首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In pregnancy, changes in maternal calcium (Ca) economy occur to satisfy fetal Ca demand. It is unclear whether maternal mineral reserves facilitate these requirements and no data exist from sub-Saharan Africa. The aim was to determine skeletal changes with peripheral quantitative computed tomography (pQCT) and bone biochemistry between early second and third trimesters. Pregnant rural Gambians aged 18 to 45 years (n = 467) participating in a trial of antenatal nutritional supplements (ISRCTN49285450) had pQCT scans and blood collections at mean (SD) 14 (3) and 31 (1) weeks’ gestation. Outcomes were pQCT: radius/tibia 4% total volumetric bone mineral density (vBMD), trabecular vBMD, total cross-sectional area (CSA), 33%/38% radius/tibia cortical vBMD, bone mineral content (BMC), total CSA; biochemistry: collagen type 1 cross-linked β-C-telopeptide (β-CTX), type 1 procollagen N-terminal (P1NP), parathyroid hormone (PTH), and 1,25(OH)2D. Independent t tests tested whether pooled or within-group changes differed from 0. Multiple regression was performed adjusting for age. Data for change are expressed as mean (confidence interval [CI] 2.5, 97.5%). Radius trabecular vBMD, cortical vBMD, and BMC increased by 1.15 (0.55, 1.75)%, 0.41 (0.24, 0.58)%, and 0.47 (0.25, 0.69)%. Tibia total and trabecular vBMD increased by 0.34 (0.15, 0.54)% and 0.46 (0.17, 0.74)%, while tibia cortical vBMD, BMC, and cortical CSA increased by 0.35 (0.26, 0.44)%, 0.55 (0.41, 0.68)% and 0.20 (0.09, 0.31)%, respectively. CTX, PTH, and 1,25(OH)2D increased by 23.0 (15.09, 29.29)%, 13.2 (8.44, 19.34)%, and 21.0 (17.67, 24.29)%, while P1NP decreased by 32.4 (−37.19, −28.17)%. No evidence of mobilization was observed in the peripheral skeleton. Resorption, although higher in late versus early gestation, was lower throughout pregnancy compared with non-pregnant non-lactating (NPNL) in the same community. Formation was lower in late pregnancy than in early, and below NPNL levels. This suggests a shift in the ratio of resorption to formation. Despite some evidence of change in bone metabolism, in this population, with habitually low Ca intakes, the peripheral skeleton was not mobilized as a Ca source for the fetus. © 2021 crown copyright . Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR). The article published with the permission of the Controller of HMSO and the Queen's Printer of Scotland..  相似文献   

2.
The impact of primary hand osteoarthritis (HOA) on bone mass, microstructure, and biomechanics in the affected skeletal regions is largely unknown. HOA patients and healthy controls (HCs) underwent high-resolution peripheral quantitative computed tomography (HR-pQCT). We measured total, trabecular, and cortical volumetric bone mineral densities (vBMDs), microstructural attributes, and performed micro–finite element analysis for bone strength. Failure load and scaled multivariate outcome matrices from distal radius and second metacarpal (MCP2) head measurements were analyzed using multiple linear regression adjusting for age, sex, and functional status and reported as adjusted Z-score differences for total and direct effects. A total of 105 subjects were included (76 HC: 46 women, 30 men; 29 HOA: 23 women, six men). After adjustment, HOA was associated with significant changes in the multivariate outcome matrix from the MCP2 head (p < .001) (explained by an increase in cortical vBMD (Δz = 1.07, p = .02) and reduction in the trabecular vBMD (Δz = −0.07, p = .09). Distal radius analysis did not show an overall effect of HOA; however, there was a gender-study group interaction (p = .044) explained by reduced trabecular vBMD in males (Δz = −1.23, p = .02). HOA was associated with lower failure load (−514 N; 95%CI, −1018 to −9; p = 0.05) apparent in males after adjustment for functional status. HOA is associated with reduced trabecular and increased cortical vBMD in the MCP2 head and a reduction in radial trabecular vBMD and bone strength in males. Further investigations of gender-specific changes of bone architecture in HOA are warranted. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.  相似文献   

