首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine possible associations between bone mineral density (BMD), 25-hydroxyvitamin D (25(OH)D) and intact parathyroid hormone (PTH). In a retrospective study we examined the case notes of free-living postmenopausal women living in our city (34° S). We also report a low prevalence of vitamin D deficiency (25(OH)D <25 nmol/l, 5.6%) and of secondary hyperparathyroidism (intact PTH >65 pg/ml, 7.5%). Age was correlated with BMD at the lumbar spine (r=−0.25, p = 0.00038) and femoral neck (r=−0.252, p = 0.0003). Body mass index (BMI) was correlated with BMD at the femoral neck (r= 0.177, p = 0.021) but not at the lumbar spine. 25(OH)D was positively correlated with BMD at the femoral neck (r = 0.149, p=0.036) but not at the lumbar spine. PTH was positively correlated with age (r= 0.279, p = 0.012) and negatively correlated with 25(OH)D (r=−0.322, p = 0.0036). PTH was also negatively correlated with BMD at the lumbar spine (r=−0.258, p=0.02) and the femoral neck (r=−0.282, p = 0.011). Forward stepwise multiple regression showed that BMI, age and 25(OH)D made significant contributions to BMD at the femoral neck. PTH also showed a significant contribution to BMD at both sites. In conclusion, weak correlations found between PTH and 25(OH)D and BMD suggest these biochemical variables, among other factors, contribute to lumbar spine and femoral neck BMD. Received: 19 February 2000 / Accepted: 20 June 2000  相似文献   

2.
Bone mineral density (BMD) at the lumbar spine and the neck of femur and serum concentrations of 25-hydroxyvitamin D (25OHD), intact parathyroid hormone (PTH), alkaline phosphatase, calcium, albumin, creatinine and phosphate were measured in a group of 166 postmenopausal women (30–79 years) attending a bone clinic for bone density measurements. Four subjects with suspected primary hyperparathyroidism were excluded from analysis. BMD at the lumbar spine was correlated with body mass index (BMI) (r=0.278,p=0.0003), age (r=−0.194,p=0.0134) and serum 25OHD (r=0.188,p=0.0167). BMD at the neck of femur correlated with BMI (r=0.391,p<0.0001), age (r=−0.356,p<0.0001), PTH (r=−0.156,p=0.047) and serum 25OHD (r=0.231,p=0.0031). Stepwise multiple regression analysis showed that age, BMI and serum 25OHD contributed to the variation in BMD at lumbar spine. At the neck of femur, PTH was an additional contributor. We conclude that serum 25OHD makes a contribution to BMD a lumbar spine and neck of femur.  相似文献   

3.
Introduction Hip fracture in young patients is rare. The present study was aimed to clarify the comorbidity pattern and reveal relevant risk factors for osteoporosis and fracture in this patient group.Materials and methods Using electronic diagnosis registers and lists of the operating theatres for the Oslo hospitals, patients with new hip fracture during two 1-year periods from May 1994 through April 1995 and from May 1996 through April 1997 were identified. All patients age 20–49 years at the time of fracture were included (n=49), and a detailed medical history was recorded. Thirty-two of the patients volunteered for examination and completed a questionnaire and interview to reveal risk factors for osteoporosis. Data from the Oslo Health Study served as reference material. Bone mineral density (BMD) was measured using dual x-ray absorptiometry, and Z-scores were calculated using healthy subjects from Oslo as reference.Results Of the patients identified, the median age was 40 years (range 25–49), and 63% were men. In 65% of the patients, the fracture occurred after a fall at the same level, in 16% it occurred after a fall from a higher level, and in 18% it occurred in a traffic accident. Twenty percent of the patients had a history of alcohol or drug abuse, 39% had neuromuscular diseases, and 12% had endocrine diseases. The patients examined had significantly more risk factors for osteoporosis than the reference population. The BMD expressed as Z-score for L2-4 was −1.0±0.9 (mean ± SD; p<0.001), for femoral neck was −1.5±1.0 (p<0.001), and for total body was −1.3±1.1 (p<0.001). BMD was significantly lower than in controls for patients sustaining low-energy and high-energy trauma. There was a negative correlation between the total number of risk factors and BMD for lumbar spine (r=−0.35, p<0.05), femoral neck (r=−0.37, p=0.04), and total body (r=−0.55, p=0.001), respectively.Conclusions The majority of the young patients with hip fracture have a history of low-energy trauma, comorbidity predisposing for falls or decreased bone strength, as well as several risk factors for osteoporosis. The BMD was significantly lower than in the reference population regardless of the trauma mechanism.  相似文献   

