首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Structural determinants of fluorochemical-induced mitochondrial dysfunction.   总被引:13,自引:0,他引:13  
Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are thought to induce peroxisome proliferation and interfere with mitochondrial metabolic pathways. Direct measurements revealed that PFOA and the unsubstituted sulfonamide of perfluorooctane (FOSA) uncouple mitochondrial respiration by increasing proton conductance. The purpose of this investigation was to characterize structural determinants responsible for the mitochondrial uncoupling effect of several structurally related fluorochemicals. Included in the study were PFOA, PFOS, FOSA, the N-acetate of FOSA (perfluorooctanesulfonamidoacetate, FOSAA), N-ethylperfluorooctanesulfonamide (N-EtFOSA), and the N-ethyl alcohol [2-(N-ethylperfluorooctanesulfonamido)ethyl alcohol, N-EtFOSE] and N-acetic acid (N-ethylperfluorooctanesulfonamidoacetate, N-EtFOSAA) of N-EtFOSA. Each test compound was dissolved in ethanol and added directly to an incubation medium containing substrate-energized rat liver mitochondria. Mitochondrial respiration and membrane potential were measured concurrently using an oxygen electrode and a TPP+ -selective electrode, respectively. All of the compounds tested, at sufficiently high concentrations, had the capacity to interfere with mitochondrial respiration, albeit via different mechanisms and with varying potencies. At sufficiently high concentrations, the free acids PFOA and PFOS caused a slight increase in the intrinsic proton leak of the mitochondrial inner membrane, which resembled a surfactant-like change in membrane fluidity. Similar effects were observed with the sulfonamide N-EtFOSE. Another fully substituted sulfonamide, N-EtFOSAA, at high concentrations caused inhibition of respiration, the release of cytochrome c, and high-amplitude swelling of mitochondria. The swelling was prevented by cyclosporin A or by EGTA, indicating that this compound induced the mitochondrial permeability transition. The unsubstituted and mono-substituted amides FOSA, N-EtFOSA, and FOSAA all exerted a strong uncoupling effect on mitochondria resembling that of protonophoric uncouplers. Among these compounds, FOSA was a very potent uncoupler of oxidative phosphorylation, with an IC50 of approximately 1 microM. These data suggest that the protonated nitrogen atom with a favorable pKa is essential for the uncoupling action of perfluorooctane sulfonamides in mitochondria, which may be critical to the mechanism by which these compounds interfere with mitochondrial metabolism to induce peroxisome proliferation in vivo.  相似文献   

2.
N-Alkylperfluorooctanesulfonamides have been used in a range of industrial and commercial applications. Perfluorooctanesulfonamide (FOSA) is a major metabolite of N-alkylperfluorooctanesulfonamides and has a long half-life in animals and in the environment and is biotransformed to FOSA N-glucuronide. The objective of this study was to identify and characterize the human and experimental animal liver UDP-glucuronosyltransferases (UGTs) that catalyze the N-glucuronidation of FOSA. The results showed that pooled human liver and rat liver microsomes had high N-glucuronidation activities. Expressed rat UGT1.1, UGT2B1, and UGT2B12 in HK293 cells catalyzed the N-glucuronidation of FOSA but at rates that were lower than those observed in rat liver microsomes. Of the 10 expressed human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B15, and 2B17) studied, only hUGT2B4 and hUGT2B7 catalyzed the N-glucuronidation of FOSA. The kinetics of N-glucuronidation of FOSA by rat liver microsomes and by hUGT2B4/7 was consistent with a single-enzyme Michaelis-Menten model, whereas human liver microsomes showed sigmoidal kinetics. These data show that rat liver UGT1.1, UGT2B1, and UGT2B12 catalyze the N-glucuronidation of FOSA, albeit at low rates, and that hUGT2B4 and hUGT2B7 catalyze the N-glucuronidation of FOSA.  相似文献   

