首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamai R, Kiyoura Y, Sugiyama A. Alendronate regulates cytokine production induced by lipid A through nuclear factor‐κB and Smad3 activation in human gingival fibroblasts. J Periodont Res 2011; 46: 13–20. © 2010 John Wiley & Sons A/S Background and Objective: Nitrogen‐containing bisphosphonates (NBPs) are widely used as anti‐bone‐resorptive drugs. However, use of NBPs results in inflammatory side‐effects, including jaw osteomyelitis. In the present study, we examined the effects of alendronate, a typical NBP, on cytokine production by human peripheral blood mononuclear cells (PBMCs) and gingival fibroblasts incubated with lipid A. Methods: The PBMCs and gingival fibroblasts were pretreated with or without alendronate for 24 h. Cells were then incubated in the presence or absence of lipid A for a further 24 h. Levels of secreted human interleukin (IL)‐1β, IL‐6, IL‐8 and monocyte chemoattractant protein‐1 (MCP‐1) in culture supernatants were measured by ELISA. We also examined nuclear factor‐κB (NF‐κB) activation in both types of cells by ELISA. Activation of Smad3 in the cells was assessed by flow cytometry. In addition, we performed an inhibition assay using SIS3, a specific inhibitor for Smad3. Results: Pretreatment of PBMCs with alendronate promoted lipid A‐induced production of IL‐1β and IL‐6, but decreased lipid A‐induced IL‐8 and MCP‐1 production. In human gingival fibroblasts, alendronate pretreatment increased lipid A‐induced production of IL‐6 and IL‐8, and increased NF‐κB activation in gingival fibroblasts but not PBMCs stimulated with lipid A. In contrast, alendronate activated Smad3 in both types of cells. Finally, SIS3 inhibited alendronate‐augmented IL‐6 and IL‐8 production by human gingival fibroblasts but up‐regulated alendronate‐decreased IL‐8 production by PBMCs. Conclusion: These results suggest that alendronate‐mediated changes in cytokine production by gingival fibroblasts occur via regulation of NF‐κB and Smad3 activity.  相似文献   

2.
3.
4.
5.
Song H, Zhao H, Qu Y, Sun Q, Zhang F, Du Z, Liang W, Qi Y, Yang P. Carbon monoxide releasing molecule‐3 inhibits concurrent tumor necrosis factor‐α‐ and interleukin‐1β‐induced expression of adhesion molecules on human gingival fibroblasts. J Periodont Res 2011; 46: 48–57. © 2010 John Wiley & Sons A/S Background and Objective: Carbon monoxide releasing molecule‐3 (CORM‐3) is a newly reported compound that has shown anti‐inflammatory effects in a number of cells. In this study, we aimed to investigate the influence of CORM‐3 on concurrent tumor necrosis factor‐α (TNF‐α)‐ and interleukin (IL)‐1β‐induced expression of adhesion molecules on human gingival fibroblasts (HGF). Material and Methods: HGF were cultured from the explants of normal gingival tissues. Cells were costimulated with TNF‐α and IL‐1β in the presence or absence of CORM‐3 for different periods of time. The expression of adhesion molecules, nuclear factor‐kappaB (NF‐κB) and phosphorylated p38 was studied using western blotting. RT‐PCR was applied to check the expression of the adhesion molecules at the mRNA level. The activity of NF‐κB was analysed using a reporter gene assay. Results: CORM‐3 inhibited the up‐regulation of intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule in HGF after costimulation with TNF‐α and IL‐1β, which resulted in the decreased adhesion of peripheral blood mononuclear cells to these cells. Sustained activation of the NF‐κB pathway by costimulation with TNF‐α and IL‐1β was suppressed by CORM‐3, which was reflected by a reduced NF‐κB response element‐dependent luciferase activity and decreased nuclear NF‐κB‐p65 expression. CORM‐3 inhibited MAPK p38 phosphorylation in response to stimulation with proinflammatory cytokines. Conclusion: The results of this study bode well for the application of CORM‐3 as an anti‐inflammatory agent to inhibit NF‐κB activity and to suppress the expression of adhesion molecules on HGF, which suggests a promising potential for CORM‐3 in the treatment of inflammatory periodontal disease.  相似文献   

