首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Mutation screening of the GALNS gene was performed by RT-PCR with one amplicon and direct sequence analyses using cDNA samples from 15 Italian MPS IVA patients. Each mutation was confirmed at the genomic level. In this study, 13 different gene mutations with four common mutations (over 10% of mutant alleles) were identified in 12 severe and three milder (attenuated) MPS IVA patients. The gene alterations in 12 out of 13 were found to be point mutations and only one mutation was deletion. Ten of 13 mutations were novel. The c.1070C>T (p.Pro357Leu) mutation coexisted with c.1156C>T (p.Arg386Cys) mutation on the same allele. Together they accounted for 100% of the 30 disease alleles of the patients investigated. Four common mutations accounted for 70% of mutant alleles investigated. Urine keratan sulfate (KS) concentrations were elevated in all patients investigated. These data provide further evidence for extensive allelic heterogeneity and importance of relation among genotype, phenotype, and urine KS excretion as a biomarker in MPS IVA.  相似文献   

2.
Canals I, Elalaoui SC, Pineda M, Delgadillo V, Szlago M, Jaouad IC, Sefiani A, Chabás A, Coll MJ, Grinberg D, Vilageliu L. Molecular analysis of Sanfilippo syndrome type C in Spain: seven novel HGSNAT mutations and characterization of the mutant alleles. The Sanfilippo syndrome type C [mucopolysaccharidosis IIIC (MPS IIIC)] is caused by mutations in the HGSNAT gene, encoding an enzyme involved in heparan sulphate degradation. We report the first molecular study on several Spanish Sanfilippo syndrome type C patients. Seven Spanish patients, one Argentinean and three Moroccan patients were analysed. All mutant alleles were identified and comprised nine distinct mutant alleles, seven of which were novel, including four missense mutations (p.A54V, p.L113P, p.G424V and p.L445P) and three splicing mutations due to two point mutations (c.633+1G>A and c.1378‐1G>A) and an intronic deletion (c.821‐31_821‐13del). Furthermore, we found a new single nucleotide polymorphism (SNP) (c.564‐98T>C). The two most frequent changes were the previously described c.372‐2A>G and c.234+1G>A mutations. All five splicing mutations were experimentally confirmed by studies at the RNA level, and a minigene experiment was carried out in one case for which no fibroblasts were available. Expression assays allowed us to show the pathogenic effect of the four novel missense mutations and to confirm that the already known c.710C>A (p.P237Q) is a non‐pathogenic SNP. Haplotype analyses suggested that the two mutations (c.234+1G>A and c.372‐2A>G) that were present in more than one patient have a common origin, including one (c.234+1G>A) that was found in Spanish and Moroccan patients.  相似文献   

3.
Mucopolysaccharidosis Type IVA (MPS IVA), also known as Morquio A syndrome, is an autosomal recessive lysosomal storage disorder that results from variants in the GALNS gene that encodes the enzyme galactosamine‐6‐sulfate sulfatase. This syndrome has systemic manifestations including, but not limited to, musculoskeletal, respiratory, cardiovascular, rheumatologic, neurologic, dental, ophthalmologic, and otologic. This condition is usually detected within the first few years of life with an average life expectancy of 25.3 ± 17.43 years. We report the natural history of two of the oldest known females with MPS IVA, who were each clinically diagnosed at 4 years of age and who are now 74 and 70 years of age, respectively. They are both affected by pathogenic variants c.319G>A (p.Ala107Thr) and c.824 T>C (p.Leu275Pro) in the GALNS gene.  相似文献   