3.
To explore the possible mechanisms underlying sex‐specific differences in skeletal fragility that may be obscured by two‐dimensional areal bone mineral density (aBMD) measures, we compared quantitative computed tomography (QCT)‐based vertebral bone measures among pairs of men and women from the Framingham Heart Study Multidetector Computed Tomography Study who were matched for age and spine aBMD. Measurements included vertebral body cross‐sectional area (CSA, cm2), trabecular volumetric BMD (Tb.vBMD, g/cm3), integral volumetric BMD (Int.vBMD, g/cm3), estimated vertebral compressive loading and strength (Newtons) at L3, the factor‐of‐risk (load‐to‐strength ratio), and vertebral fracture prevalence. We identified 981 male‐female pairs (1:1 matching) matched on age (± 1 year) and QCT‐derived aBMD of L3 (± 1%), with an average age of 51 years (range 34 to 81 years). Matched for aBMD and age, men had 20% larger vertebral CSA, lower Int.vBMD (–8%) and Tb.vBMD (–9%), 10% greater vertebral compressive strength, 24% greater vertebral compressive loading, and 12% greater factor‐of‐risk than women (p < 0.0001 for all), as well as higher prevalence of vertebral fracture. After adjusting for height and weight, the differences in CSA and volumetric bone mineral density (vBMD) between men and women were attenuated but remained significant, whereas compressive strength was no longer different. In conclusion, vertebral size, morphology, and density differ significantly between men and women matched for age and spine aBMD, suggesting that men and women attain the same aBMD by different mechanisms. These results provide novel information regarding sex‐specific differences in mechanisms that underlie vertebral fragility. © 2014 American Society for Bone and Mineral Research.  相似文献   

4.
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
Data supporting physical activity guidelines to optimize bone development in men is sparse. Peak bone mass is believed to be important for the risk of osteoporosis later in life. The objective of this study was to determine if an increased amount of physical activity over a 5‐year period was associated with increased bone mineral content (BMC), areal (aBMD) and volumetric (vBMD) bone mineral density, and a favorable development of cortical bone size in young adult men. The original 1068 young men, initially enrolled in the Gothenburg Osteoporosis and Obesity Determinants (GOOD) study, were invited to participate in the longitudinal study, and a total of 833 men (78%), 24.1 ± 0.6 years of age, were included in the 5‐year follow‐up. A standardized self‐administered questionnaire was used to collect information about patterns of physical activity at both the baseline and 5‐year follow‐up visits. BMC and aBMD were measured using dual energy X‐ray absorptiometry, whereas vBMD and bone geometry were measured by peripheral quantitative computed tomography. Increased physical activity between the baseline and follow‐up visits was associated with a favorable development in BMC of the total body, and aBMD of the lumbar spine and total hip (p < 0.001), as well as with development of a larger cortex (cortical cross sectional area), and a denser trabecular bone of the tibia (p < 0.001). In conclusion, increased physical activity was related to an advantageous development of aBMD, trabecular vBMD and cortical bone size, indicating that exercise is important in optimizing peak bone mass in young men. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) measures bone microarchitecture and volumetric bone mineral density (vBMD), important risk factors for osteoporotic fractures. We estimated the heritability (h2) of bone microstructure indices and vBMD, measured by HR‐pQCT, and genetic correlations (ρG) among them and between them and regional aBMD measured by dual‐energy X‐ray absorptiometry (DXA), in adult relatives from the Framingham Heart Study. Cortical (Ct) and trabecular (Tb) traits were measured at the distal radius and tibia in up to 1047 participants, and ultradistal radius (UD) aBMD was obtained by DXA. Heritability estimates, adjusted for age, sex, and estrogenic status (in women), ranged from 19.3% (trabecular number) to 82.8% (p < 0.01, Ct.vBMD) in the radius and from 51.9% (trabecular thickness) to 98.3% (cortical cross‐sectional area fraction) in the tibia. Additional adjustments for height, weight, and radial aBMD had no major effect on h2 estimates. In bivariate analyses, moderate to high genetic correlations were found between radial total vBMD and microarchitecture traits (ρG from 0.227 to 0.913), except for cortical porosity. At the tibia, a similar pattern of genetic correlations was observed (ρG from 0.274 to 0.948), except for cortical porosity. Environmental correlations between the microarchitecture traits were also substantial. There were high genetic correlations between UD aBMD and multivariable‐adjusted total and trabecular vBMD at the radius (ρG = 0.811 and 0.917, respectively). In summary, in related men and women from a population‐based cohort, cortical and trabecular microarchitecture and vBMD at the radius and tibia were heritable and shared some h2 with regional aBMD measured by DXA. These findings of high heritability of HR‐pQCT traits, with a slight attenuation when adjusting for aBMD, supports further work to identify the specific variants underlying volumetric bone density and fine structure of long bones. Knowledge that some of these traits are genetically correlated can serve to reduce the number of traits for genetic association studies. © 2016 American Society for Bone and Mineral Research.  相似文献   

