首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autobiographic memory is usually affect-laden, either positively or negatively. A central question is whether the retrieval of both emotive forms of memory engages the same or a different neural net. To test this we studied 13 normal subjects with functional magnetic resonance imaging while they retrieved a number of distinct episodes, all of which were either rated as strongly positive (happy) or strongly negative (sad) in affect. Comparing the retrieval of sad with that of happy episodes revealed activation in both lateral orbital cortices symmetrically (extending into the ventrolateral prefrontal cortex as well), together with a small region in the right lateral temporal cortex and the left cerebellum. Vice versa, comparing the retrieval of happy with that of sad episodes revealed a major activation in the left hippocampal region, bilateral (though more right-sided) activation in the medial orbitofrontal/subgenual cingulate and a left sided activation in the dorsolateral prefrontal activation. These findings point to the importance of the orbitofrontal cortex for affect- laden information processing and to the existence of distinct neural nets for the re-activation of positively and negatively viewed autobiographic episodes.  相似文献   

2.
Neural representation of interval encoding and decision making   总被引:5,自引:0,他引:5  
Our perception of time depends on multiple psychological processes that allow us to anticipate events. In this study, we used event-related functional magnetic resonance imaging (fMRI) to differentiate neural systems involved in formulating representations of time from processes associated with making decisions about their duration. A time perception task consisting of two randomly presented standard intervals was used to ensure that intervals were encoded on each trial and to enhance memory requirements. During the encoding phase of a trial, activation was observed in the right caudate nucleus, right inferior parietal cortex and left cerebellum. Activation in these regions correlated with timing sensitivity (coefficient of variation). In contrast, encoding-related activity in the right parahippocampus and hippocampus correlated with the bisection point and right precuneus activation was associated with a measure of memory distortion. Decision processes were studied by examining brain activation during the decision phase of a trial that was associated with the difficulty of interval discriminations. Activation in the right parahippocampus was greater for easier than harder discriminations. In contrast, activation was greater for harder than easier discriminations in systems involved in working memory (left middle-frontal and parietal cortex) and auditory rehearsal (left inferior-frontal and superior-temporal cortex). Activity in the auditory rehearsal network correlated with memory distortion. Our results support the independence of systems that mediate interval encoding and decision processes. The results also suggest that distortions in memory for time may be due to strategic processing in cortical systems involved in either encoding or rehearsal.  相似文献   

3.
BACKGROUND: Patients with bipolar disorder have been reported to have abnormal cortical function during mania. In this study, we sought to investigate neural activity in the frontal lobe during mania, using functional magnetic resonance imaging (fMRI). Specifically, we sought to evaluate activation in the lateral orbitofrontal cortex, a brain region that is normally activated during activities that require response inhibition. METHODS: Eleven manic subjects and 13 control subjects underwent fMRI while performing the Go-NoGo task, a neuropsychological paradigm known to activate the orbitofrontal cortex in normal subjects. Patterns of whole-brain activation during fMRI scanning were determined with statistical parametric mapping. Contrasts were made for each subject for the NoGo minus Go conditions. Contrasts were used in a second-level analysis with subject as a random factor. RESULTS: Functional MRI data revealed robust activation of the right orbitofrontal cortex (Brodmann's area [BA] 47) in control subjects but not in manic subjects. Random-effects analyses demonstrated significantly less magnitude in signal intensity in the right lateral orbitofrontal cortex (BA 47), right hippocampus, and left cingulate (BA 24) in manic compared with control subjects. CONCLUSIONS: Mania is associated with a significant attenuation of task-related activation of right lateral orbitofrontal function. This lack of activation of a brain region that is usually involved in suppression of responses might account for some of the disinhibition seen in mania. In addition, hippocampal and cingulate activation seem to be decreased. The relationship between this reduced function and the symptoms of mania remain to be further explored.  相似文献   

