首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domoic acid (DA), a kainite-receptor agonist and potent inducer of neurotoxicity, has been administered intravenously in adult rats in the present study (0.75 mg/kg body weight) to demonstrate neuronal degeneration followed by glial activation and their involvement with inducible nitric oxide synthase (iNOS) in the hippocampus. An equal volume of normal saline was administered in control rats. The pineal hormone melatonin, which protects the neurons efficiently against excitotoxicity mediated by sensitive glutamate receptor, was administered intraperitoneally (10 mg/kg body weight), 20 min before, immediately after, and 1 h and 2 h after the DA administration, to demonstrate its role in therapeutic strategy. Histopathological analysis (Nissl staining) demonstrated extensive neuronal damage in the pyramidal neurons of CA1, CA3 subfields and hilus of the dentate gyrus (DG) in the hippocampus at 5 days after DA administration. Sparsely distributed glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes were observed in the hippocampus at 4-24 h after DA administration and in the control rats. Astrogliosis was evidenced by increased GFAP immunoreactivity in the areas of severe neuronal degeneration at 5 days after DA administration. Along with this, microglial cells exhibited an intense immunoreaction with OX-42, indicating upregulation of complement type 3 receptors (CR3). Ultrastructural study revealed swollen or shrunken degenerating neurons in the CA1, CA3 subfields and hilus of the DG and hypertrophied astrocytes showing accumulation of intermediate filament bundles in the cytoplasm were observed after administration of DA. Although no significant change could be observed in the mRNA level of iNOS expression between the DA-treated rats and controls at 4-24 h and at 5-day time intervals, double immunofluorescense revealed co-expression of induced iNOS with GFAP immunoreactive astrocytes, but not in the microglial cells, and iNOS expression in the neurons of the hippocampal subfields at 5 days after DA administration. Expression of iNOS was not observed in the hippocampus of control rats. DA-induced neuronal death, glial activation, and iNOS protein expression were attenuated significantly by melatonin treatment and were comparable to the control groups. The results of the present study suggest that melatonin holds potential for the treatment of pathologies associated with DA-induced brain damage. It is speculated that astrogliosis and induction of iNOS protein expression in the neurons and astrocytes of the hippocampus may be in response to DA-induced neuronal degeneration.  相似文献   

2.
3.
Domoic acid-induced neurotoxicity in the hippocampus of adult rats   总被引:1,自引:0,他引:1  
Domoic acid (DA), an agonist of non-N-methyl-D-aspartate (non-NMDA) receptor subtype including kainate receptor, was identified as a potent neurotoxin showing involvement in neuropathological processes like neuronal degeneration and atrophy. In the past decade evidence indicating a role for excitatory amino acids in association with neurological disorders has been accumulating. Although the mechanisms underlying the neuronal damage induced by DA are not yet fully understood, many intracellular processes are thought to contribute towards DA-induced excitotoxic injury, acting in combination leading to cell death. In this review article, we report the leading hypotheses in the understanding of DA-induced neurotoxicity, which focus on the role of DA in neuropathological manifestations, the formation of the retrograde messenger molecule nitric oxide (NO) for the production of free radicals in the development of neuronal damage, the activation of glial cells (microglia and astrocytes) in response to DA-induced neuronal damage and the neuroprotective role of melatonin as a free radical scavenger or antioxidant in DA-induced neurotoxicity. The possible implications of molecular mechanism underlying the neurotoxicity in association with necrosis, apoptosis, nitric oxide synthases (nNOS and iNOS) and glutamate receptors (NMDAR1 and GluR2) related genes and their expression in DA-induced neuronal damage in the hippocampus have been discussed.  相似文献   