6.
Murayama R, Kobayashi M, Takeshita A, Yasui T, Yamamoto M. MAPKs, activator protein‐1 and nuclear factor‐κB mediate production of interleukin‐1β‐stimulated cytokines, prostaglandin E 2 and MMP‐1 in human periodontal ligament cells. J Periodont Res 2011; 46: 568–575. © 2011 John Wiley & Sons A/S Background and Objective: Determination of the interleukin‐1 (IL‐1) signaling cascades that lead to the production of various inflammatory mediators and catabolic factors may clarify attractive targets for therapeutic intervention for periodontitis. We comprehensively assessed the involvement of MAPKs, activator protein‐1 (AP‐1) and nuclear factor‐κB (NF‐κB) in IL‐1β‐induced production of interleukin‐6 (IL‐6), interleukin‐8 (IL‐8), prostaglandin E2 (PGE2) and MMP‐1 in human periodontal ligament cells. Material and Methods: Human periodontal ligament cells were pretreated with an inhibitor for each of the MAPKs or NF‐κB and subsequently treated with IL‐1β. Following treatment, phosphorylation of three types of MAPK (ERK, p38 MAPK and c‐Jun N‐terminal kinase), IκB kinase (IKK) α/β/γ and IκB‐α, as well as the DNA binding activity of AP‐1 and NF‐κB and the production of IL‐6, IL‐8, PGE2 and MMP‐1, were determined by western blotting, a gel mobility shift assay and ELISA, respectively. Results: The three MAPKs, simultaneously activated by IL‐1β, mediated the subsequent DNA binding of AP‐1 at various magnitudes, while IKKα/β/γ, IκB‐α and NF‐κB were also involved in the IL‐1 signaling cascade. Furthermore, IL‐1β stimulated the production of IL‐6, IL‐8, PGE2 and MMP‐1 via activation of the three MAPKs and NF‐κB, because inhibitors of these significantly suppressed the IL‐1β‐stimulated production of these factors. Conclusion: Our results strongly suggest that MAPK, AP‐1 and NF‐κB mediate the IL‐1β‐stimulated synthesis of IL‐6, IL‐8, PGE2 and MMP‐1 in human periodontal ligament cells. Therefore, inhibition of activation of MAPK, AP‐1 and/or NF‐κB may lead to therapeutic effects on progression of periodontitis.  相似文献   

7.
8.
Background: Recent studies have shown that the 15‐member macrolide antibiotic azithromycin (AZM) not only has antibacterial activity, but also results in the role of immunomodulator. Interleukin (IL)‐8 is an important inflammatory mediator in periodontal disease. However, there have been no reports on the effects of AZM on IL‐8 production from human oral epithelium. Therefore, we investigated the effects of AZM on IL‐8 production in an oral epithelial cell line. Methods: KB cells were stimulated by Escherichia coli or Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) lipopolysaccharide (LPS) with or without AZM. IL‐8 mRNA and protein expression and production in response to LPS were analyzed by quantitative polymerase chain reaction, flow cytometry, and enzyme‐linked immunosorbent assay. The activation of nuclear factor‐kappa B (NF‐κB) and Rac1, which is important for IL‐8 expression, was analyzed by enzyme‐linked immunosorbent assay and Western blotting, respectively. Results: IL‐8 mRNA expression, IL‐8 production, and NF‐κB activation in LPS‐stimulated KB cells were inhibited by the addition of AZM. LPS‐induced Rac1 activation was also suppressed by AZM. Conclusions: This study suggests that AZM inhibits LPS‐induced IL‐8 production in an oral epithelial cell line, in part caused by the suppression of Rac1 and NF‐κB activation. The use of AZM might provide possible benefits in periodontal therapy, with respect to both its antibacterial action and apparent anti‐inflammatory effect.  相似文献   

