首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundDespite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny.Study designWe document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09.ResultsComplete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 104/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia.ConclusionsIt is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities.  相似文献   

2.
《Acta biomaterialia》2014,10(3):1314-1323
Highly pathogenic avian influenza (HPAI) H5 and H7 viruses have ravaged the poultry industry in numerous countries in Asia, Europe, Africa and the Middle East, and have resulted in the deaths of millions of birds. Although HPAI H5N1 viruses currently remain avian viruses, they are continuously evolving and have the potential to become pandemic-type viruses capable of human–human transmission. To develop specific reagents to allow better preparedness against this threat, we selected an aptamer (8-3) from a completely random RNA pool that binds with high affinity (∼KD 170 pM) to the hemagglutinins (HAs) derived from HPAI H5N1 (A/H5N1/Vietnam/1194/2004 and A/H5N1/Indonesia/05/2005) and H7N7 (A/H7N7/Netherlands/219/2003) influenza A viruses. Aptamer 8-3 was able to efficiently distinguish HAs derived from subtypes of influenza A virus other than H5 and H7. Aptamer 8-3 was analyzed further to assess its ability to interfere with HA–glycan interactions using our previously established SPR-based competitive assay, and we found that aptamer 8-3 efficiently interferes with HA–glycan binding (EC50  25 nM). To derive shorter variants for other applications, aptamer 8-3 was shortened to a 44-mer by deletion analyses. The shortened aptamer, 8-3S, retains the full-length aptamer’s affinity and specificity for its cognate Has, and also interferes with HA–glycan interactions. These studies suggest that aptamer 8-3S should be studied further to explore its potential applications not only in surveillance and diagnosis, but also in the development of H5N1- and H7N7-specific virucidal products that interfere with virus–host interactions to contain future H5N1 and H7N7 pandemics.  相似文献   

3.
Human pandemic H1N1 2009 influenza virus causes significant morbidity and mortality with severe acute lung injury due to the excessive inflammatory reaction, even with neuraminidase inhibitor use. The anti-inflammatory effect of anti-high-mobility group box-1 (HMGB1) monoclonal antibody (mAb) against influenza pneumonia has been reported. In this study, we evaluated the combined effect of anti-HMGB1 mAb and peramivir against pneumonia induced by influenza A (H1N1) virus in mice. Nine-week-old male C57BL/6 mice were inoculated with H1N1 and treated with intramuscularly administered peramivir at 2 and 3 days post-infection (dpi). The anti-HMGB1 mAb or a control mAb was administered at 2, 3, and 4 dpi. Survival rates were assessed, and lung lavage and pathological analyses were conducted at 5 and 7 dpi. The combination of peramivir with the anti-HMGB1 mAb significantly improved survival rate whereas the anti-HMGB1 mAb alone did not affect virus proliferation in the lungs. This combination therapy also significantly ameliorated histopathological changes, neutrophil infiltration, and macrophage aggregation by inhibiting HMGB1, inflammatory cytokines, and oxidative stress. Fluorescence immunostaining showed that the anti-HMGB1 mAb inhibited HMGB1 translocation from type I alveolar epithelial cells. In summary, combining anti-HMGB1 with conventional anti-influenza therapy might be useful against severe influenza virus infection.  相似文献   

4.
Influenza virus-like particles (VLPs) represent promising alternative vaccines. However, it is necessary to demonstrate that influenza VLPs confer cross-protection against antigenically distinct viruses. In this study, a VLP vaccine comprising hemagglutinin (HA) and M1 from the A/California/04/2009 (H1N1) were used and its ability to induce cross-protective efficacy against heterologous viruses A/PR/8/34 (H1N1) and A/New Caledonia/20/99 (H1N1) in mice was assessed. Vaccination with 2009 H1 VLPs induced significantly higher levels of IgG cross-reactive with these heterologous viruses after the second boost compared to after the prime or first boost. Lung virus titers also decreased significantly and the lung cross-reactive IgG response after lethal virus challenge was significantly greater in immunized mice compared to naïve mice. Vaccinated mice showed 100% protection against A/PR/8/34 and A/Caledonia/20/99 viruses with only moderate body weight loss and induction of cross-reactive recall, IgG antibody-secreting cell responses. The variations in HA amino acid sequences and antigenic sites were determined and correlated with induction of cross-protective immunity. These results indicate that VLPs can be used as an effective vaccine that confers cross-protection against antigenically distinct viruses.  相似文献   