4.
Morquio A syndrome (MPS IVA) is a systemic lysosomal storage disorder caused by the deficiency of N‐acetylgalactosamine‐6‐sulfatase (GALNS), encoded by the GALNS gene. We studied 37 MPS IV A patients and defined genotype–phenotype correlations based on clinical data, biochemical assays, molecular analyses, and in silico structural analyses of associated mutations. We found that standard sequencing procedures, albeit identifying 14 novel small GALNS genetic lesions, failed to characterize the second disease‐causing mutation in the 16% of the patients’ cohort. To address this drawback and uncover potential gross GALNS rearrangements, we developed molecular procedures (CNV [copy‐number variation] assays, QF‐PCRs [quantitative fluorescent‐PCRs]), endorsed by CGH‐arrays. Using this approach, we characterized two new large deletions and their corresponding breakpoints. Both deletions were heterozygous and included the first exon of the PIEZO1 gene, which is associated with dehydrated hereditary stomatocitosis, an autosomal‐dominant syndrome. In addition, we characterized the new GALNS intronic lesion c.245‐11C>G causing m‐RNA defects, although identified outside the GT/AG splice pair. We estimated the occurrence of the disease in the Italian population to be approximately 1:300,000 live births and defined a molecular testing algorithm designed to help diagnosing MPS IVA and foreseeing disease progression.  相似文献   

5.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS; EC 3.1.6.4). The deficiency of N-acetylgalactosamine-6-sulfate sulfatase leads to lysosomal accumulation of undegraded glycosaminoglycans, keratan sulfate and chondroitin-6-sulfate. Mutation screening of the GALNS gene was performed by SSCP and direct sequence analyses using genomic DNA samples from 10 Morquio A patients. By nonradioactive SSCP screening, 6 different gene mutations and 2 polymorphisms were identified in 10 severely affected MPS IVA patients. Five of the mutations and one of the polymorphisms are novel. The vast majority of the gene alterations were found to be single nucleotide deletions (389delG, 929delG, and 763delT) or insertions (1232-1233insT). The other two mutations were one previously identified missense mutation (Q473X) and one novel nonsense (P179S) mutation. Together they account for 95% of the disease alleles of the patients investigated. Beside mutations, one previously identified E477 polymorphism and one novel W520 polymorphism were found among Turkish MPS IVA patients.  相似文献   

6.
To analyze the spectrum and founder effect of TMC1 mutations in patients with non‐syndromic deafness in the Xiamen area. Sporadic pedigrees were detected by targeted next‐generation sequencing, and 110 unrelated patients from Xiamen Special Education School were analyzed through Sanger sequencing for the TMC1 gene. In total, 53 SNPs were designed to analyze the haplotypes of the TMC1 c.2050G>C mutation. The probands of three families were found to be homozygous for TMC1 c.2050G>C, and their parents were all heterozygous for the TMC1 c.2050G>C mutation. In 110 unrelated patients from Xiamen Special Education School, four were found to carry compound heterozygotes of TMC1 c.2050G>C, which were compound heterozygotes of c.804G>A, c.1127T>C, c.1165C>T, and c.1396_1398delAAC, respectively. Three types of TMC1 polymorphisms (c.45C>T, c.1713C>T, c.2208+49C>T) and two heterozygotes of novel variants (c.1764‐4C>A, c.2073G>A[p.K691K]) were found in the remaining 100 patients. In total, four novel variants were detected in this study. These mutations and variants were not detected in 100 normal samples. The haplotypes of the probands of families with TMC1 c.2050G>C were identical. There were unique hotspots and spectra of TMC1 mutations in the Xiamen deaf population. Haplotype analysis is useful to understand the founder effect of the hot spot mutation.  相似文献   

7.
8.
A common ancestral haplotype is strongly suggested in the Korean and Japanese patients with Fanconi anemia (FA), because common mutations have been frequently found: c.2546delC and c.3720_3724delAAACA of FANCA; c.307+1G>C, c.1066C>T, and c.1589_1591delATA of FANCG. Our aim in this study was to investigate the origin of these common mutations of FANCA and FANCG. We genotyped 13 FA patients consisting of five FA‐A patients and eight FA‐G patients from the Korean FA population. Microsatellite markers used for haplotype analysis included four CA repeat markers which are closely linked with FANCA and eight CA repeat markers which are contiguous with FANCG. As a result, Korean FA‐A patients carrying c.2546delC or c.3720_3724delAAACA did not share the same haplotypes. However, three unique haplotypes carrying c.307+1G>C, c.1066C > T, or c.1589_1591delATA, that consisted of eight polymorphic loci covering a flanking region were strongly associated with Korean FA‐G, consistent with founder haplotypes reported previously in the Japanese FA‐G population. Our finding confirmed the common ancestral haplotypes on the origins of the East Asian FA‐G patients, which will improve our understanding of the molecular population genetics of FA‐G. To the best of our knowledge, this is the first report on the association between disease‐linked mutations and common ancestral haplotypes in the Korean FA population.  相似文献   