7.
Obesity is associated with greater areal BMD (aBMD) and is considered protective against hip and vertebral fracture. Despite this, there is a higher prevalence of lower leg and proximal humerus fracture in obesity. We aimed to determine if there are site‐specific differences in BMD, bone structure, or bone strength between obese and normal‐weight adults. We studied 100 individually‐matched pairs of normal (body mass index [BMI] 18.5 to 24.9 kg/m2) and obese (BMI >30 kg/m2) men and women, aged 25 to 40 years or 55 to 75 years. We assessed aBMD at the whole body (WB), hip (TH), and lumbar spine (LS) with dual‐energy X‐ray absorptiometry (DXA), LS trabecular volumetric BMD (Tb.vBMD) by quantitative computed tomography (QCT), and vBMD and microarchitecture and strength at the distal radius and tibia with high‐resolution peripheral QCT (HR‐pQCT) and micro–finite element analysis. Serum type 1 procollagen N‐terminal peptide (P1NP) and collagen type 1 C‐telopeptide (CTX) were measured by automated electrochemiluminescent immunoassay (ECLIA). Obese adults had greater WB, LS, and TH aBMD than normal adults. The effect of obesity on LS and WB aBMD was greater in older than younger adults (p < 0.01). Obese adults had greater vBMD than normal adults at the tibia (p < 0.001 both ages) and radius (p < 0.001 older group), thicker cortices, higher cortical BMD and tissue mineral density, lower cortical porosity, higher trabecular BMD, and higher trabecular number than normal adults. There was no difference in bone size between obese and normal adults. Obese adults had greater estimated failure load at the radius (p < 0.05) and tibia (p < 0.01). Differences in HR‐pQCT measurements between obese and normal adults were seen more consistently in the older than the younger group. Bone turnover markers were lower in obese than in normal adults. Greater BMD in obesity is not an artifact of DXA measurement. Obese adults have higher BMD, thicker and denser cortices, and higher trabecular number than normal adults. Greater differences between obese and normal adults in the older group suggest that obesity may protect against age‐related bone loss and may increase peak bone mass. © 2014 American Society for Bone and Mineral Research.  相似文献   