3.
(R)-N-[4-[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]- 4-[4-(4-trifluoro-methylphenyl)thiazol-2-yl]benzenesulfonamide (1) is a potent and selective agonist of the human beta3-adrenergic receptor. We report herein the data from studies of the metabolism and excretion of 1 in rats. Five metabolites were identified in the bile of male Sprague-Dawley rats administered 3H-labeled 1 by either oral gavage (10 mg/kg) or intravenous injection (3 mg/kg). These included a pyridine N-oxide derivative (M2), a primary amine resulting from N-dealkylation and loss of the pyridinyl-2-hydroxyethyl group (M4), a carboxylic acid derived from N-dealkylation and loss of the pyridyl-2-hydroxyethyl amine (M5), and the corresponding taurine and isethionic acid conjugates (M1 and M3). Metabolites M1 and M3 also were identified in rats treated with M5 and were generated in incubations of M5 with rat liver subcellular fractions in the presence of ATP and coenzyme A with supplementary taurine or isethionic acid. These results suggest that M5 is the precursor of M1 and M3 and that the formation of these conjugated metabolites follows similar mechanisms of amino acid conjugation. On the other hand, M2, M4, and M5 were produced from 1 in an NADPH-dependent manner in incubations with liver microsomes from rats, dogs, monkeys, and humans. In human liver preparations, these routes of biotransformation were shown to be catalyzed by cytochrome P450 3A4. In a bidirectional transport assay, transport of 1 across a monolayer of cells expressing P-glycoprotein (Pgp) was observed to be similar to that of vinblastine, which is an established substrate of the transporter protein. This finding, together with the observation that the parent compound was excreted in the feces of bile duct-cannulated animals following intravenous dosing, suggests that 1 is subject to Pgp-mediated excretion from intestine of rats.  相似文献   

4.
Perfluorooctanesulfonamides, such as N-ethyl perfluorooctanesulfonamidoethanol (N-EtFOSE), are large scale industrial chemicals but their disposition and toxicity are poorly understood despite significant human exposure. The hypothesis that subacute exposure to N-EtFOSE, a weak peroxisome proliferator, causes a redox imbalance in vivo was tested using the known peroxisome proliferator, ciprofibrate, as a positive control. Female Sprague–Dawley rats were treated orally with N-EtFOSE, ciprofibrate or corn oil (vehicle) for 21 days, and levels of N-EtFOSE and its metabolites as well as markers of peroxisome proliferation and oxidative stress were assessed in serum, liver and/or uterus. The N-EtFOSE metabolite profile in liver and serum was in good agreement with reported in vitro biotransformation pathways in rats and the metabolite levels decreasing in the order perfluorooctanesulfonate ? perfluorooctanesulfonamide ~ N-ethyl perfluorooctanesulfonamidoacetate ? perfluorooctanesulfonamidoethanol ~ N-EtFOSE. Although N-EtFOSE treatment significantly decreased the growth rate, increased relative liver weight and activity of superoxide dismutases (SOD) in liver and uterus (total SOD, CuZnSOD and MnSOD), a metabolic study revealed no differences in the metabolome in serum from N-EtFOSE-treated and control animals. Ciprofibrate treatment increased liver weight and peroxisomal acyl Co-A oxidase activity in the liver and altered antioxidant enzyme activities in the uterus and liver. According to NMR metabolomic studies, ciprofibrate treated animals had altered serum lipid profiles compared to N-EtFOSE-treated and control animals, whereas putative markers of peroxisome proliferation in serum were not affected. Overall, this study demonstrates the biotransformation of N-EtFOSE to PFOS in rats that is accompanied by N-EtFOSE-induced alterations in antioxidant enzyme activity.  相似文献   