9.
Zhang G, Chen R, Rudney JD.Streptococcus cristatusmodulates theFusobacterium nucleatum‐induced epithelial interleukin‐8 response through the nuclear factor‐kappa B pathway. J Periodont Res 2011; 46: 558–567.©2011 John Wiley & Sons A/S Background and Objective: We previously reported that the interleukin‐8 (IL‐8) response to Fusobacterum nucleatum was attenuated in the presence of Streptococcus cristatus. Here, we further examined the underlying mechanism(s) involved in the modulating effect of S. cristatus by looking specifically at its impact on the nuclear factor‐kappa B (NF‐κB) pathway under the toll‐like receptor (TLR) signaling background. Material and Methods: OKF6/TERT‐2 and KB cells were co‐cultured with F. nucleatum and S. cristatus, either alone or in combination. Secretion of IL‐8 protein was measured by ELISA. The nuclear translocation of NF‐κB was evaluated by confocal microscopy, while DNA‐binding activity was quantified using TransAM? ELISA kits. Western blot analysis was performed to determine whether the anti‐inflammatory effect of S. cristatus is related to the modulation of the NF‐κB inhibitory protein IκB‐α. Results: Incubation with F. nucleatum significantly enhanced the nuclear translocation of NF‐κB. Exposure to S. cristatus alone did not cause detectable NF‐κB translocation and was able to inhibit the F. nucleatum‐induced NF‐κB nuclear translocation. The TransAM assay further confirmed that S. cristatus blocked the nuclear translocation of NF‐κB in response to F. nucleatum stimulation. In contrast to the nearly complete degradation of IκB‐α induced by F. nucleatum alone, the presence of S. cristatus stabilized IκB‐α. Pre‐incubation with TLR2 and TLR4 antibodies, however, did not affect the epithelial response to either species alone or in combination. Conclusion: The mechanism by which S. cristatus attenuates F. nucleatum‐induced proinflammatory responses in oral epithelial cells appears to involve blockade of NF‐κB nuclear translocation at the level of IκB‐α degradation.  相似文献   

10.
L Qiu  L Zhang  L Zhu  D Yang  Z Li  K Qin  X Mi 《Oral diseases》2008,14(8):727-733
Objective: The effect of calyculin A (CA), a serine/threonine protein phosphatase inhibitor, on tumor necrosis factor‐α (TNF‐α) in primary osteoblasts was investigated to determine whether protein phosphatases could affect primary osteoblasts and if so which signaling pathways would be involved. Materials and methods: Primary osteoblasts were prepared from newborn rat calvaria. Cells were treated with 1 nM CA for different time periods. The expressions of TNF‐α and GAPDH mRNA were determined by RT‐PCR. Cell extracts were subjected to SDS‐PAGE and the activation of Akt and NF‐κB were analyzed by western blotting. Results: Calyculin A‐treatment markedly increased the expression of TNF‐α mRNA and enhanced the phosphorylation level of Akt (Ser473) in these cells. Pretreatment with the PI3K inhibitor LY294002 suppressed the increase in TNF‐α mRNA expression and the phosphorylation of Akt in response to CA. Western blot analysis showed that CA stimulated the phosphorylation and nuclear translocation of NF‐κB in primary osteoblasts, and these responses were blocked by pretreatment with LY294002. Conclusion: Calyculin A elicits activation of PI3K/Akt pathway which leads to expression of TNF‐α mRNA and activation of NF‐κB. This NF‐κB activation involves both phosphorylation and nuclear translocation of NF‐κB.  相似文献   

11.
Toll‐like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP‐1). THP‐1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA‐initiated cytokine production was determined either by blocking TLR9 signaling in THP‐1 cells with chloroquine or by measuring IL‐8 production and nuclear factor‐κB (NF‐κB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL‐1β, IL‐6, and TNF‐α) was increased significantly in bDNA‐stimulated cells compared with controls. Chloroquine treatment of THP‐1 cells decreased cytokine production, suggesting that TLR9‐mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9‐transfected cells demonstrated significantly increased IL‐8 production (P < 0.001) and NF‐κB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF‐κB genes in response to periodontal bDNA in THP‐1 cells, suggesting that cytokine induction is through NF‐κB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.  相似文献   

12.
Suzuki K, Sakiyama Y, Usui M, Obama T, Kato R, Itabe H, Yamamoto M. Oxidized low‐density lipoprotein increases interleukin‐8 production in human gingival epithelial cell line Ca9‐22. J Periodont Res 2010; 45: 488–495. © 2010 John Wiley & Sons A/S Background and Objective: Recent epidemiological studies have shown a correlation between periodontitis and hyperlipidemia. We have found high levels of oxidized low‐density lipoprotein (OxLDL) in the gingival crevicular fluid of dental patients. In the present study, we tried to examine the possible role of OxLDL in periodontal inflammation in vitro. Material and Methods: Cells of the human gingival epithelial cell line Ca9‐22 were cultured in media containing OxLDL, and the amounts of interleukin‐8 (IL‐8) and prostaglandin E2 (PGE2) produced were measured using ELISAs. Results: Production of IL‐8 by Ca9‐22 cells was significantly increased when the cells were treated with OxLDL, but not with native LDL or acetylated LDL. Production of PGE2 by Ca9‐22 cells was enhanced by co‐incubation with OxLDL and interleukin‐1β (IL‐1β). Scavenger receptor inhibitors, fucoidan and dextran sulfate, inhibited the OxLDL‐induced IL‐8 and PGE2 production in the presence of IL‐1β. The p38 MAPK inhibitors SB203580 and SB202190 and the ERK inhibitor PD98059 inhibited the OxLDL‐induced IL‐8 production. Among oxidized lipids and chemically modified LDL, 7‐ketocholesterol enhanced IL‐8 production. Conclusion: This is the first report to show that OxLDL enhances IL‐8 production in epithelial cells.  相似文献   