9.
Familial renal glucosuria (FRG) is characterized by persistent glucosuria despite normal serum glucose and the absence of overt tubular dysfunction. Variants in solute carrier family 5 (sodium–glucose cotransporter), member 2 (SLC5A2) have been reported in FRG patients. However, the functional and expression‐related consequences of such variants have been scarcely investigated. In the current study, we studied five FRG families and identified six missense mutations, including four novel variants (c.1051T>C/.(C351R), c.1400T>C/p.(V467A), c.1420G>C/p.(A474P), c.1691G>A/p.(R564Q); RNA not analyzed) and two variants that had been previously reported (c.294C>A/p.(F98L), c.736C>T/p.(P246S); RNA not analyzed). The probands were either heterozygous or compound heterozygous for SLC5A2 variants and had glucosuria of 5.9%–19.6 g/day. Human 293 cells were transfected with plasmid constructs to study the expression and function of SLC5A2 variants in vitro. Western blotting revealed that the expression levels of SLC5A2–351R‐GFP, SLC5A2–467A‐GFP, SLC5A2–474P‐GFP, and SLC5A2–564Q‐GFP were significantly decreased compared with wild‐type SLC5A2‐GFP (37%–55%). Confocal microscopy revealed that three variants (c.1400T>C, c.1420G>C, c.1691G>A) resulted in a loss of the punctate membrane pattern typical of wild‐type SLC5A2. All variants had a significantly lower transport capacity in than the wild‐type control. The current study provides a starting point to further investigate the molecular mechanism of SLC5A2 in FRG families and provides functional clues for antidiabetes drugs.  相似文献   