5.
Developmental toxicology (teratology) studies were done on two perfluorinated compounds-perfluorooctanesulfonate (PFOS) and 2-(N-ethylperfluorooctanesulfonamido)ethyl alcohol (N-EtFOSE) in rats and rabbits. Dose selection for these oral developmental toxicity studies were based upon dose-range study results. Dose levels of 0, 1, 5, 10, and 20 mg/kg/day were used for the rat N-EtFOSE study, and dose levels of 0, 0.1, 1.0, 2.5, and 3.75 mg/kg/day were used for both the PFOS and the N-EtFOSE rabbit studies. Although no compound-related deaths occurred in the dosed pregnant females on the developmental toxicity studies, maternal toxicity (reduced body weight gain and feed consumption) was present at higher dose levels in all three studies. At high maternally toxic doses, associated effects occurred in the conceptuses--increased abortions in PFOS and N-EtFOSE rabbits, reduced fetal weights in N-EtFOSE rats and PFOS rabbits, and increased late resorptions in N-EtFOSE rabbits. Detailed external gross, soft tissue, and skeletal fetal examinations failed to reveal any compound-related malformations in either species. Similar results, that is, only effects associated with maternal toxicity, had been found in previously conducted PFOS rat developmental toxicity studies. It was concluded that these perfluorinated compounds were not selective developmental toxicants in either rats or rabbits.  相似文献   

6.
A large number of epidemiological studies evidencing that excessive alcohol consumption is associated with impaired testosterone production and testicular atrophy are available in the literature. One hypothesis to explain the deleterious action of alcohol involves the in situ biotransformation to acetaldehyde, but it strongly suggests the need to learn more about the enzymatic processes governing alcohol metabolism to acetaldehyde in different cellular fractions since limited information is available in the literature. In this article we report studies on the metabolic conversion of alcohol to acetaldehyde and to 1-hydroxyethyl radicals in rat testicular microsomal fractions. The oxidation of ethanol to acetaldehyde in rat testes microsomal fraction was mostly of enzymatic nature and strongly dependent on the presence of NADPH and oxygen. Several compounds were able to significantly decrease the production of acetaldehyde: SKF 525A; diethyldithiocarbamate; esculetin; gossypol; curcumin; quercetin; dapsone; and diphenyleneiodonium. Microsomal preparations in the presence of NADPH were also able to produce both hydroxyl and 1-hydroxyethyl free radicals. Their generation was modulated by the presence of diphenyleneiodonium, gossypol, and deferoxamine. Results show that rat microsomal fractions are able to metabolize alcohol to deleterious chemicals, such as acetaldehyde and free radicals, that may be involved in ethanol toxic effects. Enzymes involved could include CYP2E1, P450 reductase, and other enzymes having lipoxygenase- /peroxidase-like behavior.  相似文献   

7.
Compounds that cause peroxisome proliferation in rats and mice have been reported to interfere with mitochondrial (mt) bioenergetics and possibly biogenesis. The purpose of this investigation was to establish whether proliferation of peroxisomes and mitochondria are necessarily related. Perfluorooctanesulfonate (PFOS) and N-ethyl perfluorooctanesulfonamido ethanol (N-EtFOSE) were investigated as peroxisome proliferators in comparison to perfluorooctanoic acid (PFOA). Three parameters were chosen to assess peroxisome proliferation, stimulation of lauroyl CoA oxidase activity, reduction of serum cholesterol concentration, and hepatomegaly. mt Biogenesis was assessed through cytochrome oxidase activity, cytochrome content and mitochondrial DNA (mtDNA) copy number. PFOA, PFOS, or N-EtFOSE was administered via a single i.p. injection at 100 mg/kg in male rats, and measurements were made 3 days later. In this model, PFOS and PFOA share similar potencies as peroxisome proliferators, whereas N-EtFOSE showed no activity. mt Endpoints were altered only in the PFOA treatment group, which consisted of a decrease cytochrome oxidase activity in liver tissue and an increase in the mtDNA copy number. None of the perfluorooctanoates significantly altered mt cytochrome content following acute in vivo treatment. These data demonstrate that acute administration of PFOS or PFOA causes hepatic peroxisome proliferation in rats. However, stimulation of mt biogenesis is not a characteristic response of all peroxisome proliferators.  相似文献   