5.
The novel influenza A (H1N1) 2009 virus has emerged to cause the first pandemic of the twenty-first century. Disease outbreaks caused by the influenza A (H1N1) virus have prompted concerns about the potential for a pandemic and have driven the development of vaccines against this subtype of influenza A. In this study, we developed a monovalent influenza A (H1N1) split vaccine and evaluated its effects in BALB/c mice. Mice were immunized subcutaneously with 2 doses of the vaccine containing hemagglutinin (HA) alone or HA plus an aluminum hydroxide (Al(OH)3) adjuvant. Immunization with varying doses of HA (3.75, 7.5, 15, 30, 45 or 60 µg) was performed to induce the production of neutralizing antibodies. The vaccine elicited strong hemagglutination inhibition (HI) and microneutralization, and addition of the adjuvant augmented the antibody response. A preliminary safety evaluation showed that the vaccine was not toxic at large doses (0.5 ml containing 60 µg HA+600 µg Al(OH)3 or 60 µg HA). Moreover, the vaccine was found to be safe at a dose of 120 µg HA+1200 µg Al(OH)3 or 120 µg HA in 1.0 ml in rats. In conclusion, the present study provides support for the clinical evaluation of influenza A (H1N1) vaccination as a public health intervention to mitigate a possible pandemic. Additionally, our findings support the further evaluation of the vaccine used in this study in primates or humans.  相似文献   

6.
Introduction: Emerging virulent strains of influenza virus pose a serious public health threat with potential pandemic consequences. A novel avian influenza virus, H7N9, breached the species barrier from infected domestic poultry to humans in 2013 in China. Since then, it has caused numerous infections in humans with a close contact to poultry. Materials and Methods: In this study, we describe the preliminary characterisation of five murine monoclonal antibodies (MAbs) developed against recombinant haemagglutinin (rHA) protein of avian H7N9 A/Anhui/1/2013 virus by their Western blot and enzyme-linked immunosorbent assay (ELISA) reactivity and binding affinity. Results: Of the five MAbs, four were highly specific to H7N9 HA and did not show any cross-reactivity in ELISA with rHA protein from pandemic as well as seasonal H1N1, H2N2, H3N2, H5N1 and influenza virus B (B/Brisbane/60/2008). However, one of the MAbs, MA-24, in addition to HA protein of H7N9 also reacted strongly with HA protein of H3N2 and weakly with HA of pandemic and seasonal H1N1 and H2N2. All the five MAbs also reacted with H7N9 rHA in Western blot. The MAbs bound H7N9 rHA with an equilibrium dissociation constant (KD) ranging between 0.14 and 25.20 nM, indicating their high affinity to HA. Conclusions: These antibodies may be useful in developing diagnostic tools for the detection of influenza H7N9 virus infections.  相似文献   

7.
Shao H  Ye J  Vincent AL  Edworthy N  Ferrero A  Qin A  Perez DR 《Virology》2011,417(2):379-384
The HA protein of the 2009 pandemic H1N1 viruses (H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through mutation and reassortment of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains are undergoing substantial antigenic drift and shift. In this report we describe the development of a novel monoclonal antibody (S-OIV-3B2) that shows high hemagglutination inhibition (HI) and neutralization titers not only against H1N1pdm, but also against representatives of the α, β, and γ clusters of swine-lineage H1 influenza viruses. Mice that received a single intranasal dose of S-OIV-3B2 were protected against lethal challenge with either H1N1pdm or cH1N1 virus. These studies highlight the potential use of S-OIV-3B2 as effective intranasal prophylactic or therapeutic antiviral treatment for swine-lineage H1 influenza virus infections.  相似文献   

8.
H5N1 avian influenza viruses are continuing to spread in waterfowl in Eurasia and to threaten the health of avian and mammalian species. The possibility that highly pathogenic (HP) H5N1 avian influenza is now endemic in both domestic and migratory birds in Eurasia makes it unlikely that culling alone will control H5N1 influenza. Because ducks are not uniformly killed by HP H5N1 viruses, they are considered a major contributor to virus spread. Here, we describe a reverse genetics-derived high-growth H5N3 strain containing the modified H5 of A/chicken/Vietnam/C58/04, the N3 of A/duck/Germany/1215/73, and the internal genes of A/PR/8/34. One or two doses of inactivated oil emulsion vaccine containing 0.015 to 1.2 microg of HA protein provide highly efficacious protection against lethal H5N1 challenge in ducks; only the two dose regimen has so far been tested in chickens with high protective efficacy.  相似文献   

9.
Influenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use of in vitro assays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using an in vivo mouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) both in vitro and in vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.  相似文献   

