy and childhood. We use individual differences in network efficiency to examine genetic alleles that are related to performance. We consider how animal studies might be used to determine the genes that influence network development. Finally we indicate how training may aid in enhancing attentional networks. Our goal is to show the wide range of methods that can be used to suggest and analyze models of network function in the study of attention.  相似文献   

14.
15.

Background

Obsessive–compulsive disorder (OCD) is a common neuropsychiatric disorder that is characterized by recurrent intrusive thoughts, ideas or images and repetitive ritualistic behaviours. Although focal structural and functional abnormalities in specific brain regions have been widely studied in populations with OCD, changes in the functional relations among them remain poorly understood. This study examined OCD–related alterations in functional connectivity patterns in the brain’s top–down control network.

Methods

We applied resting-state functional magnetic resonance imaging to investigate the correlation patterns of intrinsic or spontaneous blood oxygen level–dependent signal fluctuations in 18 patients with OCD and 16 healthy controls. The brain control networks were first constructed by thresholding temporal correlation matrices of 39 brain regions associated with top–down control and then analyzed using graph theory-based approaches.

Results

Compared with healthy controls, the patients with OCD showed decreased functional connectivity in the posterior temporal regions and increased connectivity in various control regions such as the cingulate, precuneus, thalamus and cerebellum. Furthermore, the brain’s control networks in the healthy controls showed small-world architecture (high clustering coefficients and short path lengths), suggesting an optimal balance between modularized and distributed information processing. In contrast, the patients with OCD showed significantly higher local clustering, implying abnormal functional organization in the control network. Further analysis revealed that the changes in network properties occurred in regions of increased functional connectivity strength in patients with OCD.

Limitations

The patient group in the present study was heterogeneous in terms of symptom clusters, and most of the patients with OCD were medicated.

Conclusion

Our preliminary results suggest that the organizational patterns of intrinsic brain activity in the control networks are altered in patients with OCD and thus provide empirical evidence for aberrant functional connectivity in the large-scale brain systems in people with this disorder.  相似文献   

16.
Rampon C  Tsien JZ 《Hippocampus》2000,10(5):605-609
It is well-documented that enriched environment and behavioral training can lead to improved learning and memory, as well as structural and morphological changes in the brain. It has been hypothesized that such experience-dependent behavioral improvement results from structural modifications that may represent some forms of possible memory substrates for these behavioral experiences. It was generally assumed until now that, like the activity-dependent structural plasticity observed in the developing brain, behavioral experience-induced structural plasticity would require the activation of the NMDA receptor, a molecular switch for learning and memory. Recent genetic and anatomical analyses reveal that behavioral experience-induced increases in spine and synapse density in the hippocampal CA1 region occur despite the deletion of the NMDA receptor in conditional knockout mice. Recent studies indicate that the molecular mechanism of behavioral experience-induced structural plasticity in the adult brain differs from that of the developing brain, and can be disassociated from the NMDA-mediated long-term potentiation (LTP) phenomenon. Deepening the understanding of the molecular mechanism of experience-induced structural plasticity should facilitate the study of the relationship between structural changes and memory formation. Using an integrated approach with genomic, genetic, and modern histological techniques should move us closer in this direction.  相似文献   

17.
OBJECTIVE: Cerebral functions are based on the functional interactions between multiple distinct specialized regions of the brain. Functional interactions require anatomical connections as well as the synchronization of brain oscillations. The present work aims at evaluating the impact of brain tumours on spatial patterns of functional connectivity of the brain measured at rest by MEG. METHODS: We analyzed the statistical dependency (by computing the synchronization likelihood (SL, a measure of generalized synchronization)) between MEG signals at rest, in 17 patients with a brain tumour and in 15 healthy controls. Following an approach that derives from graph theory, we also analyzed the architectural properties of the networks by computing two parameters from the SL matrix, the cluster coefficient C and the characteristic path length L. RESULTS: Alterations in synchronization levels were found in the patients and were not focal but involved intra-hemispheric connectivity. Effects were different considering the frequencies sub-bands, predominating in a decrease in high frequencies bands for long-distance connections and an increase in slower bands for local connectivity. In addition, graph analysis reveals changes in the normal "small-world" network architecture in addition to changes in synchronization levels with some differences according to the studied frequency sub-bands. CONCLUSIONS: Brain tumours alter the functional connectivity and the "network" architecture of the brain. These alterations are not focal and effects are different considering the frequencies sub-bands. SIGNIFICANCE: These neurophysiological changes may contribute to the cognitive alterations observed in patients with brain tumours.  相似文献   

18.
BackgroundPrevious resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact.MethodsTo determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities.ResultsOur analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus.LimitationsThe present results may be limited to the methods applied during preprocessing and network construction.ConclusionWe demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.  相似文献   

19.
Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in network sciences, such as the discovery of small world and scale free networks, to data on anatomical and functional connectivity in the brain. In this review we start with some background knowledge on the history and recent advances in network theories in general. We emphasize the correlation between the structural properties of networks and the dynamics of these networks. We subsequently demonstrate through evidence from computational studies, in vivo experiments, and functional MRI, EEG and MEG studies in humans, that both the functional and anatomical connectivity of the healthy brain have many features of a small world network, but only to a limited extent of a scale free network. The small world structure of neural networks is hypothesized to reflect an optimal configuration associated with rapid synchronization and information transfer, minimal wiring costs, resilience to certain types of damage, as well as a balance between local processing and global integration. Eventually, we review the current knowledge on the effects of focal and diffuse brain disease on neural network characteristics, and demonstrate increasing evidence that both cognitive and psychiatric disturbances, as well as risk of epileptic seizures, are correlated with (changes in) functional network architectural features.  相似文献   

20.
Remodeling of neuronal structures and networks is believed to significantly contribute to (partial) restoration of functions after stroke. However, it has been unclear to what extent the brain reorganizes and how this correlates with functional recovery in relation to stroke severity. We applied serial resting-state functional MRI and diffusion tensor imaging together with behavioral testing to relate longitudinal modifications in functional and structural connectivity of the sensorimotor neuronal network to changes in sensorimotor function after unilateral stroke in rats. We found that gradual improvement of functions is associated with wide-ranging changes in functional and structural connectivity within bilateral neuronal networks, particularly after large stroke. Both after medium and large stroke, brain reorganization eventually leads to (partial) normalization of neuronal signal synchronization within the affected sensorimotor cortical network (intraregional signal coherence), as well as between the affected and unaffected sensorimotor cortices (interhemispheric functional connectivity). Furthermore, the bilateral network configuration shifts from subacutely increased "small-worldness," possibly reflective of initial excessive neuronal clustering and wiring, toward a baseline small-world topology, optimal for global information transfer and local processing, at chronic stages. Cortical network remodeling was accompanied by recovery of initially disrupted structural integrity in corticospinal tract regions, which correlated positively with retrieval of sensorimotor functions. Our study demonstrates that the degree of functional recovery after stroke is associated with the extent of preservation or restoration of ipsilesional corticospinal tracts in combination with reinstatement of interhemispheric neuronal signal synchronization and normalization of small-world cortical network organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号