8.
When chloramphenicol was incubated with rat liver microsomes, four previously unidentified metabolites were detected and identified. They include chloramphenicol aldehyde (chloramphenicol with the primary alcohol group oxidized to an aldehyde group), p-nitro-benzyl alcohol, N-(2-oxoethyl)dichloroacetamide, and N-(2-hydroxyethyl)dichloroacetamide. The formation of these metabolites was dependent upon the presence of NADPH and O2 and was inhibited when SKF 525-A or CO/O2 (8:2, v/v) were present in the reaction mixture. Moreover, the metabolites were formed by liver microsomes from phenobarbital-treated rats but not by microsomes from untreated rats or rats treated with beta-naphthoflavone. The formation of these metabolites is consistent with a mechanism that involves an initial oxidation of chloramphenicol to chloramphenicol aldehyde by cytochrome P-450. Inasmuch as this metabolite is a beta-hydroxyaldehyde, it can chemically undergo a retro-aldol cleavage to p-nitrobenzaldehyde and N-(2-oxoethyl)dichloroacetamide. Enzymatic reduction of these aldehyde intermediates would yield p-nitrobenzyl alcohol and N-(2-hydroxyethyl)dichloroacetamide, respectively.  相似文献   

9.
目的研究扁桃酸(MA)在大鼠、小鼠和兔组织中的立体选择性代谢,探讨MA代谢酶存在的部位、辅酶依赖性等性质以及可能的种属差异。方法MA对映体与大鼠、小鼠和兔的肝脏、肺、肾脏S9和微粒体共孵育,HPLC检测代谢并用柱前衍生化方法进行手性分析。同时考察辅酶NADH和NADPH及醇脱氢酶竞争性底物乙醇和抑制剂4-甲基吡唑对S-MA代谢的影响。结果S-MA在大鼠肝和肾S9中被代谢为PGA,而R-MA无代谢。两对映体在小鼠和兔组织中均不被代谢。乙醇和4-甲基吡唑不影响酶的活性,该代谢顺利进行的重要辅酶是NADPH而非NADH。结论大鼠中参与MA立体选择性代谢的酶是存在于胞浆或线粒体中的具有NADPH依赖性的非微粒体酶,而不是醇脱氢酶。MA的立体选择性代谢存在种属差异性。  相似文献   

10.
The oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), a tryptamine-type designer drug, was studied using rat liver microsomal fractions and recombinant cytochrome P450 (CYP) enzymes. 5-MeO-DIPT was biotransformed mainly into a side-chain N-deisopropylated metabolite and partially into an aromatic ring O-demethylated metabolite in liver microsomal fractions from untreated rats of both sexes. This metabolic profile is different from our previous findings in human liver microsomal fractions, in which the aromatic ring O-demethylation was the major pathway whereas the side-chain N-deisopropylation was minor [Narimatsu S, Yonemoto R, Saito K, Takaya K, Kumamoto T, Ishikawa T, et al. Oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (Foxy) by human liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 2006;71:1377-85]. Kinetic and inhibition studies indicated that the side-chain N-dealkylation is mediated by CYP2C11 and CYP3A2, whereas the aromatic ring O-demethylation is mediated by CYP2D2 and CYP2C6 in untreated male rats. Pretreatment of male rats with beta-naphthoflavone (BNF) produced an aromatic ring 6-hydroxylated metabolite. Recombinant rat and human CYP1A1 efficiently catalyzed 5-MeO-DIPT 6-hydroxylation under the conditions used. These results provide valuable information on the metabolic fate of 5-MeO-DIPT in rats that can be used in the toxicological study of this designer drug.  相似文献   

11.
Vicriviroc (SCH 417690), a CCR5 receptor antagonist, is currently under investigation for the treatment of human immunodeficiency virus infection. The objective of this study was to identify human liver cytochrome P450 enzyme(s) responsible for the metabolism of vicriviroc. Human liver microsomes metabolized vicriviroc via N-oxidation (M2/M3), O-demethylation (M15), N,N-dealkylation (M16), N-dealkylation (M41), and oxidation to a carboxylic acid metabolite (M35b/M37a). Recombinant human CYP3A4 catalyzed the formation of all these metabolites, whereas CYP3A5 catalyzed the formation of M2/M3 and M41. CYP2C9 only catalyzed the formation of M15. There was a high correlation between the rates of formation of M2/M3, M15, and M41, which was determined using 10 human liver microsomal samples and testosterone 6beta-hydroxylation catalyzed by CYP3A4/5 (r > or = 0.91). Ketoconazole and azamulin (inhibitors of CYP3A4) were potent inhibitors of the formation of M2/M3, M15, M41, and M35b/M37a from human liver microsomes. A CYP3A4/5-specific monoclonal antibody (1 microg/microg of protein) inhibited the formation of all metabolites from human liver microsomes by 86 to 100%. The results of this study suggest that formation of the major vicriviroc metabolites in human liver microsomes is primarily mediated via CYP3A4. CYP2C9 and CYP3A5 most likely play a minor role in the biotransformation of this compound. These enzymology data will provide guidance to design clinical studies to address any potential drug-drug interactions.  相似文献   

