首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide has been investigated widely both during neurodevelopment and in neurological diseases. However, whilst it has been established that nitric oxide-producing enzymes of nitric oxide synthase family are expressed in cerebellar Purkinje neurons, the effects of nitric oxide on the viability and morphology of these neurons remain unknown. Here, we have demonstrated that the activity of neuronal nitric oxide synthase, but not the inducible or endothelial forms of this enzyme, is required to support the survival of a proportion of cerebellar Purkinje neurons in vitro. We discovered that donation of high concentrations of exogenous nitric oxide reduces Purkinje neuron survival in culture and that peroxynitrite is also toxic to these cells. Finally, we demonstrated that exogenous nitric oxide and peroxynitrite reduce both the magnitude and the complexity of the neurite arbour extended by cerebellar Purkinje neurons. Taken together, these findings reveal that whilst a low level of endogenous nitric oxide, released by the activity of neuronal nitric oxide synthase, is beneficial to cerebellar Purkinje neurons in vitro, high levels of exogenous nitric oxide and peroxynitrite are detrimental to both the survival of these neurons and to their ability to extend processes and form functional neural networks.  相似文献   

2.
Using an antiserum against calretinin, a calcium-binding protein, we discovered two distinct neuronal cell types that stain intensely in enriched cerebellar granule cells. One neuronal cell type resembles unipolar brush cells, whereas the other resembles Lugaro cells. During early culture times, these calretinin-positive neurons are most numerous but represent less than one percent of the total neuronal population. In cultured cells, calretinin mRNA levels peak at day three in vitro, followed by a rapid decline to undetectable levels by day six in vitro. However, calretinin-immunoreactive neurons are observed up to 29 days in vitro. Excitotoxic concentrations of glutamate receptor agonists failed to elicit an excitotoxic response on the intensely staining calretinin-positive neurons, whereas greater than 95% of the cerebellar granule cells were susceptible to the excitotoxic actions of the glutamate receptor agonists. To distinguish between the two possibilities that calretinin-positive neurons either do not express glutamate receptors or they are not susceptible to the excitotoxic effects of glutamate receptor agonists, we performed immunocytochemistry using glutamate receptor antibodies to detect the presence of receptor protein. We found that the AMPA/kainate glutamate receptor (GluR2R3) colocalized with calretinin, suggesting that calretinin-immunoreactive neurons express the AMPA/kainate receptor; cerebellar granule cells, which are known to express this receptor, were also immunoreactive for the GluR2R3 receptor.  相似文献   

3.
Cerebellar long-term depression (LTD) is produced when conjunctive stimulation of parallel fibre (PF) and climbing fibre (CF) inputs to a Purkinje neuron (PN) results in a prolonged decrease in the strength of the PF-PN synapse. In cultured PNs, LTD may be induced by substituting depolarization of the PN and iontophoretic glutamate pulses for CF and PF stimulation, respectively, allowing an unambiguous analysis of post-synaptic processes (Linden et al., Neuron , 7 , 81–89, 1991). Recent studies have suggested that release of the newly described second messenger, nitric oxide, in the cerebellar molecular layer, is necessary for LTD produced in the slice preparation by PF/CF conjunctive stimulation (Shibuki and Okada, Nature , 349 , 326–328, 1991) or PF/depolarization conjunctive stimulation (Crepel and Jaillard, NeuroReport , 1 , 133–136, 1990). We report that LTD of glutamate currents produced without synaptic stimulation in cultured PNs is unaffected by reagents that stimulate (sodium nitroprusside) or inhibit (haemoglobin, NG-nitro- l -arginine) nitric oxide signalling.  相似文献   

4.
Various forms of cell death induced by the glutamate receptor agonist,

-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), were analyzed by determining the capacity of cultured cerebellar granule cells to metabolize 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) into formazan, by measuring the leakage of lactate dehydrogenase (LDH), by using confocal microscopy to visualize propidium iodide staining of apoptotic nuclei, and by using field inversion gel electrophoresis (FIGE) for the detection of AMPA-produced cleavage of DNA into high molecular-weight fragments (50 kbp). All these measures indicated that stimulation of AMPA receptors may be involved in the neurotoxic effects of glutamate, and that AMPA-induced neurotoxicity in cerebellar granule cells display morphologically distinct features of both necrotic and apoptotic modes of cell death. In agreement with previous observations, a blockade of AMPA receptor desensitization was necessary to unmask AMPA-induced functional responses in cultured cerebellar granule neurons in vitro. Microfluorimetric measurements of free cytoplasmic calcium concentrations ([Ca2+]i) in single cerebellar neurons revealed that AMPA neurotoxicity was accompanied by a pronounced elevation of [Ca2+]i. Our current results add further evidence to the notion that glutamate-induced neurotoxicity in cerebellar granule cells is mediated not only through NMDA receptors but also through a direct activation of AMPA receptor-regulated cation channels.  相似文献   