4.
Event-related fMRI was used to investigate the hypothesis that neural activity involved in response inhibition depends upon the nature of the response being inhibited. Two different Go/No-go tasks were compared-one with a high working memory load and one with low. The 'simple' Go/No-go task with low working memory load required subjects to push a button in response to green spaceships but not red spaceships. A 'counting' Go/No-go task (high working memory load) required subjects to respond to green spaceships as well as to those red spaceships preceded by an even number of green spaceships. In both tasks, stimuli were presented every 1.5 s with a 5:1 ratio of green-to-red spaceships. fMRI group data for each task were analyzed using random effects models to determine signal change patterns associated with Go events and No-go events (corrected P< or =0.05). For both tasks, Go responses were associated with signal change in the left primary sensorimotor cortex, supplementary motor area (SMA) proper, and anterior cerebellum (right>left). For the simple task, No-go events were associated with activation in the pre-SMA; the working memory-loaded 'counting' task elicited additional No-go activation in the right dorsolateral prefrontal cortex. The findings suggest that neural contributions to response inhibition may be task dependent; the pre-SMA appears necessary for inhibition of unwanted movements, while the dorsolateral prefrontal cortex is recruited for tasks involving increased working memory load.  相似文献   

5.
Objective:  To investigate neural activity in prefrontal cortex and amygdala during bipolar depression.
Methods:  Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis.
Results:  Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant.
Conclusions:  Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder.  相似文献   

6.
Humans extract behaviorally significant meaning from a situation by integrating meanings from multiple components of a complex daily environment. To determine the neural underpinnings of this ability, the authors performed functional magnetic resonance imaging of healthy subjects while the latter viewed naturalistic scenes of two people and an object, including a threatening situation of a person being attacked by an offender with an object. The authors used a two‐factorial design: the object was either aversive or nonaversive, and the offender's action was either directed to the person or elsewhere. This allowed the authors to examine the neural response to object aversiveness and person‐directed intention separately. A task unrelated to threat was also used to address incidental (i.e., subconscious or unintentional) detection. Assuming individual differences in incidental threat detection, the authors used a functional connectivity analysis using principal components analysis of intersubject variability. The left lateral orbitofrontal cortex and medial prefrontal cortex (MPFC) were specifically activated in response to a threatening situation. The threat‐related component of intersubject variability was extracted from these data and showed a significant correlation with personality scores. There was also a correlation between threat‐related intersubject variability and activation for object aversiveness in the left temporal pole and lateral orbitofrontal cortex; person‐directed intention in the left superior frontal gyrus; threatening situations in the left MPFC; and independently for both factors in the right MPFC. Results demonstrate independent processing of object aversiveness and person‐directed intention in the left temporal‐orbitofrontal and superior frontal networks, respectively, and their integration into situational meaning in the MPFC. Hum Brain Mapp, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Individuals with Williams syndrome (WS) demonstrate an abnormally positive social bias. However, the neural substrates of this hypersociability, i.e., positive attribution bias and increased drive toward social interaction, have not fully been elucidated. METHODS: We performed an event-related functional magnetic resonance imaging study while individuals with WS and typically developing controls (TD) matched positive and negative emotional faces. WS compared to TD showed reduced right amygdala activation during presentation of negative faces, as in the previous literature. In addition, WS showed a unique pattern of right orbitofrontal cortex activation. While TD showed medial orbitofrontal cortex activation in response to positive, and lateral orbitofrontal cortex activation to negative, WS showed the opposite pattern. In light of the general notion of a medial/lateral gradient of reward/punishment processing in the orbitofrontal cortex, these findings provide an additional biological explanation for, or correlate of positive attribution bias and hypersociability in WS.  相似文献   

8.
Although the prefrontal cortex (PFC) is consistently found to be associated with various working memory processes, the necessity of the PFC for such processes remains unclear. To elucidate PFC contributions to storage and rehearsal/maintenance processes engaged during verbal working memory function, we assessed behavior of patients with lesions to the left or right lateral PFC, and neural activity of healthy young subjects during fMRI scanning, during performance of working memory tasks. We found that PFC lesions did not affect storage processes--which is consistent with the notion that posterior cortical networks can support simple retention of information. We also found that PFC lesions did not affect rehearsal/maintenance processes, which was in contrast to our finding that healthy subjects performing a verbal delayed recognition task showed bilateral PFC activation. These combined imaging and behavioral data suggest that working memory rehearsal/maintenance processes may depend on both hemispheres, which may have implications for recovery of function and development of rehabilitation therapies after frontal injury.  相似文献   

