首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A substantial fraction of the Foxp3+ CD4+ regulatory T (Treg) cell repertoire is generated through instructive and/or selective processes in the thymus, and there is some consensus that clonal deviation into the Treg lineage is a result of self-antigen recognition. Paradoxically, the same holds true for a diametrically different cell fate decision of developing thymocytes, namely their removal from the repertoire through apoptotic cell death (clonal deletion). Here, we will review our current understanding of how T cell receptor stimulation, cytokine signaling, co-stimulation, epigenetic modifications and T cell intrinsic developmental tuning synergize during Treg cell differentiation, and how instructive signals converge at the Foxp3 gene-locus during entry into the Treg cell lineage. We will also discuss how these parameters relate to known determinants of negative selection.  相似文献   

3.
TCRbeta, delta and gamma chain genes are assembled and expressed in double-negative thymocytes prior to alphabeta or gammadelta T cell lineage commitment. Thus, cells committed to the alphabeta T cell lineage can possess completely assembled TCRdelta and/or TCRgamma chain genes. However, these genes are not expressed. TCRgamma chain gene expression may be silenced through the activity of a cis-acting silencer element. In the TCRalpha/delta locus, the TCRdelta genes lie between the Valpha and Jalpha gene segments, which rearrange by deletion. Moreover, Valpha to Jalpha rearrangements occur on both alleles in essentially all developing alphabeta T cells. Consequently, both TCRdelta chain genes are excised from the chromosome and placed on extrachromosomal circles in mature alphabeta T cells. It has been proposed that this excision process is important for silencing TCRdelta gene expression and permitting alphabeta T cell lineage commitment. A gene-targeting Cre-loxP strategy was used to invert a 75-kb region of the TCRalpha/delta locus encompassing all the Jalpha gene segments, generating the TCRalpha/delta(I) allele. Initial Valpha to Jalpha rearrangements on the TCRalpha/delta(I) allele occur by inversion, resulting in chromosomal retention of TCRdelta chain genes. These TCRdelta chain genes can be productively rearranged and are expressed at levels similar to TCRdelta chain genes in gammadelta T cells. However, alphabeta T cell development appears unperturbed in TCRalpha/delta(I/I) mice. Thus, excision of TCRdelta genes from the chromosome per se is not required for commitment of developing lymphocytes to the alphabeta T cell lineage.  相似文献   

4.
The thymus forms as an alymphoid thymic primordium with T cell differentiation requiring the seeding of this anlage. This review will focus on the characteristics of the hematopoietic progenitors which colonize the thymus and their subsequent commitment/differentiation, both in mice and men. Within the thymus, the interplay between Notch1 and IL-7 signals is crucial for the orchestration of T cell development, but the precise requirements for these factors in murine and human thympoeisis are not synonymous. Recent advances in our understanding of the mechanisms regulating precursor entry and their maintenance in the thymus will also be presented.  相似文献   

5.
The mechanism of T cell precursor commitment to the γδ or αβ T cell lineage remains unclear. While TCR signal strength has emerged as a key factor in lineage commitment based on TCR transgenic models, the entire TCR repertoire may not possess the same discriminatory power. A counterbalance to the TCR as the lineage determinant is the pre-existing heterogeneity in gene expression among precursors, which suggests that single precursors are unlikely to respond homogeneously to a given instructive signal.  相似文献   

6.
Initial T cell frequency dictates memory CD8+ T cell lineage commitment   总被引:10,自引:0,他引:10  
Memory T cells can be divided into central memory T cell (T(CM) cell) and effector memory T cell (T(EM) cell) subsets based on homing characteristics and effector functions. Whether T(EM) and T(CM) cells represent interconnected or distinct lineages is unclear, although the present paradigm suggests that T(EM) and T(CM) cells follow a linear differentiation pathway from naive T cells to effector T cells to T(EM) cells to T(CM) cells. We show here that naive T cell precursor frequency profoundly influenced the pathway along which CD8+ memory T cells developed. At low precursor frequency, those T(EM) cells generated represented a stable cell lineage that failed to further differentiate into T(CM) cells. These findings do not adhere to the present dogma regarding memory T cell generation and provide a means for identifying factors controlling memory T cell lineage commitment.  相似文献   