4.
Nitric oxide has recently been implicated in mediation of neuronal excitotoxicity and damage. This study aimed at elucidating the changes in the expression of neuronal isoform of nitric oxide synthase (nNOS) in the hippocampus after status epilepticus induced by perforant pathway stimulation. nNOS-immunoreactivity (nNOS-ir) and neuronal damage, assessed by silver staining, were evaluated separately in different hippocampal subfields 2 weeks after induction of status epilepticus. Perforant pathway stimulation resulted in an increase in the number of nNOS-immunoreactive neurons in the stratum radiatum of the CA1 and CA3 subfields of the hippocampus proper, and the hilus of the dentate gyrus. The morphology and distribution of the nNOS-ir neurons resembled that of interneurons. No correlation of the number of nNOS-ir neurons to the neuronal damage score was observed. Our results suggest that status epilepticus provokes a de novo expression of nNOS protein, and the nNOS expressing neurons may be selectively resistant to epileptic brain injury.  相似文献   

5.
We investigated the neuroprotective effects of a novel 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (pitavastatin) on ischemic neuronal damage in gerbils using immunohistochemistry. The animals were allowed to survive for 14 days after 5 min of ischemia induced by bilateral occlusion of the common carotid arteries. Five days after ischemia, severe neuronal cell loss was observed in the hippocampal CA1 sector. Prophylactic treatment with pitavastatin dose-dependently prevented the hippocampal CA1 neuronal cell loss 5 days after ischemia. Immunohistochemical study did not show the change of nNOS and iNOS expression in the hippocampus except for, in a few regions, up to 1 day after ischemia. Thereafter, the expression of iNOS was observed in the hippocampal CA1 sector 5 and 14 days after ischemia. In contrast, the expression of nNOS and eNOS gradually decreased in the hippocampal CA1 sector up to 14 days after ischemia. Prophylactic treatment with pitavastatin also prevented the expression of iNOS and the decrease of eNOS expression and the number of nNOS-positive cells in the hippocampal CA1 sector 5 days after ischemia. However, prophylactic treatment with pitavastatin at a dose of 10 mg kg(-1) did not change the immunoreactivity of iNOS and nNOS in the hippocampus at an early phase after ischemia. In contrast, this drug prevented the reduction of eNOS immunoreactivity in the hippocampal CA1 neurons at an early phase after ischemia. These findings demonstrate that the HMG-CoA reductase inhibitor pitavastatin can protect hippocampal CA1 neurons after transient forebrain ischemia through up-regulation of eNOS expression in this region. Thus pharmacological modulation of eNOS expression may offer a novel therapeutic strategy for cerebral ischemic stroke.  相似文献   

6.
《Neurological research》2013,35(6):684-691
Abstract

We investigated the neuroprotective effects of a novel 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (pitavastatin) on ischemic neuronal damage in gerbils using immunohistochemistry. The animals were allowed to survive for 14 days after 5 min of ischemia induced by bilateral occlusion of the common carotid arteries. Five days after ischemia, severe neuronal cell loss was observed in the hippocampal CA1 sector. Prophylactic treatment with pitavastatin dose-dependently prevented the hippocampal CA1 neuronal cell loss 5 days after ischemia. Immunohistochemical study did not show the change of nNOS and iNOS expression in the hippocampus except for, in a few regions, up to 1 day after ischemia. Thereafter, the expression of iNOS was observed in the hippocampal CA1 sector 5 and 14 days after ischemia. In contrast, the expression of nNOS and eNOS gradually decreased in the hippocampal CA1 sector up to 14 days after ischemia. Prophylactic treatment with pitavastatin also prevented the expression of iNOS and the decrease of eNOS expression and the number of nNOS-positive cells in the hippocampal CA1 sector 5 days after ischemia. However, prophylactic treatment with pitavastatin at a dose of 10 mg kg-1 did not change the immunoreactivity of iNOS and nNOS in the hippocampus at an early phase after ischemia. In contrast, this drug prevented the reduction of eNOS immunoreactivity in the hippocampal CA1 neurons at an early phase after ischemia. These findings demonstrate that the HMG-CoA reductase inhibitor pitavastatin can protect hippocampal CA1 neurons after transient forebrain ischemia through up-regulation of eNOS expression in this region. Thus pharmacological modulation of eNOS expression may offer a novel therapeutic strategy for cerebral ischemic stroke.  相似文献   

