首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of neuronal sprouts, either from synaptic terminals or nearby nodes of Ranvier, is a widely known form of plasticity of motoneurons. Sprouts form in response to several stimuli, but most notably in partially denervated or paralyzed muscle. In search of the cellular or molecular basis of this phenomenon, several largely parallel lines of investigation have been pursued. Strong evidence is presented that at least four cytokines or growth factors may be involved in motoneuron sprouting, each of which uses a distinctive signaling pathway. Three of the different proposed sprouting molecules: neuroleukin, insulin-like growth factor, and neural cell adhesion molecules can be viewed as muscle-derived retrograde signaling molecules of roughly equal potency to induce motoneurons to sprout. A fourth molecule, ciliary neurotrophic factor (CNTF) is likely to form an essential anterograde signal, from Schwann cells to muscle fibers, that ultimately produces sprouting. Other cytokines and growth factors such a neurotrophins or GDNF family members are discussed, but their role in motoneuron sprouting is less clear. These cytokines and growth factors could represent redundant mechanisms for self-repair of the neuromuscular junction or they could interact at different levels of their cellular pathways.  相似文献   

2.
The concept that target-derived molecules are essential for the maintenance of motoneuronal survival has now received considerable support from different sources. One source of information arises from the target-related motoneuron death that occurs naturally at early developmental stages. Another source of information arises from axotomy-induced motoneuron death in adulthood. During development, the survival of motoneurons is initially target-independent. Its target dependence is expressed at a certain embryonic stage and, subsequently, motoneuronal survival becomes less dependent upon the target. It is not known how the state-switch of motoneurons is induced during development. Also, it is not certain whether naturally occurring motoneuron death during development and axotomy-induced motoneuron death in adulthood are based on the same mechanisms. Axotomy induces injury-associated disturbance in the motoneurons, in addition to elimination of the target-derived trophic supply. At present, there is no direct evidence that axotomy-induced motoneuron death in adulthood results solely from the deprivation of trophic factors from the target. The survival of motoneurons in adulthood appears to be maintained by multiple mechanisms. Some of the tropic factors that are involved in the maintenance of neuronal phenotypic expression are distinct from those involved in the maintenance of neuronal survival. There are multiple target-derived trophic factors for a given neuron.  相似文献   

3.
In cat and humans, contact between an obstacle and the dorsum of the foot evokes the stumbling corrective reaction (reflex) that lifts the foot to avoid falling. This reflex can also be evoked by short trains of stimuli to the cutaneous superficial peroneal (SP) nerve in decerebrate cats during the flexion phase of fictive locomotion. Here we examine intracellular events in hindlimb motoneurons accompanying stumbling correction. SP stimulation delivered during the flexion phase excites knee flexor motoneurons at short latency [minimum excitatory postsynaptic potential (EPSP) latency 1.8 ms; mean 2.7 ms]. Although a similar short latency excitation occurs in ankle extensors (mean latency, 2.8 ms), recruitment is delayed until successive shocks in the stimulus train overcome the locomotor-related hyperpolarization of ankle extensors. In ankle flexor motoneurons, SP stimulation evokes an inhibition (mean latency, 2.7 ms) that briefly reduces or stops their firing during the flexion phase. There is a phase-dependent modulation of SP-evoked EPSP amplitude as well as latency during locomotion. However, the more obvious change in SP reflex pathways with the onset of fictive locomotion is the reduced inhibition of ankle extensor motoneurons and the increased inhibition of ankle flexors. These results show that the characteristic pattern of hindlimb motoneuron activation during SP nerve-evoked stumbling correction results from 1) di- and trisynaptic excitation of knee flexor and ankle extensor motoneurons; 2) increased inhibitory postsynaptic potentials in ankle flexors and a suppression of inhibition in extensors, 3) sculpting of the short-latency SP postsynaptic effects by motoneuron membrane potential, and 4) longer latency excitatory effects that are likely evoked by lumbar interneurons involved in the generation of fictive locomotion.  相似文献   