5.
Involvement of proteases has been postulated in several neurodegenerative processes. Accordingly, protease inhibition has been proposed as a potential therapeutic tool to limit damage in some neuropathological states. The timed turn-over of proteins is, however, an essential biochemical process and its prolonged block may be dangerous to the cell. We report here data on toxicity consequent to 24-h exposure of cerebellar granule neurons in culture to inhibitors of different classes of proteases. Inhibition of calpains (calcium-activated cysteine proteases) resulted in dose-dependent neuronal death which largely occurred through apoptotic process. Leupeptin, an inhibitor acting on a broad spectrum of cellular serine proteases, was less toxic but resulted in definite morphological alteration of the cells. On the contrary, inhibitors of caspases, proteases belonging to the ICE (interleukin 1-β converting enzyme) family, did not apparently damage granule neurons upon exposure for 24 h to high concentrations (up to 200 μM) of two inhibitors specific for ICE (Ac-YAVD-CHO) and CPP-32 (Ac-DEVD-CHO), respectively. These results suggest that inhibition of proteases that are activated by stressful stimuli but are not essential for the normal functioning of healthy cells, as it is likely the case for caspases, may not be harmful to neurons. Instead, the potential risks and side effects of prolonged inhibition of proteases such as calpains, that regulate the disposal and the turn-over of key cellular proteins, should be carefully tested in the assessment of possible neuroprotective roles.  相似文献   

6.
Immature cerebellar granule neurons die by apoptosis within 1 week in vitro unless maintained in depolarizing (high) concentrations of potassium (25 mM K+). Neurons allowed to survive and differentiate in high K+ medium for several days in vitro are still induced to undergo apoptosis when switched back to physiological (low) concentrations of K+ (5 mM). Here we have investigated the effects of various cytokines and growth factors in these two well-defined paradigms of neuronal apoptosis. Tumour necrosis factor-α, leukaemia inhibitory factor, ciliary neurotrophic factor, interleukin-10 and interleukin-13 delayed apoptosis and prolonged survival of cerebellar granule neurons maintained in low K+ medium. The effect observed required continuous exposure of the cultures to the cytokines and appeared not to involve modulation of Bcl-2 protein expression. Brain-derived neurotrophic factor accelerated neuronal death in low K+ medium. In contrast, when apoptosis of the neurons was precipitated by switching mature high K+ neurons to low K+ medium, neither tumour necrosis factor-α, leukaemia inhibitory factor, ciliary neurotrophic factor, interleukin-10 nor interleukin-13 prevented apoptosis. When testing the cytokines and growth factors for their capacity to alter N -methyl-D-aspartate receptor-mediated excitotoxicity of differentiated cerebellar granule neurons, no significant effect was observed. These data appear to define a maturation-dependent modulation of cerebellar granule cell survival by cytokines and neurotrophic factors that are expressed in a developmental pattern in the mammalian brain.  相似文献   

7.
Tumour necrosis factor-alpha (TNF-α) has been widely implicated in both neurodevelopment and neurodegeneration, yet its effects on individual populations of cerebellar neurons as they develop have not been fully elucidated. Therefore, we established primary neuronal cultures of developing murine cerebellar Purkinje neurons and postnatal cerebellar granule cells to determine the consequences of TNF-α exposure for their survival. We discovered that TNF-α did not affect the viability of cerebellar granule neurons at any of the ages studied, even though TNF-α and its receptors, TNFR1 and TNFR2, are widely expressed in the postnatal cerebellum. In addition, TNF-α was neither able to ameliorate, nor enhance, cell death in cerebellar granule cells elicited by a variety of stimuli including homocysteine and alcohol exposure. In contrast, in cultures established at embryonic day 16, TNF-α enhanced the number of cerebellar Purkinje neurons in vitro but this effect was not observed in embryonic day 19 cultures. Thus, TNF-α has differential and highly specific effects on different populations of cerebellar neurons as they develop.  相似文献   