7.
Despite the emergence of therapies for hypoxic-ischemic injury to the mature nervous system, there have been no proven efficacious therapies for the developing nervous system. Recent studies have shown that pharmacological blockade of neuronal nitric oxide synthase (nNOS) activity can ameliorate damage after ischemia in the mature rodent. We have previously shown that elimination of nNOS neurons, either by targeted disruption of the gene or by pharmacological depletion with intraparenchymal quisqualate, can decrease injury after hypoxia-ischemia. Using a simpler pharmacological approach, we studied the efficacy of a systemically administered NOS inhibitor, 7-nitroindazole, a relatively selective inhibitor of nNOS activity. Using multiple doses and concentrations administered after the insult, we found that there was only a trend for protection with higher doses of the drug. A significant decrease in NOS activity was seen at 18 h and 5 days in the cortex, and at 2 h and 18 h in the hippocampus after the hypoxia-ischemia. nNOS expression decreased and remained depressed for at least 18 h after the insult. When nNOS expression was normalized to MAP2 expression, a decrease was seen at 18 h in the cortex and at 2 and 18 h in the hippocampus. These data suggest that further inhibition of NOS activity at early timepoints may not provide substantial benefit. At 5 days after the insult, however, NOS activity and normalized nNOS expression returned to baseline or higher in the hippocampus, the region showing the most damage. These data suggest that delayed administration of nNOS inhibitor after hypoxic-ischemic injury might be beneficial.  相似文献   

8.
In this study, the responses of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and neuronal nitric oxide synthase (nNOS) activities were quantitatively analyzed at different times in both ipsilateral and contralateral sides of trigeminal nuclei, after unilateral trigeminal muscle nerve transection, in Sprague Dawley rats. In the control animals, both NADPH-d- and nNOS-positive neurons were constitutively distributed in the rostrolateral solitary tract nucleus, dorsomedial part of trigeminal nucleus oralis (Vo/Sn), and superficial layers (VcI/II) of the trigeminal nucleus caudalis (Vc). NADPH-d-positive neurons appeared in the trigeminal mesencephalic nucleus ipsilaterally at 5 days (mean +/- SEM: 30.5 +/- 5.6) and were maintained until 8 weeks (33 +/- 10.6) after the denervation. In the trigeminal motor nucleus, NADPH-d-positive neurons appeared transiently and bilaterally, peaking at 1 week (663.5 +/- 156.2, ipsilateral side; 687.5 +/- 118.6, contralateral side) after unilateral denervation of the masseteric nerve. In both Vo/Sn and Vc, the number of NADPH-d-positive neurons in the control animals showed a decrease at 3 days but significantly increased from 5 days to 1 week and gradually fell to the control values by 8 weeks after the denervation. There were no significant differences observed between the two sides in either Vo/Sn or Vc. nNOS-positive neurons were similarly distributed and the numbers of labeled neurons were similar to those of NADPH-d-positive neurons after the denervation, although the changes were delayed by approximately 1 week. In conclusion, after unilateral nerve transection, the peak NADPH-d activity occurs 1 week prior to nNOS activity.  相似文献   

9.
Lesion-induced induction of neuronal nitric oxide synthase (nNOS) was examined in the rat cerebellum. The stab-lesioned cerebellar cortex was examined with NADPH-diaphorase (NADPH-d) histochemistry and in situ hybridization using nNOS cRNA probe at 1, 3, 7, 14, 35 days post-lesion. NADPH-d- and nNOS mRNA-positive Purkinje cells appeared adjacent to the lesion by 3 days after the lesion. The area of distribution expanded and the number of positive cells increased at 7 days after the lesion, and at 14 days post-lesion, shrunken NADPH-d-positive Purkinje cells with irregular surface appeared. NADPH-d activity and nNOS mRNA signal could not be detected in Purkinje cells after 35 days post-lesion. Combined NADPH-d histochemistory and in situ hybridization using glutamic acid decarboxylase (GAD) cRNA probe revealed that nNOS-expressing Purkinje cells showed fewer GAD mRNA signals than those in normal Purkinje cells. The atrophic contour and the lower expression of GAD mRNA signals in NADPH-d positive Purkinje cells suggest that nNOS is expressed under a degenerating process.  相似文献   