7.
T cells developing in the thymus are ultimately derived from bone marrow (BM) hematopoietic stem cells (HSCs). An understanding of the developmental steps between HSCs and T cells is important for gaining insight into cancers of the T lineage, improving T cell reconstitution after BM transplantation, and also to help ameliorate immunological defects in aging. In this article, we summarize our current understanding of the inter-related fields of early T cell development and thymic aging, and briefly discuss major unresolved questions in this field.  相似文献   

8.
The development of T cells from pluripotent stem cells involves a coordinated series of lineage-commitment steps. Common lymphoid precursors in the fetal liver or adult bone marrow must first choose between a T, B or NK cell fate. Committed T cell precursors in the thymus then differentiate into cells committed to the alphabeta or gammadelta lineages. Recent advances have been made in our understanding of the mechanisms underlying T cell fate specification and alphabeta/gammadelta lineage divergence.  相似文献   

9.
10.
11.
Immature CD8-CD4- double-negative (DN) thymocytes differentiate intrathymically into CD8+CD4- and CD8-CD4+ thymocytes and migrate to the periphery. This differentiation proceeds through several intermediate phenotypic changes in the expression of CD8 and CD4. We have recently established the existence of a CD8loCD4lo cell population in murine thymus that can repopulate the irradiated thymus in vivo and differentiate rapidly in vitro to CD8+CD4+ double-positive (DP) cells. The CD8loCD4lo cells score as DN upon direct cytofluorometric analysis, yet are distinct from true DN cells by various criteria. Experimental evidence strongly suggests that they are descendants of true DN in the maturation pathway. In the experiments presented here, we further characterize this CD8loCD4lo thymocyte population. Northern blot and RNA protection analysis reveal that these cells transcribe full length mRNA for the T cell receptor (TcR)alpha chain, unlike the less mature interleukin 2 receptor-positive DN thymocytes. Surface expression of the TcR-associated CD3 molecule occurs on approximately 15% of these cells at low levels characteristic of immature cells. In the course of in vitro differentiation a vast majority (approximately 80%) of these cells convert to CD8+CD4+ and significant numbers of the brightly staining DP convertants (11%-34% on day 1 and 48%-68% on day 2) express immature levels of CD3. Our results indicate that CD8lo, CD4lo cells might be the first thymic subset to rearrange TcR alpha chain genes and express TcR alpha/beta heterodimer on the surface at levels characteristic of immature cells. Furthermore, the surface expression of TcR persists on the in vitro progeny of these thymocytes.  相似文献   

12.
In seeking an explanation for the complexity of tissue development, biologists are obliged to explain lineage commitment, the events that dictate whether or not a progenitor cell will differentiate into one cell type or another. Such explanations have been sought across a broad spectrum of biological systems, although in no case has a full under- standing been developed. For immunologists, attention has been focused on the lineage commitment of a T cell progenitor to becoming either a gammadelta T cell or an alphabeta T cell. In this review, we compare the signals that thymocytes may receive from the pre T cell receptor (preTCR) with signalling from TCRgammadelta. These signals may determine, co-determine, facilitate, or cement the alphabeta/gammadelta lineage decision, in concert with signals from additional molecules, such as Notch and cytokine receptors. Elucidating the pleiotropic signalling events, particularly those elicited by the preTCR, may in the near future contribute to a molecular definition of lineage commitment.  相似文献   

13.
14.
Hu W  Troutman TD  Edukulla R  Pasare C 《Immunity》2011,35(6):1010-1022
Activation of pattern recognition receptors on dendritic cells (DCs) and macrophages leads to secretion of cytokines that control differentiation of CD4(+) T cells. The current understanding is that interleukin-6 (IL-6) in combination with transforming growth factor-β (TGF-β) leads to generation of T helper 17 (Th17) lineage cells. Here, we have discovered that the cytokine requirements for Th17 cell polarization depend on the site of priming. Although IL-6 played a critical role in Th17 cell lineage priming in the skin and mucosal tissues, it was not required for Th17 cell priming in the spleen. In contrast, IL-1 played an irreplaceable role for priming of Th17 lineage cells in all tissues. Importantly, we have demonstrated that IL-6-independent and -dependent pathways of Th17 cell differentiation are guided by DCs residing in various tissues. These results reveal fundamental differences by which the systemic, mucosal, and cutaneous immune systems guide Th17 cell lineage commitment.  相似文献   