4.
Summary The generation of cells and the naturally occurring neuronal death was studied in the trigeminal motor neuron pool in normal and tubocurare treated chick embryos between the 5th and 18th days of incubation. 3H-thymidine autoradiography revealed that the generation time extends from the 2nd to the 5th day of incubation, wherein about 50% of trigeminal motoneurons are born on the 3rd day. Maximum neuron number was found on the 7th day of incubation which steadily decreased to about 50% of the originally generated neurons by the 13th day. Nuclear pyknosis occurred from the 6th to the 13th day of incubation with a peak of neuron loss on the 7th day. Tubocurare, administered daily from the 5th day of incubation rescued most of the generated motoneurons which would otherwise have died. Cell nuclear area measurements in the motoneuron pool of the tubocurare treated animals showed a marked hypertrophy accompanying the increased neuronal survival.These observations indicate that tubocurare treatment prevents naturally occuring neuron death and causes significant nuclear hypertrophy within the trigemianal motoneuron pool innervating special, branchial arch derived muscles. Thus these neurons respond to tubocurare treatment in a manner similar to motoneurons of the spinal cord.  相似文献   

5.
Using the model of facial nerve avulsion, we have compared the effects of injury, age and diet on motoneuronal survival. One to four weeks after nerve avulsion, 50-75% motoneuron loss was quantified in ad libitum-fed rats aged 7 days (neonate), 6 months (adult) and 24 months (aging) at the time of injury. Evidence of apoptosis was found for neonatal rats at 3 days post-injury, but not for neonates examined 7 days or adult or aging rats examined 1 month after injury. Non-operated, ad libitum-fed rats showed no significant loss of facial motoneurons by 24 months. Surprisingly, non-operated rats whose food intake was restricted to 15 g standard rat chow per day from the age of 6 months lost 50% of their motoneurons by 24 months. Facial nerve avulsion of 24-month-old rats raised on this restricted diet did not result in any additional loss of motoneurons one month after injury. These results challenge the common view that aging results in neuronal loss and that dietary restriction is universally beneficial.  相似文献   

6.
The purpose of this study was to examine the influence of reduced tongue activity by artificial rearing on the morphology of motoneurons innervating the extrinsic tongue retrusors. Artificially reared rat pups were fed via gastric cannula from postnatal day 3 to postnatal day 14. Artificially reared animals and dam-reared controls had cholera toxin (subunit B) conjugate of horseradish peroxidase injected into the styloglossus to label motoneurons innervating hyoglossus and styloglossus on postnatal day 13 and postnatal day 59. Following perfusion on postnatal days 14 and 60, serial transverse sections treated with tetramethyl benzidine and counterstained neutral red were used to analyze motoneuron morphology. The shorter diameter of hyoglossus motoneurons increased with age for the dam-reared but not the artificially reared group. There was a tendency for a similar pattern for styloglossus motoneurons across the two rearing groups. The changes in form factor reflected the changes in shorter diameter for both motoneuron pools. Therefore, reducing suckling activity during normal postnatal development leads to diminished motoneuron somal growth in rats. This may also be the case in premature infants necessarily fed artificially.  相似文献   

7.
Postnatal development of hyoglossus and styloglossus motoneurons was studied in this investigation of the hypoglossal nucleus. Our findings show separate and distinct locations for hyoglossus and styloglossus motoneurons within the retrusor (dorsal) subdivision of the hypoglossal nucleus for all age groups. Hyoglossus and styloglossus motoneuron cross-sectional area reached their adult size at different times (by weeks 2 and 3, respectively). Cell roundness, as measured by form factor (measure of cell perimeter relative to its area), decreased with advancing postnatal age for both populations of motoneurons. Differences in the direction of the dendritic projection between hyoglossus and styloglossus motoneurons were found. Hyoglossus and styloglossus motoneuron development was compared to genioglossus motoneuron postnatal development.  相似文献   