10.
Wu A  Liu Y 《Brain research》1999,850(1-2):249-252
The effects of deltamethrin on the activities of nitric oxide synthase (NOS) and poly(ADP-ribose) polymerase (PARP) and the protein expression of neuronal NOS (nNOS) and PARP in rat brain were investigated in the present study. The activity of NOS was significantly increased in cortex and hippocampus at 5 h after deltamethrin treatment, and maintained at an increased level at 24 h. The activity of PARP was also elevated at the same time points in the same brain regions of treated rats. By immunohistochemical analysis, it was demonstrated that the nNOS-immunoreactive cells were markedly increased at 24 h after treatment in the cortex and hippocampus, whereas few nNOS-immunoreactive cells were observed in the same brain regions of control and treated rats at 5 h after treatment. The immunoreactivity for PARP was also increased in the same brain regions, showing the similar time course of the induction of nNOS by deltamethrin. These results indicate that deltamethrin increases the activities of NOS and PARP and initiates the protein expression of nNOS and PARP, suggesting that NOS and PARP might play important roles in neurotoxicity of deltamethrin.  相似文献   

11.
Park SK  An SJ  Hwang IK  Suh JG  Won MH  Oh YS  Bae JC  Lee KW  Kang TC 《Neuropeptides》2002,36(6):396-400
Recently, we suggested that the ectopic expression of corticotropin-releasing factor (CRF) is associated with processes linked to neuronal injury and/or degeneration in response to an ischemic insult. However, little experimental data currently links the CRF receptor directly to neuronal death induced by ischemia. Therefore, in the present study, we investigated the temporal and spatial changes in CRF receptor immunoreactivity in the hippocampus and the neocortex after transient ischemia. CRF receptor immunoreactivity in the hippocampus was reduced up to 24h after ischemia insult, as compared to the sham. Interestingly, CRF receptor immunoreactivity disappeared in the CA1 region of the hippocampus at 4 days in the post-ischemic group. The other regions of hippocampus maintained their immunoreactivities at this time point. On the other hand, in the neocortex, 3h after transient ischemia, the CRF receptor immunoreactivity was elevated in regions vulnerable to ischemia. At 12h post-ischemia, its immunoreactivity had decreased versus the sham operated animals. These results suggest that the selectively ectopic expression of CRF following ischemia, which we reported previously, may regulate inflammatory responses. In addition, these findings also suggest that the mechanisms of neuronal death as mediated by CRF receptor differ in the hippocampus and the neocortex.  相似文献   

12.
A perfusion model of global cerebral ischemia was used for the immunohistochemical study of changes in the glutamate-nitric oxide (NO) system in the rat cerebellum and cerebellar nuclei during a 0-14 h reperfusion period after 30 min of oxygen and glucose deprivation, with and without administration of 1.5 mM N(omega)-nitro-L-arginine methyl ester (L-NAME). While immunostaining for N-methyl-D-aspartate receptor subunit 1 (NMDAR1) showed no marked changes during the reperfusion period, neuronal NO synthase (nNOS) immunostaining increased in stellate and basket cells, granule cells and neurons of the cerebellar nuclei. However, global cerebellar nNOS concentrations determined by Western blotting remained largely unchanged in comparison with actin expression. Inducible NOS (iNOS) immunostaining appeared in Purkinje cells and neurons of the cerebellar nuclei after 2-4 h of reperfusion and intensified during the 6-14 h period. This was reflected by an increase in global cerebellar iNOS expression determined by Western blotting. Immunostaining for protein nitrotyrosine was seen in Purkinje cells, stellate and basket cells, neurons of the cerebellar nuclei and glial cells in controls, and showed a progressive translocation in Purkinje cells and neurons of the cerebellar nuclei from an initial perinuclear or nuclear location towards the periphery. At the end of the reperfusion period the Purkinje cell apical dendrites were notably retracted and tortuous. Prior and concurrent L-NAME administration eliminated nitrotyrosine immunostaining in controls and blocked or reduced most of the postischemic changes observed. The results suggest that while nNOS expression may be modified in certain cells, iNOS is induced after a 2-4 h period, and that changes in protein nitration may be associated with changes in cell morphology.  相似文献   