10.
BackgroundInfluenza strain A/California/07/2009 H1N1 (H1N1-09) reemerged in 2013/2014 as the predominant cause of illness. We sought to determine if antigenic drift may have contributed to the decreased responses to influenza vaccine.MethodsFifty adults who received trivalent inactivated influenza vaccine (IIV3) and 56 children who received live attenuated quadrivalent influenza vaccine (LAIV4) had hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies measured in plasma against H1N1-09 and H1N1 2013/2014 (H1N1-14) influenza. Partial sequencing of the hemagglutinin gene (nt 280–780) was performed on 38 clinical isolates and the vaccine prototype.ResultsIn IIV3 recipients, HAI and MN titers against H1N1-14 were significantly lower than against H1N1-09 (p < 0.0001 and 0.04, respectively). In LAIV4 recipients, only MN titers were significantly lower (p = 0.02) for H1N1-09 compared with H1N1-14. A combined analysis showed significantly lower HAI and MN titers for H1N1-14 compared with H1N1-09 (p = 0. 016 and 0.008, respectively). All 38 clinical isolates encoded the HA gene K166Q non-synonymous substitution; other non-synonymous substitutions were observed in <10% of the clinical isolates.Conclusions2013/2014 IIV3 and LAIV4 recipients had consistently lower MN antibody titers against H1N1-14 compared with H1N1-09. The HA K166Q mutation, located in a neutralizing epitope, probably contributed to these findings.  相似文献   

11.
Immune responses during infection with pandemic H1N1 2009 influenza A virus (2009-H1N1) are still poorly understood. Using an experimental infection model in ferrets, we examined the pathological features and characterized the host immune responses by using microarray analysis, during infection with 2009-H1N1 A/California/07/2009 and seasonal A/Brisbane/59/2007. Chemokines CCL2, CCL8, CXCL7 and CXCL10 along with the majority of interferon-stimulated genes were expressed early, correlated to lung pathology, and abruptly decreased expression on day 7 following infection of A/California/07/2009. Interestingly, the drop in innate immune gene expression was replaced by a significant increase of the adaptive immune genes for granzymes and immunoglobulins. Serum anti-influenza antibodies were first observed on day 7, commensurate with the viral clearance. We propose that lung pathology in humans occurs during the innate phase of host immunity and a delay or failure to switch to the adaptive phase may contribute to morbidity and mortality during severe 2009-H1N1 infections.  相似文献   

12.
We looked for evidence of antibodies to the 2009 influenza A/H1N1 pandemic virus in panels of sera from individuals living in metropolitan France, obtained either before, during or after the epidemic, using standard haemagglutination inhibition and microneutralization tests. The difference between seroprevalence values measured in post- and pre-epidemic panels was used as an estimate of seroconversion rate in different age groups (23.4% (0–24 years, age-group 0); 16.5% (25–34); 7.9% (35–44); 7.2% (45–54); 1.6% (55–64); and 3.1% (<65)), confirming that the distribution of cases in different age groups was similar to that of the seasonal H1N1 virus. During the pre-pandemic period low-titre cross-reactive antibodies were present in a large proportion of the population (presumably acquired against seasonal H1N1) whereas cross-reactive antibodies were detected in individuals over the age of 65 years with significantly higher prevalence and serological titres (presumably acquired previously against Spanish flu-related H1N1 strains). Clinical data and analysis of post-pandemic seroprevalence showed that few of these latter patients were infected by the influenza virus during the epidemic. In contrast, the majority of both clinical cases and seroconversions were recorded in the 0–24 age group and a global inverse relationship between prevalence of antibodies to pH1N1 in the pre-pandemic period and rate of seroconversion was observed amongst age groups. Our results emphasize the complex relationships involved in antigenic reactivity to pandemic and seasonal H1N1 viral antigens; hence the difficulty in distinguishing between low-titre specific and cross-reactive antibodies, establishing precise seroprevalence numbers and fully understanding the relationship between previous immunity to seasonal viruses and protection against the novel variant.  相似文献   

13.
为研制禽流感病毒(H5N1)非结构蛋白1(NS1)的特异性单克隆抗体(mAb),并鉴定其特异性,本研究在分别表达了具有良好抗原性的A/Vietnam/1194/04(H5N1)-NS1和A/HongKong/486/97(H5N1)-NS1重组蛋白基础上,用A/Viet-nam/1194/04(H5N1)-NS1蛋白免疫BALB/c小鼠,取其脾细胞与小鼠骨髓瘤细胞进行融合,间接ELISA筛选阳性的杂交瘤细胞,并结合免疫荧光和免疫印迹对抗体的特异性进行鉴定,通过竞争抑制实验对单抗识别的抗原位点进行分析。结果共获得19株能识别4个H5N1-NS1蛋白不同抗原位点的mAb,亚类测定显示,5株为IgG2a、1株为IgG2b,另外13株为IgG1。这些mAb均与A/Vietnam/1194/04(H5N1)-NS1和A/HongKong/486/97(H5N1)-NS1重组蛋白特异性结合,免疫荧光检测均与A型流感病毒(H1N1和H3N2)有交叉反应,而与B型流感病毒无交叉现象。表明成功获得特异性针对H5N1-NS1蛋白的mAb,为进一步研究禽流感病毒NS1蛋白的结构与功能奠定基础。  相似文献   

