首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Resveratrol is well known for its anti-inflammation and anti-oxidant properties, and has been shown to be effective in alleviating the development of obesity. The purpose of this investigation was to analyze the effect of resveratrol on renal damage in obese rats induced by a high-fat diet (HFD) and its possible mechanisms. Male Sprague-Dawley rats were divided into three groups: control, HFD, and HFD plus resveratrol (treated with 100 mg/kg/day resveratrol). Body weight, serum and urine metabolic parameters, and kidney histology were measured. Meanwhile, the activities of nuclear factor-κB (NF-κB) and superoxide dismutase (SOD), the content of malondialdehyde (MDA), and the protein levels of tumor necrosis factor (TNF-α), monocyte chemotactic protein-1 (MCP-1), nephrin and podocin in kidney were detected. Our work showed that resveratrol alleviated dyslipidemia and renal damage induced by HFD, decreased MDA level and increased SOD activity. Furthermore, the elevated NF-κB activity, increased TNF-α and MCP-1 levels, and reduced expressions of nephrin and podocin induced by HFD were significantly reversed by resveratrol. These results suggest resveratrol could ameliorate renal injury in rats fed a HFD, and the mechanisms are associated with suppressing oxidative stress and NF-κB signaling pathway that in turn up-regulate nephrin and podocin protein expression.  相似文献   

3.
Background: Increasing evidence suggests that combinations of phytochemicals are more efficient than single components in the modulation of signaling pathways involved in cancer development. In this study, the impact of phenethyl isothiocyanate (PEITC), indole-3-carbinol (I3C), xanthohumol, (X), and resveratrol (RES) and their combinations on the activation and expression of Nrf2 and NF-κB in human hepatocytes and HCC cells were evaluated. Methods: THLE-2 and HepG2 cells were exposed to single phytochemicals and their combinations for 24 h. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cells survival were assessed. The tumor burden was evaluated in mice carrying xenografts. Results: All phytochemicals enhanced the activation and expression of Nrf2 and its target genes SOD and NQO1 in HepG2 cells. The increased expression of NQO1 (~90%) was associated with increased ROS generation. X + PEITC downregulated NF-κB activation reducing binding of its active subunits to DNA resulting in diminished COX-2 expression. In contrast to single phytochemicals, X + PEITC induced apoptosis. Moderate reduction of tumor burden in mice carrying xenografts following X and PEITC or their combination was observed. Conclusions: Since Nrf2 is overexpressed in HCC its reduced activation together with diminished level of NF-κB by X + PEITC may be considered as a strategy to support conventional HCC therapy.  相似文献   

4.
5.
Cornuside is an iridoid glycoside from Cornus officinalis, with the activities of anti-inflammatory, antioxidant, anti-mitochondrial dysfunction, and neuroprotection. In the present research, a triple-transgenic mice model of AD (3 × Tg-AD) was used to explore the beneficial actions and potential mechanism of cornuside on the memory deficits. We found that cornuside prominently alleviated neuronal injuries, reduced amyloid plaque pathology, inhibited Tau phosphorylation, and repaired synaptic damage. Additionally, cornuside lowered the release of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), lowered the level of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and the level of glutathione peroxidase (GSH-Px). Cornuside also significantly reduced the activation of astrocytes and modulated A1/A2 phenotypes by the AKT/Nrf2/NF-κB signaling pathway. We further confirmed that LY294002 and Nrf2 silencing could block the cornuside-mediated phenotypic switch of C6 cells induced by microglia conditioned medium (MCM) in response to lipopolysaccharide (LPS), which indicated that the effects of cornuside in astrocyte activation are dependent on AKT/Nrf2/NF-κB signaling. In conclusion, cornuside may regulate the phenotypic conversion of astrocytes, inhibit neuroinflammation and oxidative stress, improve synaptic plasticity, and alleviate cognitive impairment in mice through the AKT/Nrf2/NF-κB axis. Our present work provides an experimental foundation for further research and development of cornuside as a candidate drug for AD management.  相似文献   