8.
1. Intracellular staining of Renshaw cells and alpha motoneurons was used to determine the spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. In each experiment, a Renshaw cell and one or more possible target motoneurons were labeled with horseradish peroxidase after physiological identification. 2. Paris of labeled neurons were reconstructed and measured at the light microscopic level. As defined by light microscopy, presumed synaptic contacts between nine Renshaw cells and 10 postsynaptic motoneurons were observed. On average, each Renshaw cell made three synaptic contacts (range 1-9) on each motoneuron. 3. Electron microscopic confirmation of several presumed contacts provided evidence that the appositions identified by light microscopic criteria are genuine contacts between Renshaw cell boutons and the labeled motoneuron. 4. All of the identified synapses observed in these experiments were located on motoneuron dendrites, between 65 and 706 microns from the soma. Use of a simplified cable model indicated that the synapses are electrotonically close to the soma, the average location being approximately 0.25 length constants from the soma (range 0.04-0.82 lambda). 5. These observations provide direct evidence to support the hypothesis that Renshaw cell synapses on motoneurons are located on the dendrites and not on the cell body (whereas reciprocal inhibitory synapses, from Ia inhibitory interneurons, are predominantly located on the soma). The functional significance of the observed distribution of Renshaw inhibitory synapses is discussed. One possibility is that the recurrent inhibitory pathway selectively inhibits particular dendritic inputs.  相似文献   

9.
Ikeda R  Kato F 《Neuroscience》2005,134(3):889-899
Section of motor nerve fibers (axotomy) elicits a variety of morphofunctional responses in the motoneurons in the motor nuclei. Later than the fifth post-operational day after section of the facial nerve, synapse elimination occurs in the facial motoneuron pool, leading to gradual abolishment of synaptic input-driven activities of the axotomized motoneurons. However, it remains unknown how the amount of synaptic input changes during this period between the axotomy and the synaptic elimination. Here we examined a hypothesis that axotomy of the motoneurons itself modifies the synaptic inputs to the motoneurons. One day after axotomy, the postsynaptic currents, mostly mediated by non-N-methyl-D-aspartic acid (non-NMDA) receptors, recorded from the axotomized facial motoneurons in the acute slice preparations of the rats were of higher frequency and larger amplitude than those in the intact motoneurons. This difference was not observed after the third post-operational day and appeared earlier than the changes in the electrophysiological properties and increase in the number of dead neurons in the axotomized motor nucleus. The larger postsynaptic current frequency of the axotomized motoneurons was observed both in the absence and in the presence of tetrodotoxin citrate, suggesting that increased excitability and facilitated release underlie the postsynaptic current frequency increase. These results suggest that synaptic re-organization occurs in the synapses of motoneurons at an early stage following axotomy.  相似文献   

10.
Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.  相似文献   

11.
Breathing movements require the coordinated recruitment of cranial and spinal motoneurons innervating muscles of the upper airway and ribcage. A significant part of respiratory motoneuron development and maturation occurs prenatally to support the generation of fetal breathing movements in utero and sustained breathing at birth. Postnatally, motoneuron properties are further refined and match changes in the maturing respiratory musculoskeletal system. In this review, we outline developmental changes in key respiratory motoneuronal populations occurring from the time of motoneuron birth in the embryo through the postnatal period. We will also bring attention to major deficiencies in the current knowledge of perinatal respiratory motoneuron development. To date, our understanding of processes occurring during the prenatal period comes primarily from analysis of phrenic motoneurons (PMNs), whereas information about postnatal development derives largely from studies of PMN and hypoglossal motoneuron properties.  相似文献   