10.
Molecular diagnosis in Usher syndrome type 1 and 2 patients led to the identification of 21 sequence variations located in noncanonical positions of splice sites in MYO7A, CDH23, USH1C, and USH2A genes. To establish experimentally the splicing pattern of these substitutions, whose impact on splicing is not always predictable by available softwares, ex vivo splicing assays were performed. The branch‐point mapping strategy was also used to investigate further a putative branch‐point mutation in USH2A intron 43. Aberrant splicing was demonstrated for 16 of the 21 (76.2%) tested sequence variations. The mutations resulted more frequently in activation of a nearby cryptic splice site or use of a de novo splice site than exon skipping (37.5%). This study allowed the reclassification as splicing mutations of one silent (c.7872G>A (p.Glu2624Glu) in CDH23) and four missense mutations (c.2993G>A (p.Arg998Lys) in USH2A, c.592G>A (p.Ala198Thr), c.3503G>C [p.Arg1168Pro], c.5944G>A (p.Gly1982Arg) in MYO7A), whereas it provided clues about a role in structure/function in four other cases: c.802G>A (p.Gly268Arg), c.653T>A (p.Val218Glu) (USH2A), and c.397C>T (p.His133Tyr), c.3502C>T (p.Arg1168Trp) (MYO7A). Our data provide insights into the contribution of splicing mutations in Usher genes and illustrate the need to define accurately their splicing outcome for diagnostic purposes. Hum Mutat 31:1–9, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Type I hyperprolinemia (HPI) is an autosomal recessive disorder associated with cognitive and psychiatric troubles, caused by alterations of the Proline Dehydrogenase gene (PRODH) at 22q11. HPI results from PRODH deletion and/or missense mutations reducing proline oxidase (POX) activity. The goals of this study were first to measure in controls the frequency of PRODH variations described in HPI patients, second to assess the functional effect of PRODH mutations on POX activity, and finally to establish genotype/enzymatic activity correlations in a new series of HPI patients. Eight of 14 variants occurred at polymorphic frequency in 114 controls. POX activity was determined for six novel mutations and two haplotypes. The c.1331G>A, p.G444D allele has a drastic effect, whereas the c.23C>T, p.P8L allele and the c.[56C>A; 172G>A], p.[Q19P; A58T] haplotype result in a moderate decrease in activity. Among the 19 HPI patients, 10 had a predicted residual activity <50%. Eight out of nine subjects with a predicted residual activity ≥50% bore at least one c.824C>A, p.T275N allele, which has no detrimental effect on activity but whose frequency in controls is only 3%. Our results suggest that PRODH mutations lead to a decreased POX activity or affect other biological parameters causing hyperprolinemia. Hum Mutat 31:961–965, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The molecular basis of cystathionine ß‐synthase (CBS) deficiency has been studied in 536 patient alleles with 130 different mutations described. To date, no study has reported on the incidence of any of the reported mutations in patients from the UK and the US. We developed a new antisense oligonucleotide (ASO) PCR/hybridization method to screen for 12 of the most frequent CBS mutations in 14 unrelated patients from the UK and 38 unrelated patients from the US, a total of 104 independent alleles. We determined 16/28 (57%) and 28/76 (37%) of the affected alleles in the UK and US patients, respectively. Four different mutations were identified in the UK patients (c.374G>A, R125Q; c.430G>A, E144K; c.833T>C, I278T; c.919G>A, G307S) and 8 mutations identified in the patients from the US (c.341C>T, A114V; c.374G>A, R125Q; c.785C>T, T262M; c.797G>A, R266K; c.833T>C, I278T; c.919G>A, G307S; g.13217A>C (del ex 12); c.1330G>A, D444N). The I278T was the predominant mutation in both populations, present in 8 (29%) of 28 independent alleles from the UK and in 14 (18%) of 76 independent alleles from the US. The incidence of the G307S mutation was 21% in the UK patients and 8% in the US patients. The spectrum of mutations observed in the patients from the UK and US is closer to that which is observed in Northern Europe and bears less resemblance to that observed in Ireland. © 2003 Wiley‐Liss, Inc.  相似文献   

13.
Fanconi anemia (FA) is a rare disorder characterized by physical abnormalities, bone marrow failure (BMF), increased risk of malignancies, and cellular hypersensitivity to DNA cross‐linking agents. This study evaluated the genetic alterations in three major Fanconi genes (FANCA, FANCC, and FANCG) in 30 FA patients using multiplex ligation‐dependent probe amplification and direct sequencing. Thirteen BMF patients were genetically classified as FA‐A (n = 6, 46%) and FA‐G (n = 7, 54%). Four common founder mutations were identified and included two FANCA mutations (c.2546delC and c.3720_3724delAAACA) and two FANCG mutations (c.307+1G>C and c.1066C>T), which had previously been commonly observed in a Japanese FA population. We also detected four novel deleterious mutations: c.2778+1G>C and c.3627‐1G>A of FANCA, and c.1589_1591delATA and c.1761‐1G>A of FANCG. This study shows that mutations in FANCA and FANCG are common in Korean FA patients and the existence of four common founder mutations in an East Asian FA population. Mutation screening workflow that includes these common mutations may be useful in the creation of an international database, and to better understand the ethnic characteristics of FA.  相似文献   

14.
The lysosomal storage disorder ML III γ is caused by defects in the γ subunit of UDP‐GlcNAc:lysosomal enzyme N‐acetylglucosamine‐1‐phosphotransferase, the enzyme that tags lysosomal enzymes with the mannose 6‐phosphate lysosomal targeting signal. In patients with this disorder, most of the newly synthesized lysosomal enzymes are secreted rather than being sorted to lysosomes, resulting in increased levels of these enzymes in the plasma. Several missense mutations in GNPTG, the gene encoding the γ subunit, have been reported in mucolipidosis III γ patients. However, in most cases, the impact of these mutations on γ subunit function has remained unclear. Here, we report that the variants c.316G>A (p.G106S), c.376G>A (p.G126S), and c.425G>A (p.C142Y) cause misfolding of the γ subunit, whereas another variant, c.857C>T (p.T286M), does not appear to alter γ subunit function. The misfolded γ subunits were retained in the ER and failed to rescue the lysosomal targeting of lysosomal acid glycosidases.  相似文献   

