首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
WNT10A gene encodes a canonical wingless pathway signaling molecule involved in cell fate specification as well as morphogenetic patterning of the developing ectoderm, nervous system, skeleton, and tooth. In patients, WNT10A mutations are responsible for ectodermal‐derived pathologies including isolated hypo‐oligodontia, tricho‐odonto‐onycho‐dermal dysplasia and Schöpf‐Schulz‐Passarge syndrome (SSPS). Here we describe the dental, ectodermal, and extra‐ectodermal phenotypic features of a cohort of 41 patients from 32 unrelated families. Correlations with WNT10A molecular status (heterozygous carrier, compound heterozygous, homozygous) and patient's phenotypes were performed. Mild to severe oligodontia was observed in all patients bearing biallelic WNT10A mutations. However, patients with compound heterozygous mutations presented no significant difference in phenotypes compared with homozygous individuals. Anomalies in tooth morphology were frequently observed with heterozygous patients displaying hypodontia. No signs of SSPS, especially eyelids cysts, were detected in our cohort. Interestingly, extra‐ectodermal signs consisted of skeletal, neurological and vascular anomalies, the latter suggesting a wider phenotypic spectrum associated with WNT10A mutations. Indeed, the Wnt pathway plays a crucial role in skeletal development, lipid metabolism, and neurogenesis, potentially explaining patient's clinical manifestations.  相似文献   

2.
Odonto‐onycho‐dermal dysplasia (OODD) is a rare autosomal recessive syndrome characterized by multiple ectodermal abnormalities. Mutations of the wingless‐type MMTV integration site family member 10A (WNT10A) gene have been associated with OODD. To date, only 11 OODD‐associated WNT10A mutations have been reported. In this report, we Characterized the clinical manifestations with focusing on dental phenotypes in four unrelated OODD patients. By Sanger sequencing, we identified five novel mutations in the WNT10A gene, including two homozygous nonsense mutations c.1176C>A (p.Cys392*) and c.742C>T (p.Arg248*), one homozygous frame‐shift mutation c.898‐899delAT (p.Ile300Profs*126), and a compound heterozygous mutation c.826T>A (p.Cys276Ser) and c.949delG (p.Ala317Hisfs*121). Our findings confirmed that bi‐allelic mutations of WNT10A were responsible for OODD and greatly expanded the mutation spectrum of OODD. For the first time, we demonstrated that bi‐allelic WNT10A mutations could lead to anodontia of permanent teeth, which enhanced the phenotypic spectrum of WNT10A mutations. Interestingly, we found that bi‐allelic mutations in the WNT10A gene preferentially affect the permanent dentition rather the primary dentition, suggesting that the molecular mechanisms regulated by WNT10A in the development of permanent teeth and deciduous teeth might be different.  相似文献   

3.
Ectodermal dysplasias are a group of genetic disorders defined by ectodermal derivative impairment (EDI). To test the impact of the Wnt/beta‐catenin pathway in the genetic screening of EDI, we performed a molecular gene study of WNT10A in 60 subjects from a population of 133 young Italian patients referred for the impairment of at least one major ectodermal‐derived structure and who had a previous negative molecular screen for ectodysplasin signaling pathway genes ED1, EDAR, and EDARADD. Fourteen WNT10A mutations were identified in 33 subjects (24.8%), 11 of which were novel variants. The phenotype was evaluated through a detailed clinical examination of the major and minor ectodermal‐derived structures. This study is the first to show that, after ED1, WNT10A is the second molecular candidate for EDI in a large Italian Caucasian population. The study confirmed that Phe228Ile is the most frequent WNT10A variant in Caucasian populations, and that WNT10A mutations are associated with large variability in EDI.  相似文献   