9.
One of the most important factors controlling material specific processing in the human brain is language dominance, i.e. hemispheric specialization in semantic processes. Although previous studies have shown that lateralized long-term memory processes in the medial temporal lobes are modified in subjects with atypical (right) language dominance, the effect of language dominance on the neural basis of working memory (WM) has remained unknown. Here, we used functional MRI (fMRI) to study the impact of language dominance on the neural representation of WM. We conducted an n-back task in three different load conditions and with both verbal and nonverbal (spatial) material in matched groups of left and right language dominant subjects. This approach allowed us to investigate regions showing significant interactions between language dominance and material. Overall, right dominant subjects showed an increased inter-individual variability of WM-related activations. Verbal WM involved more pronounced activation of the left fusiform cortex in left dominant subjects and of the right inferior parietal lobule in the right dominant group. Spatial WM, on the other hand, induced activation of right hemispheric regions in left dominant subjects, but no specific activations in right dominant subjects. Taken together, these findings indicate that the neural basis of verbal WM processes depends on language dominance and is more mutable in right dominant subjects. The increased variability in right dominant subjects strongly suggests that a standard network of material-dependent WM processes exists in left dominant subjects, and that right dominant subjects use variable alternative networks.  相似文献   

10.
This study examined whether differential neural responses are evoked by emotional stimuli with and without conscious perception, in a patient with visual neglect and extinction. Stimuli were briefly shown in either right, left, or both fields during event-related fMRI. On bilateral trials, either a fearful or neutral left face appeared with a right house, and it could either be extinguished from awareness or perceived. Seen faces in left visual field (LVF) activated primary visual cortex in the damaged right-hemisphere and bilateral fusiform gyri. Extinguished left faces increased activity in striate and extrastriate cortex, compared with right houses only. Critically, fearful faces activated the left amygdala and extrastriate cortex both when seen and when extinguished; as well as bilateral orbitofrontal and intact right superior parietal areas. Comparison of perceived versus extinguished faces revealed no difference in amygdala for fearful faces. Conscious perception increased activity in fusiform, parietal and prefrontal areas of the left-hemisphere, irrespective of emotional expression; while a differential emotional response to fearful faces occurring specifically with awareness was found in bilateral parietal, temporal, and frontal areas. These results demonstrate that amygdala and orbitofrontal cortex can be activated by emotional stimuli even without awareness after parietal damage; and that substantial unconscious residual processing can occur within spared brain areas well beyond visual cortex, despite neglect and extinction.  相似文献   

11.
Anterior prefrontal cortex and the recollection of contextual information   总被引:4,自引:0,他引:4  
Recollective memory can involve the retrieval of many different kinds of contextual information, including where and when an event took place, as well as our thoughts and feelings at the time. The brain regions associated with this ability were examined in an event-related fMRI experiment, where participants made decisions about words or famous faces which were presented either on the left or right of a monitor screen. Subsequently, the studied words and faces were again presented and participants underwent fMRI brain scanning while recollecting either which of the decisions they had made on each item ("task memory"), or whether it had been presented on the left or right of the screen ("position memory"). A functional dissociation was observed within anterior prefrontal cortex (principally Brodmann's area 10), with activation in lateral regions associated with remembering either type of information (relative to baseline), and a medial anterior PFC region showing significantly greater activation during the "task memory" conditions. These results suggest different roles for lateral and medial anterior prefrontal cortex in recollection.  相似文献   

12.
Imitation is thought to require a perception-action matching process that utilizes the "mirror neuron" system, but other cognitive functions such as error detection may also be required for even simple imitation. We sought to explore the core neural substrate of imitation by examining the imitation of simple finger actions using fMRI. Participants observed one of two actions and were instructed to imitate the action they observed, or to perform the alternative non-matching action. The contrast between imitation and non-matching actions was associated with activation in areas previously associated with imitation and "mirror neuron" functioning, including insula, intraparietal sulcus, dorsal premotor cortex, and superior temporal gyrus. Imitation was also specifically associated with activity in areas of prefrontal cortex, lateral orbitofrontal cortex (OFC), amygdala, red nucleus, thalamus, hippocampus, and substantia nigra. We suggest that lateral OFC responds to action-perception mismatch and other clusters reflect working memory, motor planning, associative learning, and visuo-motor integration of goal-directed action. Although computational models have predicted integration of these functions to enable imitation, their specific brain bases have not previously been identified. Together they offer a potentially powerful means through which matching one's actions to those of others can lead to behavioral modification and development.  相似文献   