13.
In vivo studies support selective neuronal vulnerability to hypoxia-ischemia (HI) in the developing brain. Since differences in intrinsic properties of neurons might be responsible, pure cultures containing immature neurons (6-8 days in vitro) isolated from mouse cortex and hippocampus, regions chosen for their marked vulnerability to oxidative stress, were studied under in vitro ischemic conditions-oxygen-glucose deprivation (OGD). Twenty-four hours of reoxygenation after 2.5 h of OGD induced significantly greater cell death in hippocampal than in cortical neurons (67.8% vs. 33.4%, P = 0.0068). The expression of neuronal nitric oxide synthase (nNOS) protein, production of nitric oxide (NO), and reactive oxygen species (ROS), as well as glutathione peroxidase (GPx) activity and intracellular levels of reduced glutathione (GSH), were measured as indicators of oxidative stress. Hippocampal neurons had markedly higher nNOS expression than cortical neurons by 24 h of reoxygenation, which coincided with an increase in NO production, and significantly greater ROS accumulation. GPx activity declined significantly in hippocampal but not in cortical neurons at 4 and 24 h after OGD. The decrease in GSH level in hippocampal neurons correlated with the decline of GPx activity. Our data suggest that developing hippocampal neurons are more sensitive to OGD than cortical neurons. This finding supports our in vivo studies showing that mouse hippocampus is more vulnerable than cortex after neonatal HI. An imbalance between excess prooxidant production (increased nNOS expression, and NO and ROS production) and insufficient antioxidant defenses created by reduced GPx activity and GSH levels may, in part, explain the higher susceptibility to OGD of immature hippocampal neurons.  相似文献   

14.
The hippocampus is rich in both glucocorticoid receptor (GR) and neuronal nitric oxide synthase (nNOS). But the relationship between the two molecules under physiological states remains unrevealed. Here, we report that nNOS knockout mice display increased GR expression in the hippocampus. Both systemic administration of 7-Nitroindazole (7-NI), a selective nNOS activity inhibitor, and selective infusion of 7-NI into the hippocampus resulted in an increase in GR expression in the hippocampus. Moreover, KCl exposure, which can induce overexpression of nNOS, resulted in a decrease in GR protein level in cultured hippocampal neurons. Moreover, blockade of nNOS activity in the hippocampus leads to decreased corticosterone (CORT, glucocorticoids in rodents) concentration in the plasma and reduced corticotrophin-releasing factor expression in the hypothalamus. The results indicate that nNOS is an endogenous inhibitor of GR in the hippocampus and that nNOS in the hippocampus may participate in the modulation of Hypothalamic–Pituitary–Adrenal axis activity via GR.  相似文献   