8.
The aim of this study was to investigate the development of bone mineral density (BMD) and bone mineral content (BMC) in relation to peak height velocity (PHV), and to investigate whether late normal puberty was associated with remaining low BMD and BMC in early adulthood in men. In total, 501 men (mean ± SD, 18.9 ± 0.5 years of age at baseline) were included in this 5‐year longitudinal study. Areal BMD (aBMD) and BMC, volumetric BMD (vBMD) and cortical bone size were measured using dual‐energy X‐ray absorptiometry (DXA) and pQCT. Detailed growth and weight charts were used to calculate age at PHV, an objective assessment of pubertal timing. Age at PHV was a strong positive predictor of the increase in aBMD and BMC of the total body (R2 aBMD 11.7%; BMC 4.3%), radius (R2 aBMD 23.5%; BMC 22.3%), and lumbar spine (R2 aBMD 11.9%; BMC 10.5%) between 19 and 24 years (p < 0.001). Subjects were divided into three groups according to age at PHV (early, middle, and late). Men with late puberty gained markedly more in aBMD and BMC at the total body, radius, and lumbar spine, and lost less at the femoral neck (p < 0.001) than men with early puberty. At age 24 years, no significant differences in aBMD or BMC of the lumbar spine, femoral neck, or total body were observed, whereas a deficit of 4.2% in radius aBMD, but not in BMC, was seen for men with late versus early puberty (p < 0.001). pQCT measurements of the radius at follow‐up demonstrated no significant differences in bone size, whereas cortical and trabecular vBMD were 0.7% (p < 0.001) and 4.8% (p < 0.05) lower in men with late versus early puberty. In conclusion, our results demonstrate that late puberty in males was associated with a substantial catch up in aBMD and BMC in young adulthood, leaving no deficits of the lumbar spine, femoral neck, or total body at age 24 years. © 2012 American Society for Bone and Mineral Research.  相似文献   

9.
Although projections from cross‐sectional studies have shown that bone loss leading to osteoporosis begins around menopause in women and later in life in men, this has not been examined longitudinally in population‐based studies using high‐resolution technology capable of distinguishing cortical (Ct) and trabecular (Tb) bone microarchitecture. The aim of this 3‐year prospective study was to investigate age‐ and sex‐related changes in bone compartment–specific geometry, volumetric bone mineral density (vBMD), microarchitecture, and estimated strength. The distal radius and tibia were imaged at baseline and after 3 years (median 3.0; range, 2.7 to 3.9 years) using high‐resolution peripheral computed tomography (HRpCT) in an age‐ and sex‐stratified, population‐based, random sample of white men and women (n = 260) aged 21 to 82 years. In general, at the radius and tibia there was a moderate annual increase in cortical thickness (Ct.Th) that seemed to offset the increase in cortical porosity (Ct.Po), resulting in net annual increase in cortical vBMD (Ct.vBMD) in premenopausal women and young men. With advancing age, postmenopausal women displayed significant bone loss with decreased trabecular vBMD (Tb.vBMD) (due to loss of entire trabeculae) and Ct.vBMD (manifested as increase in Ct.Po and decrease in Ct.Th) at the radius, and a decline in Ct.vBMD (with increasing Ct.Po) at the tibia, resulting in loss of estimated bone strength. In contrast, men had a lower rate of bone loss with advancing age with smaller increases in Ct.Po at both the skeletal sites. In summary, the pattern of bone loss in men and women was discrepant, with women losing more bone than men with aging, although with a dominance of cortical over trabecular bone loss at the peripheral sites in both sexes. This conforms to epidemiological evidence that most fractures occurring in old age are predominantly at cortical peripheral sites, with women having a higher incidence of fractures than men at any given age. © 2016 American Society for Bone and Mineral Research.  相似文献   

10.
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214 ) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