13.
Background: Diabetes mellitus (DM) is a major risk factor for periodontal disease and affects various cellular functions. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration; however, the effect of hyperglycemia on PDLSCs is unclear. The aim of this study is to investigate whether hyperglycemia affects periodontal tissue regeneration, using human PDLSCs and high‐glucose medium as a model of DM. Methods: PDLSCs were obtained from healthy adult human mandibular third molars. Cell proliferation, osteoblastic differentiation, and proinflammatory cytokine expression were investigated by culturing PDLSCs in media supplemented with four different glucose concentrations representative of control patients (5.5 mM), patients with postprandial or controlled DM (8.0 mM), and patients with uncontrolled DM (12.0 and 24.0 mM). The molecular effects of hyperglycemia on PDLSC physiology were examined with a focus on the nuclear factor (NF)‐(κB signaling pathway. The involvement of NF‐κB was investigated with a specific NF‐κB inhibitor in PDLSCs under hyperglycemic conditions. Results: High glucose levels inhibited PDLSC proliferation and differentiation into osteoblasts but induced NF‐κB activation and subsequent interleukin (IL)‐6 and IL‐8 expression. Treatment with an NF‐κB inhibitor rescued the defects in cell proliferation and osteoblastic differentiation and inhibited the IL‐6 expression caused by the high‐glucose environment. Conclusion: The results of this study demonstrate that hyperglycemia inhibits human PDLSC proliferation and osteoblastic differentiation.  相似文献   

14.
15.
16.
Introduction:  We investigated the mechanisms by which extracts of Aggregatibacter actinomycetemcomitans affect the inflammatory response in gingival epithelial cells. Methods:  Human gingival cells (Ca9‐22) were cultured in bacterial extracts prepared from A. actinomycetemcomitans ATCC 29522. The cells were pretreated with protease inhibitors or transfected with small interfering RNA (siRNA) specific for protease‐activated receptor 2 (PAR‐2). Results:  The pretreatment of cells with serine protease inhibitors significantly inhibited A. actinomycetemcomitans extract‐induced expression of interleukin‐8 (IL‐8) and intercellular adhesion molecule‐1 (ICAM‐1) at both the messenger RNA and protein levels. In addition, A. actinomycetemcomitans extract‐induced IL‐8 and ICAM‐1 expression was significantly decreased in PAR‐2/siRNA‐transfected cells. Conclusions:  A. actinomycetemcomitans extract‐induced IL‐8 and ICAM‐1 expression in gingival epithelial cells is mediated by PAR‐2.  相似文献   

17.
Background: Clinical studies have showed that prediabetes (preDM) is a predisposing factor for periodontitis. However, the pathogenic mechanism involved is unclear. Because it is known that the activation of Toll‐like receptor (TLR)‐mediated nuclear factor‐kappa B (NF‐κB) signaling pathway plays a crucial role in periodontitis, it is hypothesized that preDM enhances periodontal inflammation by activation of the TLR‐mediated NF‐κB pathway. Methods: In this study, a preDM rat model is established by feeding a high‐fat diet (HFD). HFD‐induced rats with preDM (n = 7) and normal chow–fed rats (n = 7) were studied. The animal model was characterized in terms of body weight and the glycemic and insulinemic profiles. The following parameters were assessed to evaluate possible early periodontal alterations and underlying mechanisms: 1) histology analysis of periodontal tissue; and 2) serum and mRNA levels and/or the tissue protein expression of TLRs, myeloid differentiation factor 88 (MyD88), tumor necrosis factor (TNF) receptor–associated factor 6 (TRAF6), NF‐κB, cytokines, advanced glucose ends (AGEs), and free fatty acids (FFAs). Results: Rats with preDM presented higher expression of TLR2 and TLR4 in periodontal tissue in the HFD group compared with the control group. The TLR2 and TLR4 was mostly expressed in gingiva, and TLR4 was expressed in periodontal ligament in rats. Furthermore, the MyD88 and TRAF6 protein levels were significantly increased in gingiva in rats with preDM compared with normal rats. The activity of NF‐κB signals was higher in rats with preDM than in normal rats. Regarding cytokines expression, the TNF‐α protein levels and interleukin‐1β mRNA levels were significantly increased in the HFD group compared with the control group. In the serum, AGEs levels were significantly increased in the rats with preDM. Mean FFAs concentrations were increased in rats with preDM compared with normal rats, but it did not reach statistical significance. Conclusion: In rats with preDM, TLR2 and TLR4 gene and protein levels were higher in periodontal tissue, and the activation of NF‐κB may, through TLRs/MyD88, cause more cytokine secretion, which is associated with the onset or development of periodontal disease.  相似文献   