8.
We have established a culture system for microexplants of rat cerebellar cortical tissue in which cells develop morphologically, express type-A receptors for the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and form GABAergic synaptic connections. Criteria of cell size and shape allow reliable identification of granule and Purkinje neurons, criteria confirmed by studies of the binding of antibodies to calbindin D28K and GABA. Both granule and Purkinje neurons express GABAA receptors, but granule neurons fall into two classes in terms of their sensitivity. Granule neurons which do not show spontaneous synaptic currents are relatively insensitive to GABA, while granule neurons with synaptic currents are much more sensitive. The responses of Purkinje neurons to applications of 1 μM GABA are relatively insensitive to Zn2+ ions (10 μM), and are potentiated by chlordiazepoxide (100 μM) and La3+ ions (100 μM). Responses of innervated granule neurons, on the other hand, are blocked more strongly by Zn2+ ions, are less affected by chlordiazepoxide and are equally potentiated by La3+ ions. Hence these cultures provide a source of identifiable, functionally innervated cells which express distinct types of GABAA receptors.  相似文献   

9.
1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress and dysfunction.  相似文献   

10.
Nitric oxide (NO) is an unusual chemical messenger. NO mediates blood vessel relaxation when produced by endothelial cells. When produced by macrophages, NO contributes to the cytotoxic function of these immune cells. NO also functions as a neurotransmitter and neuromodulator in the central and peripheral nervous systems. The effects on blood vessel tone and neuronal function form the basis for an important role of NO on neuroendocrine function and behavior. NO mediates hypothalamic portal blood flow and, thus, affects oxytocin and vasopression secretion; furthermore, NO mediates neuroendocrine function in the hypothalamic–pituitary–gonadal and hypothalamic–pituitary–adrenal axes. NO influences several motivated behaviors including sexual, aggressive, and ingestive behaviors. Learning and memory are also influenced by NO. Taken together, NO is emerging as an important chemical mediator of neuroendocrine function and behavior.  相似文献   

11.
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is known to counteract in vitro the deleterious effects of toxic agents on cerebellar granule cell survival and differentiation. The potent antiapoptotic action of PACAP is mediated through inhibition of caspase-3 activity; however, additional proteins are likely involved and remain to be identified. Two-dimensional gel electrophoresis analysis coupled with mass spectrometry characterization led to the identification of a protein, peroxiredoxin 2, which was induced after a 6-h treatment with PACAP. Western blot analysis confirmed the regulation of peroxiredoxin 2 by PACAP and revealed that this protein is induced by both cyclic AMP and protein kinase C stimulators. Inhibition of peroxiredoxin 2 expression, using two distinct small-interfering RNAs (siRNAs), reduced the effect of PACAP on caspase-3 activity and cerebellar granule cell survival. Peroxiredoxin 2 expression was also induced in vivo and in vitro by ethanol. Although ethanol and PACAP exert opposite effects on caspase-3 activity, inhibition of peroxiredoxin 2 expression, using siRNAs, only reduced the ability of PACAP to prevent ethanol-induced caspase-3 activity. Taken together, these data indicate that peroxiredoxin 2 is probably involved in the neurotrophic effect of PACAP and suggest that this protein may have a therapeutic potential for the treatment of some neurodegenerative diseases.  相似文献   

12.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants present in human blood and milk. Exposure to PCBs during pregnancy and lactation leads to cognitive impairment in children. Perinatal exposure to PCB 153 or PCB 126 impairs the glutamate–nitric oxide–cGMP pathway in cerebellum in vivo and learning ability in adult rats. The aims of this work were: (1) to assess whether long-term exposure of primary cultures of cerebellar neurons to PCB 153 or PCB 126 reproduces the impairment in the function of the glutamate–nitric oxide–cGMP pathway found in rat cerebellum in vivo; (2) to provide some insight on the steps of the pathway affected by these PCBs; (3) to assess whether the mechanisms of interference of the pathway are different for PCB 126 and PCB 153. Both PCB 153 and PCB 126 increase basal levels of cGMP by different mechanisms. PCB 126 increases the amount of soluble guanylate cyclase while PCB 153 does not. PCB 153 reduces the amount of calmodulin while PCB 126 does not. Also both PCBs impair the function of the glutamate–nitric oxide–cGMP pathway by different mechanisms, PCB 153 impairs nitric oxide-induced activation of soluble guanylate cyclase and increase in cGMP while PCB 126 does not. PCB 126 reduces NMDA-induced increase in calcium while PCB 153 does not. When PCB 153 and PCB 126 exhibit the same effect, PCB 126 was more potent than PCB 153, as occurs in vivo.  相似文献   