6.
7.
8.
9.
10.
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.  相似文献   

11.
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ1-42-stimulated N2a cells. Proteomic analysis demonstrated that the neuroprotection of VB correlated closely to its anti-inflammatory effect. VB significantly blocked microglia and astrocyte against activation in brains of APP/PS1 mice, suppressed the generation of IL-1β as well as IL-6, and boosted that of IL-4, IL-10 and TGF-β in vivo, which were analogous to results acquired in vitro. Furthermore, VB effectively restrained the phosphorylation of IKKα+β, IκBα, and NF-κB-p65 in APP/PS1 mice; LPS-induced BV2 cells, and Aβ1-42-stimulated N2a cells and lowered the tendency of NF-κB-p65 translocation towards nucleus in vitro. These results demonstrate that the neuroprotective effect of VB correlates to the modulation of neuroinflammation via NF-κB-p65 pathway, making VB as a hopeful candidate drug for the prevention and treatment of AD.  相似文献   

12.
Inosine is a type of purine nucleoside, which is considered to a physiological energy source, and exerts a widely range of anti-inflammatory efficacy. The TLR4/MyD88/NF-κB signaling pathway is essential for preventing host oxidative stresses and inflammation, and represents a promising target for host-directed strategies to improve some forms of disease-related inflammation. In the present study, the results showed that inosine pre-intervention significantly suppressed the pulmonary elevation of pro-inflammatory cytokines (including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), malondialdehyde (MDA), nitric oxide (NO), and reactive oxygen species (ROS) levels, and restored the pulmonary catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities (p < 0.05) in lipopolysaccharide (LPS)-treated mice. Simultaneously, inosine pre-intervention shifted the composition of the intestinal microbiota by decreasing the ratio of Firmicutes/Bacteroidetes, elevating the relative abundance of Tenericutes and Deferribacteres. Moreover, inosine pretreatment affected the TLR4/MyD88/NF-κB signaling pathway in the pulmonary inflammatory response, and then regulated the expression of pulmonary iNOS, COX2, Nrf2, HO-1, TNF-α, IL-1β, and IL-6 levels. These findings suggest that oral administration of inosine pretreatment attenuates LPS-induced pulmonary inflammatory response by regulating the TLR4/MyD88/NF-κB signaling pathway, and ameliorates intestinal microbiota disorder.  相似文献   

13.
14.
Kaempferol, a bioflavonoid present in fruits and vegetables, has a variety of antioxidant and anti-inflammatory capacities, but the functional role of kaempferol in oxidative skin dermal damage has yet to be well studied. In this study, we examine the role of kaempferol during the inflammation and cell death caused by 12-O-tetradecanoylphorbol-13-acetate (TPA) in normal human dermal fibroblasts (NHDF). TPA (5 μM) significantly induced cytotoxicity of NHDF, where a robust increase in the interleukin (IL)-1β mRNA among the various pro-inflammatory cytokines. The skin fibroblastic cytotoxicity and IL-1β expression induced by TPA were significantly ameliorated by a treatment with 100 nM of kaempferol. Kaempferol blocked the production of the intracellular reactive oxygen species (ROS) responsible for the phosphorylation of c-Jun N-terminal kinase (JNK) induced by TPA. Interestingly, we found that kaempferol inhibited the phosphorylation of nuclear factor-kappa B (NF-κB) and the inhibitor NF-κB (IκBα), which are necessary for the expression of cleaved caspase-3 and the IL-1β secretion in TPA-treated NHDF. These results suggest that kaempferol is a functional agent that blocks the signaling cascade of the skin fibroblastic inflammatory response and cytotoxicity triggered by TPA.  相似文献   