11.
Gender-affirming hormone therapy aligns physical characteristics with an individual's gender identity, but sex hormones regulate bone remodeling and influence bone morphology. We hypothesized that trans men receiving testosterone have compromised bone morphology because of suppression of ovarian estradiol production, whereas trans women receiving estradiol, with or without anti-androgen therapy, have preserved bone microarchitecture. We compared distal radial and tibial microarchitecture using high-resolution peripheral quantitative computed tomography images in a cross-sectional study of 41 trans men with 71 cis female controls, and 40 trans women with 51 cis male controls. Between-group differences were expressed as standardized deviations (SD) from the mean in age-matched cisgender controls with 98% confidence intervals adjusted for cross-sectional area (CSA) and multiple comparisons. Relative to cis women, trans men had 0.63 SD higher total volumetric bone mineral density (vBMD; both p = 0.01). Cortical vBMD and cortical porosity did not differ, but cortices were 1.11 SD thicker (p < 0.01). Trabeculae were 0.38 SD thicker (p = 0.05) but otherwise no different. Compared with cis men, trans women had 0.68 SD lower total vBMD (p = 0.01). Cortical vBMD was 0.70 SD lower (p < 0.01), cortical thickness was 0.51 SD lower (p = 0.04), and cortical porosity was 0.70 SD higher (p < 0.01). Trabecular bone volume (BV/TV) was 0.77 SD lower (p < 0.01), with 0.57 SD fewer (p < 0.01) and 0.30 SD thicker trabeculae (p = 0.02). There was 0.56 SD greater trabecular separation (p = 0.01). Findings at the distal radius were similar. Contrary to each hypothesis, bone microarchitecture was not compromised in trans men, perhaps because aromatization of administered testosterone prevented bone loss. Trans women had deteriorated bone microarchitecture either because of deficits in microstructure before treatment or because the estradiol dosage was insufficient to offset reduced aromatizable testosterone. Prospective studies are needed to confirm these findings. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

12.
Higher fracture risk in White versus Black women is partly explained by lower BMD and worse bone microarchitecture in White women. However, whether rates of decline in bone density, microarchitecture and strength differ between postmenopausal Black and White women is unknown. Further, factors that influence rates of age-related bone microarchitecture deterioration remain ill-defined. Thus, over 6.7 years, longitudinal changes were measured in peripheral volumetric bone mineral density (vBMD), microarchitecture, and strength at the distal radius and tibia using HR-pQCT in postmenopausal Black (n = 80) and White (n = 137) women participating in the Study of Women's Health Across the Nation. It was assessed whether age-related changes in vBMD and microarchitecture were influenced by body weight, body composition, and/or weight change. It was found that at the radius, where White women appeared to have slightly greater rates of loss in total vBMD, cortical bone volume, and porosity than Black women, those differences were attenuated after adjusting for clinical covariates. At the tibia, Black and White women had similar rates of bone loss. Independent of race and other clinical covariates, women with the lowest baseline body weight experienced the greatest decline in total and trabecular vBMD at the radius. Furthermore, women who lost weight over the follow-up period had higher rates of bone loss, particularly at the tibia, compared with those who maintained or gained weight. Higher baseline total body fat mass was also protective of bone loss at both the radius and tibia. In conclusion, these findings indicate that lower fracture risk among postmenopausal Black women is not caused by slower rates of bone deterioration, and highlight the importance for postmenopausal women to avoid lower body weight and excessive weight loss to avert rapid bone loss and subsequent fractures. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

13.
The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity. Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius. In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls, despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia. © 2014 American Society for Bone and Mineral Research.  相似文献   

14.
Type 1 diabetes (T1DM) is associated with an increased fracture risk, specifically at nonvertebral sites. The influence of glycemic control and microvascular disease on skeletal health in long-standing T1DM remains largely unknown. We aimed to assess areal (aBMD) and volumetric bone mineral density (vBMD), bone microarchitecture, bone turnover, and estimated bone strength in patients with long-standing T1DM, defined as disease duration ≥25 years. We recruited 59 patients with T1DM (disease duration 37.7 ± 9.0 years; age 59.9 ± 9.9 years.; body mass index [BMI] 25.5 ± 3.7 kg/m2; 5-year median glycated hemoglobin [HbA1c] 7.1% [IQR 6.82–7.40]) and 77 nondiabetic controls. Dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT) at the ultradistal radius and tibia, and biochemical markers of bone turnover were assessed. Group comparisons were performed after adjustment for age, gender, and BMI. Patients with T1DM had lower aBMD at the hip (p < 0.001), distal radius (p = 0.01), lumbar spine (p = 0.04), and femoral neck (p = 0.05) as compared to controls. Cross-linked C-telopeptide (CTX), a marker of bone resorption, was significantly lower in T1DM (p = 0.005). At the distal radius there were no significant differences in vBMD and bone microarchitecture between both groups. In contrast, patients with T1DM had lower cortical thickness (estimate [95% confidence interval]: −0.14 [−0.24, −0.05], p < 0.01) and lower cortical vBMD (−28.66 [−54.38, −2.93], p = 0.03) at the ultradistal tibia. Bone strength and bone stiffness at the tibia, determined by homogenized finite element modeling, were significantly reduced in T1DM compared to controls. Both the altered cortical microarchitecture and decreased bone strength and stiffness were dependent on the presence of diabetic peripheral neuropathy. In addition to a reduced aBMD and decreased bone resorption, long-standing, well-controlled T1DM is associated with a cortical bone deficit at the ultradistal tibia with reduced bone strength and stiffness. Diabetic neuropathy was found to be a determinant of cortical bone structure and bone strength at the tibia, potentially contributing to the increased nonvertebral fracture risk. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