4.
Clauss F, Chassaing N, Smahi A, Vincent MC, Calvas P, Molla M, Lesot H, Alembik Y, Hadj‐Rabia S, Bodemer C, Manière MC, Schmittbuhl M. X‐linked and autosomal recessive Hypohidrotic Ectodermal Dysplasia: genotypic‐dental phenotypic findings. Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of ectodermal structures and its molecular etiology corresponds to mutations of EDA‐EDAR genes. The aim of this study was first to investigate the genotype and dental phenotype associated with HED and second, to explore possible correlations between dental features and molecular defects. A total of 27 patients from 24 unrelated families exhibiting clinical signs of HED (22 XLHED males, 5 autosomal recessive forms) were retrospectively included. In the sample, 25 different mutations on EDA and EDAR genes were detected; 10 were not previously described. EDA and EDAR mutations corresponded respectively to 80.0% and 20.0% of the mutations. The dental phenotype analysis revealed a mean number of primary and permanent missing teeth ranging respectively from 14.5 (4–20) to 22.5 (10–28); the majority of the patients exhibited dysmorphic teeth. Overall, no differential expression in the degree of oligodontia according to either the mutated gene, the mutated functional sub‐domains, or the mutation type, could be observed. Nevertheless, the furin group exhibited severe phenotypes unobserved in the TNF group. Significant differences in the number of some primary missing teeth (incisor and canine) related to EDA‐EDAR genes defects were detected for the first time between XLHED and autosomal recessive HED, suggesting differential local effects of EDA‐EDAR genes during odontogenesis. The present genotypic‐phenotypic findings may add to the knowledge of the consequences of the molecular dysfunction of EDA‐NF‐k B in odontogenesis, and could be helpful in genetic counseling to distinguish autosomal forms from other HED syndromes.  相似文献   

5.
Ectodermal dysplasias (EDs) are a group of genetic disorders characterized by the abnormal development of the ectodermal‐derived structures. X‐linked hypohidrotic ectodermal dysplasia, resulting from mutations in ED1 gene, is the most common form. The main purpose of this study was to characterize the phenotype spectrum in 45 males harboring ED1 mutations. The study showed that in addition to the involvement of the major ectodermal tissues, the majority of patients also have alterations of several minor ectodermal‐derived structures. Characterizing the clinical spectrum resulting from ED1 gene mutations improves diagnosis and can direct clinical care.  相似文献   

6.
Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity.  相似文献   

7.
Isolated hypodontia is the most common human malformation. It is caused by heterozygous variants in various genes, with heterozygous WNT10A variants being the most common cause. WNT10A and WNT10B are paralogs that likely evolved from a common ancestral gene after its duplication. Recently, an association of WNT10B variants with oligodontia (severe tooth agenesis) has been reported. We performed mutational analysis in our cohort of 256 unrelated Thai families with various kinds of isolated dental anomalies. In 7 families afflicted with dental anomalies we detected 4 heterozygous missense variants in WNT10B. We performed whole exome sequencing in the patients who had WNT10B mutations and found no mutations in other known hypodontia‐associated genes, including WNT10A, MSX1, PAX9, EDA, AXIN2, EDAR, EDARADD, LPR6, TFAP2B, LPR6, NEMO, KRT17, and GREM2. Our findings indicate that the variants c.475G>C [p.(Ala159Pro)], found in 4 families, and c.1052G>A [p.(Arg351His)], found in 1 family, are most probably causative. They also show that WNT10B variants are associated not only with oligodontia and isolated tooth agenesis, but also with microdontia, short tooth roots, dental pulp stones, and taurodontism.  相似文献   

8.
Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved α-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.  相似文献   

9.
This article describes the inter- and intra-familial phenotypic variability in four families with WNT10A mutations. Clinical characteristics of the patients range from mild to severe isolated tooth agenesis, over mild symptoms of ectodermal dysplasia, to more severe syndromic forms like odonto-onycho-dermal dysplasia (OODD) and Schöpf–Schulz–Passarge syndrome (SSPS). Recurrent WNT10A mutations were identified in all affected family members and the associated symptoms are presented with emphasis on the dentofacial phenotypes obtained with inter alia three-dimensional facial stereophotogrammetry. A comprehensive overview of the literature regarding WNT10A mutations, associated conditions and developmental defects is presented. We conclude that OODD and SSPS should be considered as variable expressions of the same WNT10A genotype. In all affected individuals, a dished-in facial appearance was observed which might be helpful in the clinical setting as a clue to the underlying genetic etiology.  相似文献   