12.
Interactions of fluorochemicals with rat liver fatty acid-binding protein   总被引:15,自引:0,他引:15  
Liver-fatty acid binding protein (L-FABP) is an abundant intracellular lipid-carrier protein. The hypothesis that perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and certain related perfluorooctanesulfonamide-based fluorochemicals (PFOSAs) can interfere with the binding affinity of L-FABP for fatty acids was tested. The relative effectiveness of PFOA, PFOS, N-ethylperfluorooctanesulfonamide (N-EtFOSA), N-ethylperfluorooctanesulfonamido ethanol (N-EtFOSE), and of the strong peroxisome proliferator Wyeth-14643 (WY) to inhibit 11-(5-dimethylaminonapthalenesulphonyl)-undecanoic acid (DAUDA) binding to-L-FABP was determined. The dissociation constant (Kd) of the DAUDA-L-FABP complex was 0.47 nM. PFOS exhibited the highest level of inhibition of DAUDA-L-FABP binding in the competitive binding assays, followed by N-EtFOSA, WY, and, with equal IC(50)s, N-EtFOSE and PFOA. The in vitro data presented in this study support the hypothesis that these fluorochemicals may interfere with the binding of fatty acids or other endogenous ligands to L-FABP. Furthermore, this work provides evidence to support the hypothesis that displacement of endogenous ligands from L-FABP may contribute to toxicity in rodents fed these fluorochemicals.  相似文献   

13.
Ebastine undergoes extensive metabolism to form desalkylebastine and hydroxyebastine. Hydroxyebastine is subsequently metabolized to carebastine. Although CYP3A4 and CYP2J2 have been implicated in ebastine N-dealkylation and hydroxylation, the enzyme catalyzing the subsequent metabolic steps (conversion of hydroxyebastine to desalkylebastine and carebastine) have not been identified. Therefore, we used human liver microsomes (HLMs) and expressed cytochromes P450 (P450s) to characterize the metabolism of ebastine and that of its metabolites, hydroxyebastine and carebastine. In HLMs, ebastine was metabolized to desalkyl-, hydroxy-, and carebastine; hydroxyebastine to desalkyl- and carebastine; and carebastine to desalkylebastine. Of the 11 cDNA-expressed P450s, CYP3A4 was the main enzyme catalyzing the N-dealkylation of ebastine, hydroxyebastine, and carebastine to desalkylebastine [intrinsic clearance (CL(int)) = 0.44, 1.05, and 0.16 microl/min/pmol P450, respectively]. Ebastine and hydroxyebastine were also dealkylated to desalkylebastine to some extent by CYP3A5. Ebastine hydroxylation to hydroxyebastine is mainly mediated by CYP2J2 (0.45 microl/min/pmol P450; 22.5- and 7.5-fold higher than that for CYP3A4 and CYP3A5, respectively), whereas CYP2J2 and CYP3A4 contributed to the formation of carebastine from hydroxyebastine. These findings were supported by chemical inhibition and kinetic analysis studies in human liver microsomes. The CL(int) of hydroxyebastine was much higher than that of ebastine and carebastine, and carebastine was metabolically more stable than ebastine and hydroxyebastine. In conclusion, our data for the first time, to our knowledge, suggest that both CYP2J2 and CYP3A play important roles in ebastine sequential metabolism: dealkylation of ebastine and its metabolites is mainly catalyzed by CYP3A4, whereas the hydroxylation reactions are preferentially catalyzed by CYP2J2. The present data will be very useful to understand the pharmacokinetics and drug interaction of ebastine in vivo.  相似文献   