12.
We hypothesize that sleep state-dependent withdrawal of serotonin (5-hydroxytryptamine, 5-HT) at upper airway (UAW) dilator motoneurons contributes significantly to sleep-related suppression of dilator muscle activity in obstructive sleep apnea. Identification of 5-HT receptor subtypes involved in postsynaptic facilitation of UAW motoneuron activity may provide pharmacotherapies for this prevalent disorder. We have adapted two assays to provide semi-quantitative measurements of mRNA copy numbers for 5-HT receptor subtypes in single UAW motoneurons. Specifically, soma of 111 hypoglossal (XII) motoneurons in 10 adult male rats were captured using a laser dissection microscope, and then used individually in single round molecular beacon polymerase chain reaction (PCR) for real-time quantitation of 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor. Receptor mRNA copy numbers from single XII motoneurons were compared to control samples from within the XII nucleus and lateral medulla. All 20 motoneuronal soma assayed for the 5-HT(2A) receptor had measurable copy numbers (7028+/-2656 copies/cell). In contrast, copy numbers for the 5-HT(2A) receptor in XII non-motoneuronal (n=17) and lateral medulla (n=15) samples were 81+/-51 copies and 83+/-35 copies, respectively, P<0.05. Seven of 13 XII motoneurons assayed had measurable 5-HT(2C) receptor copy numbers of mRNA (287+/-112 copies/cell). XII soma had minimal 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor mRNA. 5-HT(2A) receptor mRNA presence within XII motoneurons was confirmed with digoxigenin-labeled in situ hybridization.In summary, combined use of laser dissection and molecular beacon PCR revealed 5-HT(2A) receptor as the predominant 5-HT receptor mRNA in XII motoneurons, and identified small quantities of 5-HT(2C) receptor. This information will allow a more complete understanding of serotonergic control of respiratory activity.  相似文献   

13.
The existence of retrograde cell death in sensory dorsal root ganglion (DRG) cells after peripheral nerve injury is well established. However, with respect to retrograde motoneuron death after peripheral nerve injury, available data are conflicting. This may partly be due to the cell counting techniques used. In the present study, quantitative morphometric methods have been used to analyse retrograde motoneuron death induced by spinal nerve injury in adult rats. For comparison, DRG cells were also included in the study. The C7 spinal nerve was transected about 10 mm distal to the DRG and exposed to the fluorescent tracer fast blue in order to retrogradely label the spinal motoneurons and DRG cells of the C7 segment. At 1–16 weeks postoperatively, the nuclei of fast-blue-labelled C7 motoneurons and DRG cells were counted in consecutive 50-μm-thick serial sections. For comparison, the physical disector technique and measurements of neuronal density were also used to calculate motoneuron number. The counts of fast-blue-labelled motoneurons revealed a delayed motoneuron loss amounting to 21% and 31% after 8 and 16 weeks, respectively (P<0.001). The remaining motoneurons exhibited 20% (P<0.05) soma atrophy. Using the physical disector technique, the motoneuron loss was 23% (P<0.001) after 16 weeks. Calculations of neuronal density in Nissl-stained sections failed to reveal any motoneuron loss, although after correction for shrinkage of the ventral horn a 14% (P<0.001) motoneuron loss was found. The fast-blue-labelled DRG neurons displayed 51% (P<0.001) cell loss after 16 weeks, and the remaining cells showed 22% (P<0.001) soma atrophy. In summary, cervical spinal nerve injury induces retrograde degeneration of both motoneurons and DRG cells. However, to demonstrate the motoneuron loss adequate techniques for cell counts have to be employed. Electronic Publication  相似文献   

14.
Summary The gonadal and accessory organ atrophy following transfer of male hamsters from long (LP) to short photoperiod (SP) is preceded by reduced prolactin secretion and involves reductions in hypothalamic LHRH release and catecholamine turnover. These experiments examined the temporal aspects of changes in medial basal hypothalamic/ median eminence (MBH/ME) catecholamine turnover rates in male hamsters undergoing SP-induced gonadal atrophy. Hamsters were sacrificed at three, six, nine and twelve weeks of SP exposure. MBH/ME catecholamines and indoleamines were determined by high performance liquid chromatography coupled with electrochemical detection. Reductions in serum prolactin (PRL) levels and increased MBH/ME dopamine (DA) turnover rates were observed at three and six weeks of SP exposure. Both steady state concentrations and turnover rates of norepinephrine (NE) and DA were depressed after nine and twelve weeks of SP exposure, at which time testicular and accessory organ atrophy had occurred. Serotonin (5-HT) and 5-hydroxy-3-indoleacetic acid (5-HIAA) concentrations were insignificantly changed during the period of SP treatment but the 5-HIAA/5-HT ratio was significantly increased after six weeks of SP exposure. It was concluded that increased MBH/ME DA turnover represents an initial, SP-induced neuroendocrine event. This increase in DA turnover probably contributes to the reduced PRL secretion which precedes, and may play a role in the ensuing gonadal and accessory organ atrophy.  相似文献   