10.
Robinow syndrome (RS) is a well‐recognized Mendelian disorder known to demonstrate both autosomal dominant and autosomal recessive inheritance. Typical manifestations include short stature, characteristic facies, and skeletal anomalies. Recessive inheritance has been associated with mutations in ROR2 while dominant inheritance has been observed for mutations in WNT5A, DVL1, and DVL3. Through trio whole genome sequencing, we identified a homozygous frameshifting single nucleotide deletion in WNT5A in a previously reported, deceased infant with a unique constellation of features comprising a 46,XY disorder of sex development with multiple congenital malformations including congenital diaphragmatic hernia, ambiguous genitalia, dysmorphic facies, shortened long bones, adactyly, and ventricular septal defect. The parents, who are both heterozygous for the deletion, appear clinically unaffected. In conjunction with published observations of Wnt5a double knockout mice, we provide evidence for the possibility of autosomal recessive inheritance in association with WNT5A loss‐of‐function mutations in RS.  相似文献   

11.
Anhidrotic ectodermal dysplasia (EDA) is caused by mutations in the EDA gene encoding ectodysplasin A, a member of the TNF ligand superfamily involved in the communication between the cells. The structure of the EDA gene was investigated in three patients exhibiting clinical symptoms of EDA in an attempt to correlate the molecular findings with the phenotype of the patients. Genomic DNA was analyzed by single stranded conformation polymorphism (SSCP) followed by direct sequencing. In one of the patients, as well as in his heterozygous mother and sister, a single T insertion was evidenced in exon 3 between nucleotides 713 and 714 that changed Lys codon (AAA) into a termination codon TAA (Lys158Ter). In the other patient, A1321T transversion was demonstrated. The same mutation was found in his heterozygous mother and resulted in a change of Ileu360Asn that might generate an additional glycosylation site. In the third patient an A1285G transition was revealed. This mutation that originated de novo was localized in a region that is highly conserved in TNF ligand family and caused substitution of Ala349Thr. Localization of the mutations in the extracellular domain of ectodysplasin A suggested that the primary cause of EDA is a defect in communication between the cells responsible for the development of skin appendages. Despite a different character and localization of the mutations, no apparent correlation between phenotype and genotype of the patients was evidenced. Some differences in the patients' phenotype were observed. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
13.
Tao R  Jin B  Guo SZ  Qing W  Feng GY  Brooks DG  Liu L  Xu J  Li T  Yan Y  He L 《Journal of human genetics》2006,51(5):498-502
X-linked hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by the hypoplasia or absence of eccrine glands, dry skin, scant hair, and dental abnormalities. Here, we report a Mongolian family with congenital absence of teeth inherited in an X-linked fashion. The affected members of the family did not show other HED characteristics, except hypodontia. We successfully mapped the affected locus to chromosome Xq12-q13.1, and then found a novel missense mutation, c.193C>G, in the ectodysplasin A (EDA) gene in all affected males and carrier females. The mutation causes arginine to be replaced by glycine in codon 65 (R65G) in the juxtamembrane region of EDA. In addition, 33% (3/9) of female carriers have a skewed X-chromosome inactivation pattern. Our result strongly suggests that the c.193C>G mutation is the disease-causing mutation in this family.Ran Tao, Buhe Jin, Shen Zheng Guo, and Wei Qing contributed equally to this work.  相似文献   