18.
Background/aim: Periodontitis begins as the result of perturbation of the gingival epithelial cells caused by subgingival bacteria interacting with the epithelial cells via pattern recognition receptors. Toll‐like receptors (TLRs) have been shown to play an important role in the recognition of periodontal pathogens so we have studied the interaction of TLR ligands with TLR2 and TLR5 for cytokine production in the cultures of gingival epithelial cells. Methods: Immunohistochemistry was used for the localization of TLR2 and TLR5 in tissue specimens. Enzyme‐linked immunosorbent assays were performed to detect the levels of interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), released from gingival epithelial cell cultures following stimulation with TLR ligand alone or in combination with IL‐17. Results: Both TLR2 and TLR5 were increased in periodontitis (2128 ± 159 vs. 449 ± 59 and 2456 ± 297 vs. 679 ± 103, respectively, P < 0.001) including gingival epithelial cells that stained strongly. Cultured gingival epithelial cells stimulated with their respective ligands (HKLM, a TLR2 ligand that is also found in Porphyromonas gingivalis, and flagellin, a TLR5 ligand that is also found in Treponema denticola) produced both IL‐1β and TNF‐α. To mimic T‐cell help, IL‐17 was added. This further greatly enhanced TLR ligand‐induced IL‐1β (P < 0.001) and TNF‐α (P < 0.01) production. Conclusions: These findings show how pathogen‐associated molecular patterns, shared by many different periodontopathogenic bacteria, stimulate the resident gingival epithelial cells to inflammatory responses in a TLR‐dependent manner. This stimulation may be particularly strong in periodontitis and when T helper type 17 cells provide T‐cell help in intercellular cooperation.  相似文献   

19.
20.
Background: Interleukin (IL)‐1β, which is elevated in oral diseases including gingivitis, stimulates epithelial cells to produce IL‐8 and perpetuate inflammatory responses. This study investigates stimulatory effects of salivary IL‐1β in IL‐8 production and determines if aloin inhibits IL‐1β?stimulated IL‐8 production in epithelial cells. Methods: Saliva was collected from volunteers to determine IL‐1β and IL‐8 levels. Samples from volunteers were divided into two groups: those with low and those with high IL‐1β levels. KB cells were stimulated with IL‐1β or saliva with or without IL‐1 receptor agonist or specific mitogen‐activated protein kinase (MAPK) inhibitors. IL‐8 production was measured by enzyme‐linked immunosorbent assay (ELISA). MAPK protein expression involved in IL‐1β?induced IL‐8 secretion was detected by Western blot. KB cells were pretreated with aloin, and its effect on IL‐1β?induced IL‐8 production was examined by ELISA and Western blot analysis. Results: Saliva with high IL‐1β strongly stimulated IL‐8 production in KB cells, and IL‐1 receptor agonist significantly inhibited IL‐8 production. Low IL‐1β–containing saliva did not increase IL‐8 production. IL‐1β treatment of KB cells induced activation of MAPK signaling molecules as well as nuclear factor‐kappa B. IL‐1β?induced IL‐8 production was decreased by p38 and extracellular signal‐regulated kinase (ERK) inhibitor treatment. Aloin pretreatment inhibited IL‐1β?induced IL‐8 production in a dose‐dependent manner and inhibited activation of the p38 and ERK signaling pathway. Finally, aloin pretreatment also inhibited saliva‐induced IL‐8 production. Conclusions: Results indicated that IL‐1β in saliva stimulates epithelial cells to produce IL‐8 and that aloin effectively inhibits salivary IL‐1β–induced IL‐8 production by mitigating the p38 and ERK pathway. Therefore, aloin may be a good candidate for modulating oral inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号