15.
Mucopolysaccharidosis IVA (MPS IVA; Morquio A disease) is an autosomal-recessive disorder caused by a deficiency of lysosomal N-acetylgalactosamine-6-sulfate sulfatase (GALNS; E.C.3.1.6.4). GALNS is required to degrade glycosaminoglycans, keratan sulfate (KS), and chondroitin-6-sulfate. Accumulation of undegraded substrates in lysosomes of the affected tissues leads to a systemic bone dysplasia. We summarize information on 148 unique mutations determined to date in the GALNS gene, including 26 novel mutations (19 missense, four small deletions, one splice-site, and two insertions). This heterogeneity in GALNS gene mutations accounts for an extensive clinical variability within MPS IVA. Seven polymorphisms that cause an amino acid change, and nine silent variants in the coding region are also described. Of the analyzed mutant alleles, missense mutations accounted for 78.4%; small deletions, 9.2%; nonsense mutation, 5.0%; large deletion, 2.4%; and insertions, 1.6%. Transitional mutations at CpG dinucleotides accounted for 26.4% of all the described mutations. The importance of the relationship between methylation status and distribution of transitional mutations at CpG sites at the GALNS gene locus was elucidated. The three most frequent mutations (over 5% of all mutations) were represented by missense mutations (p.R386C, p.G301C, and p.I113F). A genotype/phenotype correlation was defined in some mutations. Missense mutations associated with a certain phenotype were studied for their effects on enzyme activity and stability, the levels of blood and urine KS, the location of mutations with regard to the tertiary structure, and the loci of the altered amino acid residues among sulfatase proteins.  相似文献   

16.
Mucopolysaccharidosis IVA (MPS IVA; OMIM#253000), a lysosomal storage disorder caused by a deficiency of N -acetylgalactosamine-6-sulfate sulfatase (GALNS), has variable clinical phenotypes. To date we have identified 65 missense mutations in the GALNS gene from MPS IVA patients, but the correlation between genotype and phenotype has remained unclear. We studied 17 missense mutations using biochemical approaches and 32 missense mutations, using structural analyses. Fifteen missense mutations and two newly engineered active site mutations (C79S, C79T) were characterized by transient expression analysis. Mutant proteins, except for C79S and C79T, were destabilized and detected as insoluble precursor forms while the C79S and C79T mutants were of a soluble mature size. Mutants found in the severe phenotype had no activity. Mutants found in the mild phenotype had a considerable residual activity (1.3-13.3% of wild-type GALNS activity). Sulfatases, including GALNS, are members of a highly conserved gene family sharing an extensive sequence homology. Thus, a tertiary structural model of human GALNS was constructed from the X-ray crystal structure of N -acetylgalacto-samine-4-sulfatase and arylsulfatase A, using homology modeling, and 32 missense mutations were investigated. Consequently, we propose that there are at least three different reasons for the severe phenotype: (i) destruction of the hydrophobic core or modification of the packing; (ii) removal of a salt bridge to destabilize the entire conformation; (iii) modification of the active site. In contrast, mild mutations were mostly located on the surface of the GALNS protein. These studies shed further light on the genotype-phenotype correlation of MPS IVA and structure-function relationship in the sulfatase family.  相似文献   