14.
Al-Awadi-Raas-Rothschild syndrome (AARRS; OMIM 276820) is a very rare autosomal recessive limb malformation syndrome caused by WNT7A mutations. AARRS is characterized by various degrees of limb aplasia and hypoplasia. Normal intelligence and malformations of urogenital system are frequent findings. Complete loss of WNT7A function has been shown to cause AARRS, however, its partial loss leads to the milder malformation, Fuhrmann syndrome. An Indian boy affected with AARRS is reported. A novel homozygous base substitution mutation c.550A > C (p.Asn184Asp) is identified in the patient. Parents were heterozygous for the mutation. In addition to the typical features of AARRS, the patient had agenesis of the mandibular left deciduous lateral incisor. The heterozygous parents had microdontia of the maxillary left permanent third molar and taurodontism (enlarged dental pulp chamber at the expense of root) in a number of their permanent molars. Whole exome sequencing of the patient and his parents ruled out mutations in 11 known hypodontia-associated genes including WNT10A, MSX1, EDA, EDAR, EDARADD, PAX9, AXIN2, GREM2, NEMO, KRT17, and TFAP2B. In situ hybridization during tooth development showed Wnt7a expression in wild-type tooth epithelium at E14.5. All lines of evidence suggest that WNT7A has important role in tooth development and its mutation may lead to tooth agenesis, microdontia, and taurodontism. Oral examination of patients with AARRS and Fuhrmann syndromes is highly recommended.  相似文献   

15.
Bardet–Biedl syndrome is a rare ciliopathy characterized by retinal dystrophy, obesity, intellectual disability, polydactyly, hypogonadism and renal impairment. Patients are at high risk of cardiovascular disease. Mutations in BBS1 and BBS10 account for more than half of those with molecular confirmation of the diagnosis. To elucidate genotype–phenotype correlations with respect to cardiovascular risk indicators 50 patients with mutations in BBS1 were compared with 19 patients harbouring BBS10 mutations. All patients had truncating, missense or compound missense/truncating mutations. The effect of genotype and mutation type was analysed. C‐reactive protein was higher in those with mutations in BBS10 and homozygous truncating mutations (p = 0.013 and p = 0.002, respectively). Patients with mutations in BBS10 had higher levels of C peptide than those with mutations in BBS1 (p = 0.043). Triglyceride levels were significantly elevated in patients with homozygous truncating mutations (p = 0.048). Gamma glutamyl transferase was higher in patients with homozygous truncating mutations (p = 0.007) and heterozygous missense and truncating mutations (p = 0.002) than those with homozygous missense mutations. The results are compared with clinical cardiovascular risk factors. Patients with missense mutations in BBS1 have lower biochemical cardiovascular disease markers compared with patients with BBS10 and other BBS1 mutations. This could contribute to stratification of the clinical service.  相似文献   

16.
Increasing attention has been directed toward assessing mutational fallout of stereocilin (STRC), the gene underlying DFNB16. A major challenge is due to a closely linked pseudogene with 99.6% coding sequence identity. In 94 GJB2/GJB6‐mutation negative individuals with non‐syndromic sensorineural hearing loss (NSHL), we identified two homozygous and six heterozygous deletions, encompassing the STRC region by microarray and/or quantitative polymerase chain reaction (qPCR) analysis. To detect smaller mutations, we developed a Sanger sequencing method for pseudogene exclusion. Three heterozygous deletion carriers exhibited hemizygous mutations predicted as negatively impacting the protein. In 30 NSHL individuals without deletion, we detected one with compound heterozygous and two with heterozygous pathogenic mutations. Of 36 total patients undergoing STRC sequencing, two showed the c.3893A>G variant in conjunction with a heterozygous deletion or mutation and three exhibited the variant in a heterozygous state. Although this variant affects a highly conserved amino acid and is predicted as deleterious, comparable minor allele frequencies (MAFs) (around 10%) in NSHL individuals and controls and homozygous variant carriers without NSHL argue against its pathogenicity. Collectively, six (6%) of 94 NSHL individuals were diagnosed with homozygous or compound heterozygous mutations causing DFNB16 and five (5%) as heterozygous mutation carriers. Besides GJB2/GJB6 (DFNB1), STRC is a major contributor to congenital hearing impairment.  相似文献   