13.
The endocannabinoid, N-arachidonylethanolamine (AEA) is accumulated by neurons via a process that has been characterized biochemically but not molecularly. Inhibitors of AEA accumulation have been characterized individually but have not been compared in a single study. Our purpose was to compare the potency of five previously described compounds (AM404, AM1172, VDM11, OMDM-2, and UCM707) both as inhibitors of AEA and N-palmitoylethanolamine (PEA) accumulation by cerebellar granule neurons and as inhibitors of AEA hydrolysis. The compounds all inhibited AEA accumulation; AM404, VDM11 and OMDM-2 with IC50 values of approximately 5 μM, whereas AM1172 and UCM707 exhibited IC50 values of 24 and 30 μM, respectively. The compounds also inhibited PEA accumulation; AM404 being the most potent with an IC50 of 6 μM, whereas the other compounds had IC50 values in the range of 30–70 μM. All of the compounds potently inhibited AEA hydrolysis by brain membranes; the K I values for AM404, VDM11, and UCM707 were less than 1 μM; AM1172 and OMDM-2 exhibited K I values of 3 and 10 μM, respectively. The IC50 values for inhibition of AEA accumulation were compared to the IC50 values for PEA accumulation and AEA hydrolysis using linear regression. None of the regressions were significant. These data indicate that inhibition of AEA accumulation by neurons is not a result of the inhibition of endocannabinoid hydrolysis and is a process different from the accumulation of PEA. These studies support the hypothesis that the cellular AEA accumulation beyond simple equilibrium between intracellular and extracellular concentrations occurs because AEA binds to an intracellular protein that is not FAAH but that also recognizes the AEA uptake inhibitors.  相似文献   

14.
15.
A Role for Nitric Oxide in Long-term Potentiation   总被引:4,自引:0,他引:4  
Nitric oxide production in the cerebellum and induction of long-term potentiation (LTP) in the hippocampus have some characteristics in common: both phenomena are induced by activation of N -methyl-D-aspartate receptors and both are highly dependent on calcium-mediated processes. Here we provide evidence that endogenous nitric oxide production is necessary for synaptic plasticity in the CA1 hippocampus of the rat. LTP recorded in slices was blocked in a concentration-dependent manner by the nitric oxide synthase inhibitors L- N G-nitroarginine and L- N G-nitroarginine methyl ester, but L- N G-monomethylarginine was only marginally active. Bathing the slices with haemoglobin, a protein that scavenges nitric oxide, also resulted in a concentration-dependent blockade of LTP. Nitric oxide released locally from hydroxylamine produced a stable potentiation of synaptic transmission that was not additive with LTP induced by high-frequency stimulation. These results are fully consistent with the presumed retrograde messenger role of nitric oxide in LTP.  相似文献   

16.
Overproduced Bcl-2 oncoprotein has been shown to suppress cell death induced by a variety of stimuli in many cell types, including neuronal cells. Because bcl-2 is expressed in the nervous system where massive cell death is observed during development, endogenous Bcl-2 is likely to be involved in regulating neuronal cell death. Here we examined the possible role of endogenous Bcl-2 in the regulation of neuronal cell survival in the central nervous system using primary cultured cerebellar granule neurons from bcl-2-deficient, wild-type and NSE- bcl-2- transgenic mice. Cerebellar granule neurons from bcl-2 -deficient mice were more susceptible than those from normal littermates to death induced by reducing the K+ concentration of the medium from high (25 mM) to low (5 mM), and neurons from bcl-2 -transgenic mice were least susceptible. Similar results were obtained when cell death was induced by serum withdrawal under high K+ conditions or by the presence of etoposide, A23187 or nimodipine. Consistently, bcl-2 deficiency reduced the number of cerebellar granule neurons per mouse. These results indicate that Bcl-2 impedes neuronal cell death induced by various stimuli in a dose-dependent manner, and that endogenous levels of Bcl-2 are able to regulate neuronal cell survival in the central nervous system.  相似文献   