17.
A total of 264 unrelated breast/ovarian cancer patients and 45 healthy individuals with familial antecedents referred for genetic testing were scanned for germ-line mutations in BRCA1 and BRCA2 by conformation-sensitive gel electrophoresis (CSGE) and heteroduplex analysis by capillary array electrophoresis (HA-CAE). We detected 101 distinct mutations (41 in BRCA1 and 60 in BRCA2); ten of them have not been previously reported. These mutations were c.2411_2429dup19, c.2802_2805delCAAA and c.5294A>G (p.E1725E) of BRCA1; and c.667C>T (p.Q147X), c.2683C>T (p.Q819X), c.5344_5347delAATA, c.5578_5579delAA;insT, c.8260_8261insGA, c.744+14C>T and c.8099A>G (p.Y2624C) of BRCA2. Twenty-four different mutations, including seven of the new mutations (five frameshift and two nonsense), were classified as pathogenic. These 24 alterations were found in 39 families (12.6% of all families). A remarkable proportion of deleterious mutations were found in BRCA2: 25 families carried a mutation in BRCA2 (BRCA2+; 64.1%) compared with 14 families BRCA1+ (35.9%). The highest incidences of deleterious mutations were found in families with three or more cases of site-specific breast cancer (BC) (27.4%) and families with BC and ovarian cancer (22.2%). Finally, four recurrent mutations, 3036_3039delACAA, c.5374_5377delTATG of BRCA2, as well as c.5272-1G>A and c.5242C>A (p.A1708E) of BRCA1, accounted for 44% of all of the deleterious mutations.  相似文献   

18.
19.
Lynch syndrome is associated with germline mutations in DNA mismatch repair (MMR) genes. Up to 30% of DNA changes found are variants of unknown significance (VUS). Our aim was to assess the pathogenicity of eight MLH1 VUS identified in patients suspected of Lynch syndrome. All of them are novel or not previously characterized. For their classification, we followed a strategy that integrates family history, tumor pathology, and control frequency data with a variety of in silico and in vitro analyses at RNA and protein level, such as MMR assay, MLH1 and PMS2 expression, and subcellular localization. Five MLH1 VUS were classified as pathogenic: c.[248G>T(;)306G>C], c.[780C>G;788A>C], and c.791‐7T>A affected mRNA processing, whereas c.218T>C (p.L73P) and c.244G>A (p.T82A) impaired MMR activity. Two other VUS were considered likely neutral: the silent c.702G>A variant did not affect mRNA processing or stability, and c.974G>A (p.R325Q) did not influence MMR function. In contrast, variant c.25C>T (p.R9W) could not be classified, as it associated with intermediate levels of MMR activity. Comprehensive functional assessment of MLH1 variants was useful in their classification and became relevant in the diagnosis and genetic counseling of carrier families. Hum Mutat 33:1576–1588, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Congenital dyserythropoietic anemia type II (CDAII) is an autosomal recessive disease characterized by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypoglycosylation of some red blood cell (RBC) membrane proteins. Recent studies indicated that CDAII is caused by a defect disturbing Golgi processing in erythroblasts. A linkage analysis located a candidate region on chromosome 20, termed the CDAN2 locus, in the majority of CDAII patients but the aberrant gene has not so far been elucidated. We used a proteomic‐genomic approach to identify SEC23B as the candidate gene for CDAII by matching the recently published data on the cytoplasmic proteome of human RBCs with the chromosomic localization of CDAN2 locus. Sequencing analysis of SEC23B gene in 13 CDAII patients from 10 families revealed 12 different mutations: six missense (c.40C>T, c.325G>A, c.1043A>C, c.1489C>T, c.1808C>T, and c.2101C>T), two frameshift (c.428_428delAinsCG and c.1821delT), one splicing (c.689+1G>A), and three nonsense (c.568C>T, c.649C>T, and c.1660C>T). Mutations c.40C>T and c.325G>A were detected in unrelated patients. SEC23B is a member of the Sec23/Sec24 family, a component of the COPII coat protein complex involved in protein transport through membrane vesicles. Abnormalities in this gene are likely to disturb endoplasmic reticulum (ER)‐to‐Golgi trafficking, affecting different glycosylation pathways and ultimately accounting for the cellular phenotype observed in CDAII. Hum Mutat 30:1–7, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号