15.
To analyze the role of specific genes and proteins in neuronal signaling cascades following global cerebral ischemia, it would be useful to have a reproducible model of global cerebral ischemia in mice that potentially allows the investigation of mice with specific genomic mutations. We first report on the development of a model of reversible cardiocirculatory arrest in mice and the consequences of such an insult to neuronal degeneration and expression of immediate early genes (IEG) in the hippocampus. Cardiocirculatory arrest of 5 min duration was induced via ventricular fibrillation in mechanically ventilated NMRI mice. After successful cardiopulmonary resuscitation (CPR), animals were allowed to reperfuse spontaneously for 3 h (n=7) and 7 days (n=7). TUNEL staining revealed a selective degeneration of a subset of neurons in the hippocampal CA1 sector at 7 days. About 30% of all TUNEL-positive nuclei showed condensed chromatin and apoptotic bodies. Immunohistochemical studies of IEG expression performed at 3 h exhibited a marked induction of c-Fos, c-Jun, and Krox-24 protein in all sectors of the hippocampus, peaking in vulnerable CA1 pyramidal neurons and in dentate gyrus. In contrast, sham-operated animals (n=3) did not reveal neuronal degeneration or increased IEG expression in the hippocampus when compared with untreated control animals (n=3). In conclusion, we present a new model of global cerebral ischemia and reperfusion in mice with the use of complete cardiocirculatory arrest and subsequent CPR. Following 5 min of ischemia, a subset of CA1 pyramidal neurons was TUNEL-positive at 7 days. The expression of IEG was observed in all sectors of the hippocampus, including selectively vulnerable CA1 pyramidal neurons. This appears to be a good model which should be useful in evaluating the role of various genes in transgenic and knockout mice following global ischemia.  相似文献   

16.
By means of an immunohistochemical technique, we examined the neuronal induction of 72-kDa heat shock protein (HSP72) in response to methamphetamine-induced hyperthermia in the mouse hippocampus. Strong HSP72 immunoreactivity (ir) was found in the neurons of hippocampus proper, particularly in the CA1/2 and medial CA3 subfields, at 10 h after drug injection. By 18 h, those neurons still revealed HSP72-ir, while neurons of the dentate gyrus also appeared positive for HSP72. At this stage, intense HSP72-ir was first detected in non-neuronal cells, i.e. glial and vascular endothelial cells. At 24 h, no apparent HSP72-ir was found in the hippocampal neurons, while only non-neuronal cells still revealed immunoreactivity for HSP72. In addition, no morphological evidence of cell degeneration or loss was noted in the CA1 sector or other hippocampal regions at 5 days after hyperthermic insult. In conclusion, (1) methamphetamine-induced hyperthermia per se is a stressful stimulant causing neuronal induction of HSP72 in the hippocampus neurons, particularly of CA1/2 and medial CA3 sectors, but does not prove fatal to the cells; (2) there is a cell type-specific difference in response to hyperthermic insult by inducing HSP72 and the timing of the induction response in the hippocampal formation; and (3) the animals that underwent drug-induced hyperthermia may be useful as an experimental model for the study of the protective mechanism of heat shock proteins against subsequent harmful stimuli.  相似文献   

17.
Fan XD  Li XM  Ashe PC  Juorio AV 《Brain research》1999,850(1-2):79-86
This is a study of the effect of the unilateral administration of dopamine (DA) in the pars compacta of the substantia nigra (SN) of the rat on striatal glutamate receptor subunit (GluR1, GluR2 and NMDAR1) gene expression determined by in situ hybridization. The location of the nigral lesion was determined by tyrosine hydroxylase (TH) immunohistochemistry and its extent by the striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations. The DA-induced lesions produce significant bilateral reductions in the expression of GluR1 and NMDAR1 subunit mRNA in the medio-lateral striatum, whereas the expression of striatal GluR2 receptors was not changed. The reduction in GluR1 and NMDAR1 subunit mRNA may be the consequence of glutamatergic hyperactivity developed in the presence of a damaged nigro-striatal system and these may be associated with the genesis of some neurodegenerative diseases.  相似文献   