17.
The longitudinal and transverse zonal arrangement of axonal projections to and from the cerebellum, even more than the well-known laminar cytoarchitecture, is the hallmark of cerebellar anatomy. No model of cerebellar function, whether in motor control, cognition, or emotion, will be complete without understanding the development and function of zones. To this end, a special issue of this journal is dedicated to zones, and the purpose of this article is to summarize the research and review articles that are contained within. The special issue begins by considering some of the very first studies in the 1960s and 1970s that led to our modern understanding of this unique and defining anatomical substructure. Then, it considers the molecular analogs of longitudinal zones in the form of stripes in the cerebellar cortex and related sub-areas in the deep cerebellar nuclei, and it includes studies on the genetic underpinnings of stripes and zones. Several articles address the evolution of both embryonic clusters and adult zones across vertebrate species, and others discuss the functional and clinical relevance of zones. While we do not yet fully understand the role of zones with respect to motor behavior in all of its complexities, cerebellar function is clearly modular, and combinatorial models of complex motor movements based on multi-purpose modules are beginning to emerge. This special issue, by refocusing attention on this fundamental organization of the cerebellum, sets the stage for future studies that will more fully reveal the cellular, developmental, behavioral, and clinical relevance of zones.  相似文献   

18.
19.
Galanin, one of the most inducible neuropeptides, is widely present in developing brains, and its expression is altered by pathologic events (e.g., epilepsy, ischemia, and axotomy). The roles of galanin in brain development under both normal and pathologic conditions have been hypothesized, but the question of how galanin is involved in fetal and early postnatal brain development remains largely unanswered. In this study, using granule cell migration in the cerebellum of early postnatal mice (both sexes) as a model system, we examined the role of galanin in neuronal cell migration during normal development and after brain injury. Here we show that, during normal development, endogenous galanin participates in accelerating granule cell migration via altering the Ca2+ and cAMP signaling pathways. Upon brain injury induced by the application of cold insults, galanin levels decrease at the lesion sites, but increase in the surroundings of lesion sites. Granule cells exhibit the following corresponding changes in migration: (1) slowing down migration at the lesion sites; and (2) accelerating migration in the surroundings of lesion sites. Experimental manipulations of galanin signaling reduce the lesion site-specific changes in granule cell migration, indicating that galanin plays a role in such deficits in neuronal cell migration. The present study suggests that manipulating galanin signaling may be a potential therapeutic target for acutely injured brains during development.SIGNIFICANCE STATEMENT Deficits in neuronal cell migration caused by brain injury result in abnormal development of cortical layers, but the underlying mechanisms remain to be determined. Here, we report that on brain injury, endogenous levels of galanin, a neuropeptide, are altered in a lesion site-specific manner, decreasing at the lesion sites but increasing in the surroundings of lesion sites. The changes in galanin levels positively correlate with the migration rate of immature neurons. Manipulations of galanin signaling ameliorate the effects of injury on neuronal migration and cortical layer development. These results shed a light on galanin as a potential therapeutic target for acutely injured brains during development.  相似文献   

20.
Role of Nitric Oxide in the Epileptogenesis of EL Mice   总被引:10,自引:1,他引:9  
Summary: Purpose : To understand the role of nitric oxide (NO) in the regulation of seizures, we measured the extracellular levels of the NO metabolites nitrite and nitrate as indices of NO generation in the parietal cortex, hippocampus, and temporal cortex of EL mice. Furthermore, alterations of neuronal, endothelial, and inducible nitric oxide synthetase (nNOS, eNOS, and iNOS, respectively) were observed to correlate them with epileptogenesis.
Methods : EL mice of 20 weeks and 30 weeks of age (before and after the establishment of epileptogenesis, respectively) were used. Nitrite was quantified using the specific absorbancy of diazo dye. NOS isoenzymes (nNOS, iNOS, and eNOS) were also investigated in the hippocampus during development until mice were 30 weeks old. Samples (total protein, 8·33 to 8·43 μg) were separated by sodium dodecyl sulfate—polyacrylamide gel electrophoresis and identified by immunoblotting.
Results : EL mice that experienced repetitive seizures showed a remarkable increase in nitrite in the hippocampus at 30 weeks of age compared with EL mice that had no experience of seizures. nNOS and iNOS were major and minor components, respectively, and both increased in parallel with the development of epileptogenesis. eNOS was not detectable.
Conclusions : Excess iNOS (and subsequent increase in harmful NO) and deficient eNOS (and subsequent decrease in NO identified as an endothelium-derived relaxing factor) may work together to form a focus complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号