13.
Lim HK  Juh R  Pae CU  Lee BT  Yoo SS  Ryu SH  Kwak KR  Lee C  Lee CU 《Neuropsychobiology》2008,57(4):181-187
Impaired working memory processing is one of the broad range of cognitive deficits in patients with Alzheimer's disease (AD). We aimed to elucidate the differences in brain activities involved in the process of working memory between AD patients and healthy comparison subjects. Twelve patients with AD were recruited along with 12 healthy volunteers as a comparison group. Functional magnetic resonance imaging was employed to assess cortical activities during the performance of a 1-back working memory paradigm using the Korean alphabet as mnemonic content. Subsequently, the difference in neural activities between the 2 groups was analyzed. The AD group performed the tasks with reduced accuracy. Group comparison analysis revealed that the AD group showed decreased brain activity in the left frontal pole (Brodmann area, BA, 10), the left ventrolateral prefrontal cortex (BA47), the left insula (BA13) and the right premotor cortex (BA6) compared to the control group. The AD group showed increased activation in the left precuneus (BA7) compared to the control group. A decreased level of activation in the prefrontal cortex and an increased level of activation in the parietal neural networks from the patient group may document an altered verbal working memory process in the patients with AD.  相似文献   

14.
BACKGROUND: Early traumatization and additional posttraumatic stress disorder are frequent in patients with borderline personality disorder (BPD). The purpose of this study was to investigate neural correlates of traumatic memory in BPD with and without posttraumatic stress disorder (PTSD) using functional magnetic resonance imaging (fMRI). METHODS: We studied 12 traumatized female patients BPD, 6 of them with and 6 without PTSD. According to an autobiographical interview key words (cues) were defined for traumatic and for negative but nontraumatic episodes. In a block-designed fMRI task patients recalled these episodes. Contrasts between trauma condition and nontrauma condition were analyzed. RESULTS: Analyses for all subjects revealed activation of orbitofrontal cortex areas in both hemispheres, anterior temporal lobes, and occipital areas. In the subgroup without PTSD, activation of orbitofrontal cortex on both sides and Broca's area predominated. In the subgroup with additional PTSD, we observed right more than left activation of anterior temporal lobes, mesiotemporal areas, amygdala, posterior cingulate gyrus, occipital areas, and cerebellum. CONCLUSIONS: Dependent on absence or presence of additional PTSD different neural networks seem to be involved in the traumatic memory of patients with BPD.  相似文献   

15.
《Social neuroscience》2013,8(1):66-78
Abstract

Imitation is thought to require a perception–action matching process that utilizes the “mirror neuron” system, but other cognitive functions such as error detection may also be required for even simple imitation. We sought to explore the core neural substrate of imitation by examining the imitation of simple finger actions using fMRI. Participants observed one of two actions and were instructed to imitate the action they observed, or to perform the alternative non-matching action. The contrast between imitation and non-matching actions was associated with activation in areas previously associated with imitation and “mirror neuron” functioning, including insula, intraparietal sulcus, dorsal premotor cortex, and superior temporal gyrus. Imitation was also specifically associated with activity in areas of prefrontal cortex, lateral orbitofrontal cortex (OFC), amygdala, red nucleus, thalamus, hippocampus, and substantia nigra. We suggest that lateral OFC responds to action–perception mismatch and other clusters reflect working memory, motor planning, associative learning, and visuo-motor integration of goal-directed action. Although computational models have predicted integration of these functions to enable imitation, their specific brain bases have not previously been identified. Together they offer a potentially powerful means through which matching one's actions to those of others can lead to behavioral modification and development.  相似文献   