15.
Noncommunicable diseases (NCD) are rapidly rising in Africa, with multimorbidity increasing the burden on health and social care. Osteoporosis and cardiovascular disease (CVD) share common risk factors; both often remain undiagnosed until a major life-threatening event occurs. We investigated the associations between cardiac workload, peripheral vascular calcification (PVC), and bone parameters in Gambian adults. The Gambian Bone and Muscle Aging Study (GamBAS) recruited 249 women and 239 men aged 40 to 75+ years. Body composition and areal bone mineral density (aBMD) were measured using dual-energy X-ray absorptiometry; peripheral quantitative computed tomography (pQCT) scans were performed at the radius and tibia. Supine blood pressure and heart rate were measured and used to calculate rate pressure product and pulse pressure. Presence of PVC was determined from tibia pQCT scans. Sex interactions were tested (denoted as p-int); adjustments were made for residuals of appendicular lean mass (ALM) and fat mass (FM). There were negative associations between rate pressure product and aBMD in women only, all p-int < .05; after adjustment for ALM residuals, for every 10% increase in rate pressure product, aBMD was lower at the whole body (−0.6% [−1.2, −0.1]), femoral neck (−0.9% [−1.8, −0.05]), L1 to L4 (−0.6% [−1.7, 0.5]), and radius (−1.9% [−2.8, −0.9]); there were similar associations when adjusted for FM residuals. Similar negative associations were found between pulse pressure and aBMD in women only. PVC were found in 26.6% men and 22.5% women; women but not men with calcification had poorer cardiac health and negative associations with aBMD (all sites p-int < .001). There were consistent associations with cardiac parameters and pQCT outcomes at the radius and tibia in women only. Multiple markers of cardiac health are associated with poorer bone health in Gambian women. In the context of epidemiological transition and changing NCD burden, there is a need to identify preventative strategies to slow/prevent the rising burden in CVD and osteoporosis in Sub-Saharan Africa. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