15.
The purpose of this study was to test our hypothesis that the serotoninergic system plays a significant role in airway obstruction during sleep, by focusing on patterns of serotoninergic innervation of the medullary motoneurons involved in upper airway control. We used the combined techniques of retrograde labelling of motoneurons with unconjugated cholera toxin B and immunohistochemistry with antiserum against serotonin (5-HT). The retrograde tracers were injected into posterior cricoarytenoid (PCA), cricothyroid (CT), and genioglossal (GG) muscles of the cat. Motoneurons retrogradely labelled from PCA were identified ipsilateral to the injection site in the caudal part of nucleus ambiguus (NA). Serotonin immunoreactive terminals surrounded their somata and proximal dendrites, suggesting a strong influence of serotonin on the PCA-labelled motoneurons. Motoneurons retrogradely labelled from CT were located ipsilaterally in two distinct groups in the rostral NA and in the retrofacial nucleus (RFN). Selective peripheral nerve section revealed that the CT-labelled motoneurons in the NA had axons in the recurrent laryngeal nerve, whereas the other CT-labelled motoneurons in the RFN were innervated through the superior laryngeal nerve. In the RFN, the pattern of 5-HT innervation in relation to the CT-labelled motoneurons was analogous to that observed with the PCA-labelled motoneurons. In the NA, however, 5-HT terminals made few contacts with the CT-labelled motoneurons, although a dense network of 5-HT terminals was present in the surrounding region. In the GG-labelled motoneuron region of the hypoglossal nucleus, 5-HT terminals were apposed to distal dendrites, not to the soma, indicating less effect of serotonin on GG than on PCA activity. The present results demonstrated that the patterns of 5-HT innervation vary according to the type of motoneurons and their projections to the upper airway.  相似文献   

16.
The NMDA subtype of glutamate receptors mediates a variety of neuronal processes involved in the development of dendritic morphology. For example, NMDA receptor antagonism during the early postnatal period attenuates dendritic growth in spinal motoneurons. NMDA receptors are present in high levels in the spinal cord early in the postnatal period and decline during development, a period of extensive dendritic plasticity in the spinal cord. Previous studies have suggested that an adult pattern of distribution of NMDA receptors is established as early as postnatal day (P)21 (day of birth = P1). However, given that dendritic growth in spinal motoneurons is not complete by this age and that NMDA receptor activation is necessary for dendritic growth, we assessed NMDA receptor binding in specific spinal motor nuclei during normal development. NMDA receptors were labeled with [3H]MK-801 at P7, P14, P28, P49, and in adult male rats. Receptor binding in the spinal nucleus of the bulbocavernosus (SNB), dorsolateral nucleus (DLN) and retrodorsolateral nucleus (RDLN) was measured using in vitro quantitative autoradiography. NMDA receptor binding over the SNB, DLN and RDLN in intact males was initially high, and declined to adult levels. However, the time course of the decline differed across nuclei. The local decline in NMDA receptor binding observed in the SNB and DLN is coincident with the periods of dendritic growth in these nuclei, further supporting a role for NMDA receptors in the development of motoneuron dendritic morphology.  相似文献   