16.
Age-related decline in working memory figures prominently in theories of cognitive aging. However, the effects of aging on the neural substrate of working memory are largely unknown. Positron emission tomography (PET) was used to investigate verbal and spatial short-term storage (3 sec) in older and younger adults. Previous investigations with younger subjects performing these same tasks have revealed asymmetries in the lateral organization of verbal and spatial working memory. Using volume of interest (VOI) analyses that specifically compared activation at sites identified with working memory to their homologous twin in the opposite hemisphere, we show pronounced age differences in this organization, particularly in the frontal lobes: In younger adults, activation is predominantly left lateralized for verbal working memory, and right lateralized for spatial working memory, whereas older adults show a global pattern of anterior bilateral activation for both types of memory. Analyses of frontal subregions indicate that several underlying patterns contribute to global bilaterality in older adults: most notably, bilateral activation in areas associated with rehearsal, and paradoxical laterality in dorsolateral prefrontal sites (DLPFC; greater left activation for spatial and greater right activation for verbal). We consider several mechanisms that could account for these age differences including the possibility that bilateral activation reflects recruitment to compensate for neural decline.  相似文献   

17.
Previously, we have shown that physostigmine, an acetylcholinesterase inhibitor, improved performance on a working memory for faces task, as reflected by reduced reaction time (RT), and reduced task-specific regional cerebral blood flow (rCBF) in right prefrontal cortex and, further, that these reductions in RT and right frontal rCBF were significantly correlated. Here we investigated the relation between the effects of physostigmine on task performance and task-specific functional brain response throughout the cortex by examining correlations between physostigmine-related changes in rCBF in all brain areas and changes in RT. In subjects who received an infusion of physostigmine, reduced RT correlated (p<0.001) positively with reduced rCBF in right frontal cortex, left temporal cortex, anterior cingulate, and left hippocampus; and correlated with increased rCBF in medial occipital visual cortex. In subjects who received a placebo infusion of saline, no significant correlations between changes in RT and cortical rCBF were observed. The results show that cholinergically induced improvements in working memory performance are related to alterations in neural activity in multiple cortical regions, including increased neural activity in regions associated with early perceptual processing and decreased neural activity in regions associated with attention, memory encoding, and memory maintenance.  相似文献   

18.
OBJECTIVE: This study sought to investigate neural activity in the amygdala during episodes of mania. METHOD: Nine manic subjects and nine healthy comparison subjects underwent functional magnetic resonance imaging (fMRI) while performing a neuropsychological paradigm known to activate the amygdala. Subjects viewed faces displaying affect (experimental task) and geometric forms (control task) and matched them to one of two simultaneously presented similar images. RESULTS: Manic subjects had significantly increased activation in the left amygdala and reduced bilateral activation in the lateral orbitofrontal cortex relative to the comparison subjects. CONCLUSIONS: Increased activation in the amygdala and decreased activation in the orbitofrontal cortex may represent disruption of a specific neuroanatomic circuit involved in mania. These brain regions may be implicated in disorders involving regulation of affect.  相似文献   

19.
Humans excel at reciprocal altruism in which two individuals exchange altruistic acts to their mutual advantage. The evolutionary stability of this system depends on recognition of and discrimination against non-reciprocators, and the human mind is apparently specialized for detecting non-reciprocators. Here we investigate the neural response to non-reciprocation of cooperation by imaging human subjects with fMRI as they play an iterated Prisoner's dilemma game with two assumed human partners. Unreciprocated cooperation was associated with greater activity in bilateral anterior insula, left hippocampus and left lingual gyrus, compared with reciprocated cooperation. These areas were also more responsive to unreciprocated cooperation than to unsuccessful risk taking in a non-social context. Finally, functional connectivity between anterior insula and lateral orbitofrontal cortex (OFC) in response to unreciprocated cooperation predicted subsequent defection. The anterior insula is involved in awareness of visceral, autonomic feedback from the body and, in concert with the lateral orbitofrontal cortex, may be responsible for negative feeling states that bias subsequent social decision making against cooperation with a non-reciprocating partner.  相似文献   

20.
In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号