14.
Lee CS  Kang BK  Kim HK  Park SJ  Park BK  Jung K  Song DS 《Virus genes》2008,37(2):168-176
Several influenza A viral subtypes were isolated from pigs during a severe outbreak of respiratory disease in Korea during 2005 and 2006. They included a classical swine H1N1 subtype, two swine-human-avian triple-recombinant H1N2 subtypes, and a swine-human-avian triple-recombinant H3N2 subtype. In the current study, genetic characterization to determine the probable origin of these recent isolates was carried out for the first time. Phylogenetic analysis indicated that all the recent Korean isolates of H1N1, H1N2, and H3N2 influenza are closely related to viruses from the United States. Serologic and genetic analysis indicated that the Korean H1N2 viral subtypes were introduced directly from the United States, and did not arise from recombination between Korean H1N1 and H3N2. We suggest that the H1N1, H1N2, and H3N2 viral subtypes that were isolated from the Korean swine population originated in North America, and that these viruses are currently circulating in the Korean swine population.  相似文献   

15.
16.
17.
A serological survey for antibodies to influenza viruses was performed in China on a group of people without a history of influenza vaccination. Using the haemagglutination inhibition (HI) assay, we found seropositivity rates for seasonal H3N2 to be significantly higher than those for seasonal H1N1. Samples positive for antibodies to the pandemic (H1N1) 2009 virus increased from 0.6% pre-outbreak to 4.5% (p <0.01) at 1 year post-outbreak. Interestingly, HI and neutralization tests showed that 1.4% of people in the group have antibodies recognizing H9N2 avian influenza viruses, suggesting that infection with this subtype may be more common than previously thought.  相似文献   

18.
目的了解2009年我国首例甲型H1N1流感二代病例的流行病学、临床、病原学检查特点及预后转归。方法对患者流行病学及临床资料进行回顾性分析,并采用实时荧光聚合酶链反应测定甲型H1N1流感病毒核酸。结果患者与甲型H1N1流感输入病例接触1天后发病。以发热、咽痛、咳嗽起病,白细胞及CD4+T淋巴细胞计数降低,无肺炎等并发症。多级机构检测咽拭子甲型H1N1流感病毒核酸阳性确诊甲型H1N1流感。RT-PCR测序证实其病毒核苷酸序列与一代输入病例的一致,同源性为100%。经奥司他韦抗病毒及对症治疗痊愈出院。结论本病例的传染源明确,为我国首例报告的甲型H1N1流感二代确诊病例,其临床表现轻,病情恢复快。未发生院内感染,早隔离早诊断等防控措施有效。  相似文献   

19.
20.
The increasing number of recent outbreaks of HPAI H5N1 in birds and humans brings out an urgent need to develop potent H5N1 vaccine regimens. Here we present a study on the intranasal vaccination of recombinant baculovirus surface-displayed hemagglutinin (BacHA) or inactivated whole H5N1 viral (IWV) vaccine with a recombinant cholera toxin B subunit (rCTB) as a mucosal adjuvant in a BALB/c mouse model. Two groups of mice were vaccinated with different doses (HA titer of log 24 or log 28) of either HA surface-displayed baculovirus or inactivated whole viral vaccine virus adjuvanted with different doses (2 μg or 10 μg) of rCTB. The vaccinations were repeated after 28 days. HA specific serum IgG and mucosal IgA antibodies were quantified by indirect ELISA, and serum neutralizing antibody titer were estimated by hemagglutination inhibition (HI) assay and virus neutralization titer assay. Functional protective efficacy of the vaccine was assessed by host challenge against HPAI H5N1 strains. The results revealed that mice co-administered with log 28 HA titer of BacHA vaccine and adjuvanted with 10 μg of rCTB had a significantly enhanced serum IgG and mucosal IgA immune response and serum microneutralization titer compared with mice administered with unadjuvanted log 24 or log 28 HA titer of BacHA alone. Also vaccination with 10 μg of rCTB and log 28 HA titer of BacHA elicited higher HA specific serum and mucosal antibody levels and serum HI titer than vaccination with log 28 HA titer of inactivated H5N1 virus adjuvanted with the same dose of rCTB. The host challenge study also showed that 10 μg rCTB combined with log 28 HA titer of BacHA provided 100% protection against 10MLD50 of homologous and heterologous H5N1 strains. The study shows that the combination of rH5 HA expressed on baculovirus surface and rCTB mucosal adjuvant form an effective mucosal vaccine against H5N1 infection. This baculovirus surface-displayed vaccine is more efficacious than inactivated H5N1 influenza vaccine when administered by intranasal route and has no biosafety concerns associated with isolation, purification and production of the latter vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号