14.
This study was conducted to investigate if biotransformation of N, N, N-triethylene-thiophosphoramide (thio-TEPA) by liver slice incubations reflects the established gender pattern for rat and mouse. Liver slices from rat and mice of both genders were incubated with start concentrations of thio-TEPA of 5.2, 26, 52 and 104 μM for up to 240 min. Male rat liver slices eliminated thio-TEPA faster and formed more TEPA than female liver slices at any concentration. No gender difference was found for the elimination of thio-TEPA in mice, however, the female liver slices formed less TEPA than the male ones. Apparently female rat liver slices formed less TEPA than female mice liver slices. It is concluded that the liver slice incubation system in a robust manner reflects gender differences in rat drug biotransformation with special reference to thio-TEPA. It is also confirmed that these aspects of gender are less pronounced in the examined mouse species than in rats.  相似文献   

15.
This study was conducted to investigate if biotransformation of N,N,N-triethylene-thiophosphoramide (thio-TEPA) by liver slice incubations reflects the established gender pattern for rat and mouse. Liver slices from rat and mice of both genders were incubated with start concentrations of thio-TEPA of 5.2, 26, 52 and 104 microM for up to 240 min. Male rat liver slices eliminated thio-TEPA faster and formed more TEPA than female liver slices at any concentration. No gender difference was found for the elimination of thio-TEPA in mice, however, the female liver slices formed less TEPA than the male ones. Apparently female rat liver slices formed less TEPA than female mice liver slices. It is concluded that the liver slice incubation system in a robust manner reflects gender differences in rat drug biotransformation with special reference to thio-TEPA. It is also confirmed that these aspects of gender are less pronounced in the examined mouse species than in rats.  相似文献   

16.
Reductive metabolism of p,p'-DDT and o,p'-DDT by rat liver cytochrome P450.   总被引:1,自引:0,他引:1  
The in vitro metabolism of p,p'-DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], an important environmental pollutant, was examined in rat liver, focusing on reductive dechlorination. When p,p'-DDT was incubated with liver microsomes of rats in the presence of NADPH or NADH, a dechlorinated metabolite, p,p'-DDD [1,1-dichloro-2,2-bis(4-chlorophenyl)ethane], was formed under anaerobic conditions together with a dehydrochlorinated metabolite, p,p'-DDE [1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene]. p,p'-DDE was also formed from p,p'-DDD by liver microsomes. The dechlorinating activity was inhibited by carbon monoxide, metyrapone, and SKF 525-A (proadifen hydrochloride), but the dehydrochlorinating activity was unaffected. The reductase activity toward p,p'-DDT was induced by the pretreatment of rats with phenobarbital and dexamethasone. The dechlorination was catalyzed enzymatically by recombinant cytochrome P450 2B1, 3A1, 2B6, and 3A4. When p,p'-DDT was incubated with liver microsomes of rats in the presence of both a reduced pyridine nucleotide and FMN, p,p'-DDD was also formed under anaerobic conditions. In this case, the dechlorinating activity was not abolished when the microsomes were boiled. The reductase activities were inhibited by carbon monoxide. Hematin exhibited reductase activity toward p,p'-DDT in the presence of NADH and FMN. The activity of hematin was also supported by FMNH(2). The reductive dechlorination also seems to proceed nonenzymatically with the reduced flavin, catalyzed by the heme group of cytochrome P450. Similar enzymatic and nonenzymatic reducing activities were observed toward o,p'-DDT [1,1,1-trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane].  相似文献   