17.
Cenani–Lenz (C–L) syndrome is characterized by oligosyndactyly, metacarpal synostosis, phalangeal disorganization, and other variable facial and systemic features. Most cases are caused by homozygous and compound heterozygous missense and splice mutations of the LRP4 gene. Currently, the syndrome carries one OMIM number (212780). However, C–L syndrome‐like phenotypes as well as other syndactyly disorders with or without metacarpal synostosis/phalangeal disorganization are also known to be associated with specific LRP4 mutations, adenomatous polyposis coli (APC) truncating mutations, genomic rearrangements of the GREM1‐FMN1 locus, as well as FMN1 mutations. Surprisingly, patients with C–L syndrome‐like phenotype caused by APC truncating mutations have no polyposis despite the increased levels of β catenin. The LRP4 and APC proteins act on the WNT (wingless‐type integration site family) canonical pathway, whereas the GREM‐1 and FMN1 proteins act on the bone morphogenetic protein (BMP) pathway. In this review, we discuss the different mutations associated with C–L syndrome, classify its clinical features, review familial adenomatous polyposis caused by truncating APC mutations and compare these mutations to the splicing APC mutation associated with syndactyly, and finally, explore the pathophysiology through a review of the cross talks between the WNT canonical and the BMP antagonistic pathways.  相似文献   

18.
PDE10A encodes a dual cAMP‐cGMP phosphodiesterase that is enriched in the medium spiny neurons of the corpus striatum in the brain and plays an important role in basal ganglia circuitry. Three unrelated patients with childhood onset chorea and striatal abnormalities on MRI brain with heterozygous de novo variants in PDE10A have been described previously. Two families with eight affected individuals with biallelic mutations in PDE10A have also been described previously. We report a family with multiple affected individuals with childhood onset chorea, striatal abnormalities, and a novel heterozygous mutation, c.1001T>G(p.F334C) in PDE10A which was identified by exome sequencing.  相似文献   

19.
Tooth agenesis (TA) is the developmental absence of one or more permanent teeth. We report on 10 members of a Pakistani family afflicted with TA with variable associated features inherited in autosomal dominant fashion with full penetrance. The malformation is bilateral in the majority of cases, and hallmark feature is the absence of lateral and central incisors and canines whereas first and second premolars are involved less often. Affected individuals also have pronounced variable features associated with TA such as diastema between central incisors, overgrown labial frenum, peg-shaped lower incisors, delayed exfoliation, over-erupted upper incisors and malocclusion but have no other signs of ectodermal dysplasia. Through linkage analysis coupled with exome sequencing, we identified novel nonsense variant EDAR c.1302G>A, p.(Trp434*). The variant is deduced to create a premature termination codon that leads to the deletion of the 15 C-terminal residues. Heterozygous EDAR variants most commonly cause hypohydrotic ectodermal dysplasia, but recently one nonsense and 10 missense variants have been reported in nonsyndromic TA, some with few mild features of hypohydrotic ectodermal dysplasia. The phenotype in the family we present, the largest with EDAR-related TA reported to date, is highly variable and without any signs of ectodermal dysplasia.  相似文献   

20.
Split‐hand/foot malformation (SHFM) is a genetically heterogeneous congenital limb malformation typically limited to a defect of the central rays of the autopod, presenting as a median cleft of hands and feet. It can be associated with long bone deficiency or included in more complex syndromes. Among the numerous genetic causes, WNT10B homozygous variants have been recently identified in consanguineous families, but remain still rarely described (SHFM6; MIM225300). We report on three novel SHFM families harboring WNT10B variants and review the literature, allowing us to highlight some clinical findings. The feet are more severely affected than the hands and there is a frequent asymmetry without obvious side‐bias. Syndactyly of third–fourth fingers was a frequent finding (62%). Polydactyly, which was classically described in SHFM6, was only present in 27% of patients. No genotype–phenotype correlation is delineated but heterozygous individuals might have mild features of SHFM, suggesting a dose‐effect of the WNT10B loss‐of‐function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号