17.
The present study was undertaken to quantify selected neuropeptides (thyrotropin releasing hormone, substance P, methionine and leucine enkephalin) in the cervical spinal cord and other regions of the central nervous system of Wobbler mice by radioimmunoassays during several stages of the motoneuron disease compared with age- and sex-matched normal phenotype littermates. In Wobbler spinal cord, thyrotropin releasing hormone is higher early in the disease, whereas in the brainstem it is higher at a later stage. Substance P in spinal cord is also higher late in the disease. Leucine enkephalin levels are greater at all stages in diseased spinal cord and brainstem, but methionine enkephalin increases only late in the disease. Highly significant increases of the peptides (except thyrotropin releasing hormone) appear in hypothalamus and midbrain only late in the motoneuron disease. Regression analyses show that thyrotropin releasing hormone in spinal cord and brainstem decreases normally with age in the control mice and at a faster rate related to the extent of motor impairment in Wobbler mice. Thyrotropin releasing hormone and methionine enkephalin in the Wobbler brainstem correlate (P less than 0.05) with the progress of the motoneuron disease. Methionine enkephalin increases faster in Wobbler brainstem and decreases faster in control spinal cord with age. The increase of leucine enkephalin in the Wobbler spinal cord correlates significantly with age and with the progress of the disease, but leucine enkephalin declines slightly with age in the controls. The changes of substance P in spinal cord and brainstem do not correlate significantly with the progress of the disease. In the hypothalamus, increasing values for substance P in control specimens and enkephalins in Wobbler specimens are significantly correlated with age. However, in the midbrain, higher methionine and leucine enkephalin levels are significantly associated with age only in the control mice. Alterations of neuropeptides in the Wobbler mouse spinal cord and brainstem may result from the degeneration of bulbospinal raphe neurons projecting to the ventral spinal cord, or from primary afferent or interneuronal nerve terminals. The data imply that the neuronal degeneration process in the Wobbler motoneuron disease is not limited to motoneurons. In the spinal cord, the data support our previous hypothesis that neuronal sprouting presynaptic to the motoneurons may account for increased neuropeptide concentrations. Alternatively, synthesis and/or degradation of these peptides may be altered. In addition, it is proposed that enkephalinergic neurons may develop abnormally in Wobbler mice. The early increase of leucine enkephalin in the Wobbler spinal cord possibly indicates its importance in the etiology of the motoneuron disease.  相似文献   

18.
19.
It is well established that cholinergic agonists, when injected into the pontine reticular formation in cats, produce a generalized suppression of motor activity (1, 3, 6, 14, 18, 27, 33, 50). The responsible neuronal mechanisms were explored by measuring ventral root activity, the amplitude of the Ia-monosynaptic reflex, and the basic electrophysiological properties of hindlimb motoneurons before and after carbachol was microinjected into the pontine reticular formation of decerebrate cats. Intrapontine microinjections of carbachol (0.25-1.0 microliter, 16 mg/ml) resulted in the tonic suppression of ventral root activity and a decrease in the amplitude of the Ia-monosynaptic reflex. An analysis of intracellular records from lumbar motoneurons during the suppression of motor activity induced by carbachol revealed a considerable decrease in input resistance and membrane time constant as well as a reduction in motoneuron excitability, as evidenced by a nearly twofold increase in rheobase. Discrete inhibitory postsynaptic potentials were also observed following carbachol administration. The changes in motoneuron properties (rheobase, input resistance, and membrane time constant), as well as the development of discrete inhibitory postsynaptic potentials, indicate that spinal cord motoneurons were postsynaptically inhibited following the pontine administration of carbachol. In addition, the inhibitory processes that arose after carbachol administration in the decerebrate cat were remarkably similar to those that are present during active sleep in the chronic cat. These findings suggest that the microinjection of carbachol into the pontine reticular formation activates the same brain stem-spinal cord system that is responsible for the postsynaptic inhibition of alpha-motoneurons that occurs during active sleep.  相似文献   

20.
A physiological neuronal death that implicates about 50% of the motoneuron population occurs in the chick embryo between the 6th (E6) and 9th (E9) day of incubation. This natural death can be prevented by administration of neuromuscular blocking agents (e.g. (+)-tubocurarine ((+)-Tc)). In this study, calcitonin gene-related peptide-like immunoreactivity (CGRP-LIR) was studied in spinal cord motoneurons from normal and (+)-Tc-treated chick embryos. In normal embryos CGRP-LIR was found in a neuronal subpopulation of the spinal cord lateral motor column (LMC) that was maximal between the 14th (E14) and 16th (E16) embryonic days with a subsequent decrease. In LMC neurons from (+)-Tc-treated chick embryos examined at E14-16 days no histochemically detectable CGRP-LIR could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号