16.
In this cross‐sectional study, we investigated volumetric bone mineral density (vBMD), bone microstructure, and biomechanical competence of the distal radius in male patients with rheumatoid arthritis (RA). The study cohort comprised 50 male RA patients of average age of 61.1 years and 50 age‐matched healthy males. Areal BMD (aBMD) of the hip, lumbar spine, and distal radius was measured by dual‐energy X‐ray absorptiometry. High‐resolution peripheral quantitative computed tomography (HR‐pQCT) of the distal radius provided measures of cortical and trabecular vBMD, microstructure, and biomechanical indices. aBMD of the hip but not the lumbar spine or ultradistal radius was significantly lower in RA patients than controls after adjustment for body weight. Total, cortical, and trabecular vBMD at the distal radius were, on average, –3.9% to –23.2% significantly lower in RA patients, and these differences were not affected by adjustment for body weight, testosterone level, or aBMD at the ultradistal radius. Trabecular microstructure indices were, on average, –8.1% (trabecular number) to 28.7% (trabecular network inhomogeneity) significantly inferior, whereas cortical pore volume and cortical porosity index were, on average, 80.3% and 63.9%, respectively, significantly higher in RA patients. RA patients also had significantly lower whole‐bone stiffness, modulus, and failure load, with lower and more unevenly distributed cortical and trabecular stress. Density and microstructure indices significantly correlated with disease activity, severity, and levels of pro‐inflammatory cytokines (interleukin [IL] 12p70, tumor necrosis factor, IL‐6 and IL‐1β). Ten RA patients had focal periosteal bone apposition most prominent at the ulnovolar aspect of the distal radius. These patients had shorter disease duration and significantly higher cortical porosity. In conclusion, HR‐pQCT reveals significant alterations of bone density, microstructure, and strength of the distal radius in male RA patients and provides new insight into the microstructural basis of bone fragility accompanying chronic inflammation. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by periarticular bone loss and new bone formation. Current data regarding systemic bone loss and bone mineral density (BMD) in PsA are conflicting. The aim of this study was to evaluate bone microstructure and volumetric BMD (vBMD) in patients with PsA and psoriasis. We performed HR‐pQCT scans at the ultradistal and periarticular radius in 50 PsA patients, 30 psoriasis patients, and 70 healthy, age‐ and sex‐related controls assessing trabecular bone volume (BV/TV), trabecular number (Tb.N), inhomogeneity of the trabecular network, cortical thickness (Ct.Th), and cortical porosity (Ct.Po), as well as vBMD. Trabecular BMD (Tb.BMD, p = 0.021, 12.0%), BV/TV (p = 0.020, –11.9%), and Tb.N (p = 0.035, 7.1%) were significantly decreased at the ultradistal radius and the periarticular radius in PsA patients compared to controls. In contrast, bone architecture of the ultradistal radius and periarticular radius was similar in patients with psoriasis and healthy controls. Duration of skin disease was associated with low BV/TV and Tb.N in patients with PsA. These data suggest that trabecular BMD and bone microstructure are decreased in PsA patients. The observation that duration of skin disease determines bone loss in PsA supports the concept of subclinical musculoskeletal disease in psoriasis patients. © 2015 American Society for Bone and Mineral Research.  相似文献   

18.
Physical activity is believed to have the greatest effect on the skeleton if exerted early in life, but whether or not possible benefits of physical activity on bone microstructure or geometry remain at old age has not been investigated in women. The aim of this study was to investigate if physical activity during skeletal growth and young adulthood or at old age was associated with cortical geometry and trabecular microarchitecture in weight‐bearing and non–weight‐bearing bone, and areal bone mineral density (aBMD) in elderly women. In this population‐based cross‐sectional study 1013 women, 78.2 ± 1.6 (mean ± SD) years old, were included. Using high‐resolution 3D pQCT (XtremeCT), cortical cross‐sectional area (Ct.CSA), cortical thickness (Ct.Th), cortical periosteal perimeter (Ct.Pm), volumetric cortical bone density (D.Ct), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured at the distal (14% level) and ultra‐distal tibia and radius, respectively. aBMD was assessed using DXA (Hologic Discovery A) of the spine and hip. A standardized questionnaire was used to collect information about previous exercise and the Physical Activity Scale for the Elderly (PASE) was used for current physical activity. A linear regression model (including levels of exercise during skeletal growth and young adulthood [10 to 30 years of age], PASE score, and covariates) revealed that level of current physical activity was independently associated with Ct.CSA (β = 0.18, p < 0.001) and Ct.Th (β = 0.15, p < 0.001) at the distal tibia, Tb.Th (β = 0.11, p < 0.001) and BV/TV (β = 0.10, p = 0.001) at the ultra‐distal tibia, and total hip aBMD (β = 0.10, p < 0.001). Current physical activity was independently associated with cortical bone size, in terms of thicker cortex but not larger periosteal circumference, and higher bone strength at the distal tibia on elderly women, indicating that physical activity at old age may decrease cortical bone loss in weight‐bearing bone in elderly women. © 2016 American Society for Bone and Mineral Research.  相似文献   