17.
4-Hydroxy-2-nonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert several biological and cytotoxic effects. The in vitro metabolism of [4-(3)H]-HNE by rat precision-cut liver slices was investigated. Liver slices rapidly metabolize HNE - about 85% of 0.1 microM [4-(3)H]-HNE was degraded within 5 min of incubation. The main metabolites of HNE identified were 4-hydroxynonenoic acid (HNA), glutathione-HNE-conjugate (HNE-GSH), glutathione-1,4-dihydroxynonene-conjugate (DHN-GSH) and cysteine-HNE-conjugate (HNE-CYS). Whereas glutathione conjugation demonstrated saturation kinetics (K(m)=412.2+/-152.7 microM and V(max)=12.3+/-2.5 nmol h(-1) per milligram protein), HNA formation was linear up to 500 microM HNE in liver slices. In contrast to previous reports, no trace of the corresponding alcohol of the HNE, 1,4-dihydroxynon-2-ene was detected in the present study. Furthermore, the beta-oxidation of HNA including the formation of tritiated water was demonstrated. The identification of 4-hydroxy-9-carboxy-2-nonenoic acid and 4,9-dihydroxynonanoic acid demonstrated that omega-oxidation significantly contributes to the biotransformation of HNE in liver slices.  相似文献   

18.
19.
Metabolism of dopazinol (DZ) by liver microsomes from control and phenobarbital- and 3-methylcholanthrene-treated rats has been investigated. Liver microsomes from control and treated rats metabolized DZ to N-despropyl-DZ (39-53% of total metabolites); 8-hydroxy-DZ, a catechol metabolite (32-39%); and 5- or 6-hydroxy-DZ (12-20%). The last metabolite was identified as its dehydration product 5,6-dehydro-DZ. N-Dealkylation was favored only slightly over catechol formation (ratio = 1.2) by liver microsomes from control and phenobarbital-treated rats, whereas with liver microsomes from 3-methylcholanthrene-treated rats, N-dealkylation predominated (ratio = 1.7). Liver microsomes from control rats metabolized DZ at a rate of 0.86 nmol/nmol cytochrome P-450/min. Pretreatment of rats with phenobarbital or 3-methylcholanthrene stimulated rates of metabolism by 2.4- and 3-fold, respectively. Metabolism of DZ was inhibited by SKF 525-A, methimazole, and thiobenzamide. SKF 525-A completely inhibited metabolism of DZ, while methimazole and thiobenzamide, two alternate substrates of the microsomal flavin-containing monooxygenase (MFMO) inhibited N-dealkylation only. These results indicated that while the cytochrome P-450-dependent monooxygenase is the primary enzyme system in DZ oxidation, the MFMO also catalyzes the N-dealkylation reaction. The catechol metabolite was converted to isomeric O-methylated derivatives in approximately 1:1 ratio by purified catechol-O-methyl transferase or 105,000g liver cytosol. The late eluting isomer was 8-methoxy-DZ.  相似文献   

20.
The biotransformation of halothane was studied using liver slices. Precision-cut Hartley male guinea pig liver slices (1 cm diameter; 250-300 microns thick) were incubated in sealed roller vials containing supplemented Krebs-Henseleit buffer at 37 degrees C under different O2 tensions (2.5, 21, and 95%). After a 1-hr preincubation, halothane was vaporized in the vial producing a 1.9 mM medium concentration. Halothane metabolites (Br-, trifluoroacetic acid, F-) were measured at 2, 4, and 6 hr. Viability of the incubated slices was verified by determining intracellular K+ content and levels of cytochrome P-450, which were maintained under 95% O2 atmosphere but decreased with lower O2 tensions (2.5%). The highest fluoride production was 300 +/- 22 pmol/mg slice weight/6 hr at low O2 tension (2.5%). Defluorination decreased with increasing O2 tension to undetectable levels under 95% O2. Production of the oxidative metabolite, trifluoroacetic acid, was highest at 95% O2 (2.35 +/- 0.17 nmol/mg slice weight/6 hr). Trifluoroacetic acid production decreased with decreasing O2 tension. Br- production was the highest at 21% O2 (1.8 +/- 0.13 nmol/mg slice weight/6 hr). Production of Br- was not dependent on the O2 tension. The guinea pig slices are capable of biotransforming halothane (oxidative/reductive); therefore, this in vitro system appears suitable for studying the biotransformation of halothane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号