15.
Lck activity controls CD4/CD8 T cell lineage commitment   总被引:3,自引:0,他引:3  
Thymocytes carrying MHC class I-restricted TCRs differentiate into CD8 T cells, while those recognizing MHC class II become CD4 T cells. The mechanisms underlying how MHC class recognition, coreceptor expression, and effector function are coordinated are not well understood. Since the tyrosine kinase Lck binds with more affinity to CD4 than CD8, it has been proposed as a candidate to mediate this process. By using transgenic mice with altered Lck activity, we show that thymocytes carrying a class II-restricted TCR develop into functional CD8 T cells when Lck activity is reduced. Conversely, thymocytes carrying a class I-restricted TCR develop into functional CD4 T cells when Lck activity is increased. These results directly show that quantitative differences in the Lck signal control the CD4/CD8 lineage decision.  相似文献   

16.
As a result of a transgene insertion and chromosomal deletion, a mutant mouse strain has been found that is defective in the lineage commitment step that produces a balance of alphabeta and gammadelta T cells. The mice produce a reduced population of alphabeta CD4 T cells and almost no alphabeta CD8 T cells. Within the CD4 and CD8 populations in the thymus there exist abnormal subsets that express the gammadelta TCR. These gammadelta TCR-expressing cells populate the peripheral lymphoid organs such that up to 75% of the CD8 T cells in the lymph nodes and spleen express a gammadelta TCR. Further analyses indicate that the regulation that prevents dual TCR expression has been impaired. The locus of insertion and deletion was mapped to chromosome 10 26 cM. We have analyzed the entire locus and, in addition, the gene expression changes in early thymocytes were analyzed by gene array technology. The analysis of this mutant strain indicates that the alphabeta versus gammadelta lineage decision can be profoundly disregulated independently of successful gene rearrangements.  相似文献   

17.
Annexin-1 is a well-known endogenous anti-inflammatory protein that modulates the activation of cells of the innate immune system such as neutrophils and macrophages. We have recently reported a positive role for the exogenous protein on T cell differentiation, however, whether such a role holds true for the endogenous protein has yet to be determined. This aspect has been investigated here finding that Annexin-1-deficient T cells display an impaired activation and proliferation in response to anti-CD3 plus anti-CD28 stimulation. Furthermore, differentiation of T cells from Annexin-1-deficient mice in Th0/Th1/Th2 or Th17 skewing conditions demonstrated an increased Th2 phenotype compared to cells from control littermates. Similar results were obtained when we analyzed the Th1/Th2 profile of lymph node cells obtained from mice immunized with keyhole limpet hemocyanin or the inflammatory infiltrate in mouse model of allergic inflammation. These results demonstrate a novel modulatory role of endogenous Annexin-1 in TCR signaling and T cell differentiation and suggest this protein might play a dual and complementary role in the innate and adaptive immune response.  相似文献   

18.
Itano A  Robey E 《Immunity》2000,12(4):383-389
We undertook a kinetic analysis of the generation of mature T cells in TCR and coreceptor transgenic mice using BrdU labeling. We observed that the selection efficiency of mature CD4-CD8+ and CD4+CD8- thymocytes could be as high as 40% and 90% of CD4+CD8+ precursors, respectively. The surprisingly high efficiency of selection favors an instructional model of lineage commitment and is incompatible with a stochastic model in which the efficiency of selection would be no greater than 100% in both lineages combined.  相似文献   

19.
20.
RBP-J is a key mediator of Notch signaling that regulates a large spectrum of cell fate determinations. To elucidate the functions of Notch signaling in T cell development, we inactivated RBP-J specifically at two stages of T cell development by crossing RBP-J floxed mice with lck-cre or CD4-cre transgenic mice. The loss of RBP-J at an earlier developmental stage resulted in enhanced generation and accelerated emigration of gammadelta T cells, whereas alphabeta T cell development was arrested at the double-negative 3 stage. The loss of RBP-J at a later stage did not affect the absolute number or the production rate of CD4 or CD8-positive mature T cells but enhanced Th1 cell response and reduced CD4(+) T cell proliferation. Our data demonstrated that Notch/RBP-J signaling regulates gammadelta T cell generation and migration, alphabeta T cell maturation, terminal differentiation of CD4(+) T cells into Th1/Th2 cells, and activation of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号