15.
16.
High-mobility group box-1 (HMGB1) is a well-known pro-inflammatory cytokine. We aimed to investigate the effect of the ethanol extract of the root of P. cuspidatum (PCE) on retinal inflammation in diabetic retinopathy. PCE (100 or 350 mg/kg/day) was administered to diabetic rats for 16 weeks, and hyperglycemia and body weight loss developed in the diabetic rats. The retinal expression levels of HMGB1 and receptor for advanced glycation end products (RAGE) and the activity of nuclear factor-kappa B (NF-κB) in the retina were examined. Additionally, a chromatin immunoprecipitation assay was performed to analyze the binding of NF-κB binding to the RAGE promoter in the diabetic retinas. The levels of HMGB1 and RAGE expression, NF-κB activity, and NF-κB binding to the RAGE promoter were increased in the diabetic retinas. However, treatment with PCE ameliorated the increases in HMGB1 and RAGE expression, and NF-κB activity in the retina. In addition, in diabetic rats, retinal vascular permeability and the loosening of the tight junctions were inhibited by PCE. These findings suggest that PCE has a preventative effect against diabetes-induced vascular permeability by inhibiting HMGB1-RAGE-NF-κB activation in diabetic retinas. The oral administration of PCE may significantly help to suppress the development of diabetic retinopathy in patients with diabetes.  相似文献   

17.
Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.  相似文献   

18.
Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB)-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L) for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.  相似文献   

19.

BACKGROUND/OBJECTIVES

Overproduction of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) enzyme can cause inflammation. Cyclooxygenase-2 (COX-2) is also involved in the inflammatory response through regulation of nuclear factor-kappa B (NF-κB). Areca catechu is one of the known fruit plants of the Palmaceae family. It has been used for a long time as a source of herbal medicine in Indonesia. In this study, we explored the effect of Indonesian Areca catechu leaf ethanol extract (ACE) in lipopolysaccharide (LPS)-induced inflammation and carrageenan-induced paw edema models. Recently, this natural extract has been in the spotlight because of its efficacy and limited or no toxic side effects. However, the mechanism underlying its anti-inflammatory effect remains to be elucidated.

MATERIALS/METHODS

We measured NO production by using the Griess reagent, and determined the expression levels of inflammation-related proteins, such as iNOS, COX2, and NF-κB, by western blot. To confirm the effect of ACE in vivo, we used the carrageenan-induced paw edema model.

RESULTS

Compared to untreated cells, LPS-stimulated RAW 264.7 cells treated with ACE showed reduced NO generation and reduced iNOS and COX-2 expression. We found that the acute inflammatory response was significantly reduced by ACE in the carrageenan-induced paw edema model.

CONCLUSION

Taken together, these results suggest that ACE can inhibit inflammation and modulate NO generation via downregulation of iNOS levels and NF-κB signaling in vitro and in vivo. ACE may have a potential medical benefit as an anti-inflammation agent.  相似文献   

20.
The aim of the present study was to examine the effect of green tea extract containing Piper retrofractum fruit (GTP) on dextran-sulfate-sodium (DSS)-induced colitis, the regulatory mechanisms of microRNA (miR)-21, and the nuclear factor-κB (NF-κB) pathway. Different doses of GTP (50, 100, and 200 mg/kg) were administered orally once daily for 14 days, followed by GTP with 3% DSS for 7 days. Compared with the DSS-treated control, GTP administration alleviated clinical symptoms, including the disease activity index (DAI), colon shortening, and the degree of histological damage. Moreover, GTP suppressed miR-21 expression and NF-κB activity in colon tissue of DSS-induced colitis mice. The mRNA levels of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were downregulated by GTP. Colonic nitric oxide (NO) and prostaglandin E2 (PGE2) production, and myeloperoxidase (MPO) activity were also lowered by GTP. Taken together, our results revealed that GTP inhibits DSS-induced colonic inflammation by suppressing miR-21 expression and NF-κB activity, suggesting that it may be used as a potential functional material for improving colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号