18.
Expressional patterns of the endothelial and neuronal forms of nitric oxide synthase (NOS) in cerebral ischemia were studied utilizing a permanent middle cerebral artery occlusion (PMCAO) model. Motor performance and infarct volumes were determined in the rats. Immunohistochemical staining for eNOS, nNOS and neurofilament were performed at 1, 2, 3, 5, 7 and 14 days after PMCAO. Vascular endothelial growth factor (VEGF) expression was determined by in-situ hybridization. PMCAO caused a reproducible cortical infarct with motor deficits in the rats. Double immunohistochemical stainings indicated that eNOS and nNOS were induced in ischemic neurons. Most stained neurons were positive for both NOS forms but some reacted with only one NOS antibody. nNOS expression peaked at 24-48 h after PMCAO, stained mainly the cytoplasm of core neurons, and disappeared after the 3rd day. eNOS expression increased until the 7th day, stained mainly the cytoplasm and membrane of penumbral cells and disappeared by the 14th day after PMCAO. VEGF expression was significantly induced in the penumbral zone in a similar distribution to eNOS. The anatomical and temporal pattern of VEGF and eNOS induction in the brain after permanent ischemia suggest that these mediators may play a role in protecting penumbral tissue from additional ischemic damage.  相似文献   

19.
《Brain & development》1996,18(5):369-375
We evaluated the temporal profile of the number of neurons containing neuronal nitric oxide synthase (nNOS neurons) in the brain of a neonatal hypoxic-ischemic rat model. Hypoxic-ischemic insults were produced in the brains of 7-day-old rat pups using a combination of unilateral carotid artery ligation and hypoxic (8% oxygen) exposure. Sections of brain from rats killed at 0–24 h after the onset of hypoxia were stained immunohistochemically using a polyclonal anti-nNOS antibody. Histological changes of neuronal injury were evaluated in the adjacent Nissl stained sections. The number of nNOS neurons in the hemisphere ipsilateral to the carotid ligation was significantly increased (P < 0.05) at 3 h, when the neuronal injury consisted of clusters of degenerating hyperchromic neurons. Neuronal degeneration and an increased number of nNOS neurons were seen only in the ipsilateral hemisphere and the increase was most prominent in the dorsolateral area of the striatum. The increase in the number of nNOS neurons continued at 6 h, when the area of neuronal injury continued to expand. At 24 h, the neuronal injury was diffuse, and the number of nNOS neurons on the ipsilateral side significantly decreased. The increase of the number of nNOS neurons in the early phase of neonatal neuronal injury suggests its possible involvement in the hypoxicischemic injury. The delineation of its role in neuronal injury may lead to an improvement in managing neonatal hypoxic-ischemic brain injury.  相似文献   

20.

Background

Long-term administration of the dopamine (DA) D2-like (D3/2) receptor agonist pramipexole (PPX) has been previously found to desensitize D2 autoreceptors, thereby allowing a normalization of the firing of DA neurons and serotonin (5-HT)1A autoreceptors, permitting an enhancement of the spontaneous firing of 5-HT neurons. We hypothesized that PPX would increase overall DA and 5-HT neurotransmission in the forebrain as a result of these changes at the presynaptic level.

Methods

Osmotic minipumps were implanted subcutaneously in male Sprague-Dawley rats, delivering PPX at a dose of 1 mg/kg/d for 14 days. The in vivo electrophysiologic microiontophoretic experiments were carried out in anesthetized rats.

Results

The sensitivity of postsynaptic D2 receptors in the prefrontal cortex (PFC) remained unaltered following PPX administration, as indicated by the unchanged responsiveness to the microiontophoretic application of DA. Their tonic activation was, however, significantly increased by 104% compared with the control level. The sensitivity of postsynaptic 5-HT1A receptors was not altered, as indicated by the unchanged responsiveness to the microiontophoretic application of 5-HT. Similar to other antidepressant treatments, long-term PPX administration enhanced the tonic activation of 5-HT1A receptors on CA3 pyramidal neurons by 142% compared with the control level.

Limitations

The assessment of DA and 5-HT neuronal tone was restricted to the PFC and the hippocampus, respectively.

Conclusion

Chronic PPX administration led to a net enhancement in DA and 5-HT neurotransmission, as indicated by the increased tonic activation of postsynaptic D2 and 5-HT1A receptors in forebrain structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号