19.
Several cross‐sectional studies have shown that impairment of bone microarchitecture contributes to skeletal fragility. The aim of this study was to prospectively investigate the prediction of fracture (Fx) by bone microarchitecture assessed by high‐resolution peripheral computed tomography (HR‐ pQCT) in postmenopausal women. We measured microarchitecture at the distal radius and tibia with HR‐pQCT in the OFELY study, in addition to areal BMD with dual‐energy X‐ray absorptiometry (DXA) in 589 women, mean ± SD age 68 ± 9 years. During a median [IQ] 9.4 [1.0] years of follow‐up, 135 women sustained an incident fragility Fx, including 81 women with a major osteoporotic Fx (MOP Fx). After adjustment for age, women who sustained Fx had significantly lower total and trabecular volumetric densities (vBMD) at both sites, cortical parameters (area and thickness at the radius, vBMD at the tibia), trabecular number (Tb.N), connectivity density (Conn.D), stiffness, and estimated failure load at both sites, compared with control women. After adjustment for age, current smoking, falls, prior Fx, use of osteoporosis‐related drugs, and total hip BMD, each quartile decrease of several baseline values of bone microarchitecture at the radius was associated with significant change of the risk of Fx (HR of 1.39 for Tb.BMD [p = 0.001], 1.32 for Tb.N [p = 0.01], 0.76 for Tb.Sp.SD [p = 0.01], 1.49 [p = 0.01] for Conn.D, and 1.27 for stiffness [p = 0.02]). At the tibia, the association remained significant for stiffness and failure load in the multivariate model for all fragility Fx and for Tt.BMD, stiffness, and failure load for MOP Fx. We conclude that impairment of bone microarchitecture—essentially in the trabecular compartment of the radius—predict the occurrence of incident fracture in postmenopausal women. This assessment may play an important role in identifying women at high risk of fracture who could not be adequately detected by BMD measurement alone, to benefit from a therapeutic intervention. © 2017 American Society for Bone and Mineral Research.  相似文献   

20.
Sclerostin is predominantly expressed by osteocytes. Serum sclerostin levels are positively correlated with areal bone mineral density (aBMD) measured by dual‐energy X‐ray absorptiometry (DXA) and bone microarchitecture assessed by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) in small studies. We assessed the relation of serum sclerostin levels with aBMD and microarchitectural parameters based on HR‐pQCT in 1134 men aged 20 to 87 years using multivariable models adjusted for confounders (age, body size, lifestyle, comorbidities, hormones regulating bone metabolism, muscle mass and strength). The apparent age‐related increase in serum sclerostin levels was faster before the age of 63 years than afterward (0.43 SD versus 0.20 SD per decade). In 446 men aged ≤63 years, aBMD (spine, hip, whole body), trabecular volumetric BMD (Tb.vBMD), and trabecular number (Tb.N) at the distal radius and tibia were higher in the highest sclerostin quartile versus the three lower quartiles combined. After adjustment for aBMD, men in the highest sclerostin quartile had higher Tb.vBMD (mainly in the central compartment) and Tb.N at both skeletal sites (p < 0.05 to 0.001). In 688 men aged >63 years, aBMD was positively associated with serum sclerostin levels at all skeletal sites. Cortical vBMD (Ct.vBMD) and cortical thickness (Ct.Th) were lower in the first sclerostin quartile versus the three higher quartiles combined. Tb.vBMD increased across the sclerostin quartiles, and was associated with lower Tb.N and more heterogeneous trabecular distribution (higher Tb.Sp.SD) in men in the lowest sclerostin quartile. After adjustment for aBMD, men in the lowest sclerostin quartile had lower Tb.vBMD and Tb.N, but higher Tb.Sp.SD (p < 0.05 to 0.001) at both the skeletal sites. In conclusion, serum sclerostin levels in men are strongly positively associated with better bone microarchitectural parameters, mainly trabecular architecture, regardless of the potential confounders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号