4.
Summary The bone mineral density (BMD) of the radius and spine was determined by photo absorptiometry in a large number of controls (radius: n=111; spine: n=85; age range: 50–79 years) and osteoporotic women (radius: n=98; spine n=140; age range: 50–79 years) with at least one “atraumatic” vertebral compression fracture. Compared to age-matched controls, the BMD of the osteoporotic women showed the following diminutions: sixth decade: radius:−9.1%; spine:−25%; femur: −33%; seventh decade: radius:−16%; spine: −19%; femur:−23%; eighth decade: radius: −21%; spine:−20%; femur:−24%. The BMD was significantly diminished at all sites in all decades but in contrast to the radius, the difference from controls was bigger in the spine and femur in the sixth decade than in the seventh and eighth decade. In the osteoporotic women there was a significant correlation between radius BMD and age (4=−0.56;P<0.01) but not between spine or femoral BMD and age. The femoral neck BMD was also determined in a subset group of female controls (n=68), patients with crush fractures of the spine without a fracture of the hip (n=46), and in patients with fractures of the proximal femur (n=21). There was no difference among these groups in mean age (64±7, range: 50–79 years). Patients with hip fracture and spine fracture showed bone diminution in all three regions that was significantly below controls (P<0.001). The Ward's triangle region was specially diminished (−35%) and as a consequence the neck BMD was low (−26%). Trochanteric density was lower (−25%) in spine fracture cases than in hip fracture (−16%). The difference between the two groups of osteoporotic women was significant (P<0.05). In the hip fractures cases, spine BMD was reduced only moderately compared to controls (−14%,P<0.01) and slightly elevated compared to spinal osteoporosis where the diminution was greater (−24%,P<0.001). Again, the difference between the two osteoporotic groups was significant (P<0.05). It appeared that spinal osteoporosis involved loss of bone from both the spine and hip, whereas femoral osteoporosis showed a preferential loss of bone from the femur neck region, and a lesser loss from the trochanter or the spine.  相似文献   

5.
Introduction This study examined the distribution and determinants of serum 25-hydroxyvitamin D (25OHD) and parathyroid hormone (PTH) and their associations with bone mineral density (BMD) at the hip and spine in 414 older men (mean age 74 years) living in southern California.Methods At a clinic visit (1997–2000), demographic and lifestyle information, fracture history, and medication use were recorded; venous blood for serum 25OHD and PTH was obtained; and BMD was measured at the hip and spine.Results Only one man had vitamin D deficiency (25OHD <20 nmol/l), but 15.5% of the men had high parathyroid levels (PTH ≥65 pg/ml). The mean 25OHD and PTH levels were 109.0 nmol/l and 50.3 pg/ml, respectively. Overall, 21.5% used calcium and 9.7% used vitamin D supplements. Serum 25OHD decreased with age and was lowest in the winter; levels were higher in supplement users (vitamin D and/or calcium; p<0.01). Serum PTH did not vary by age or season, and it was lower in supplement users (p<0.01). After excluding 12 men who were outliers for serum 25OHD and PTH, there was no significant correlation between serum 25OHD and PTH (r=−0.05, p=0.3). In multiple adjusted models, serum 25OHD was positively associated with BMD at the hip (p=0.01) and spine (p=0.001). Serum PTH was moderately and inversely associated with BMD at the hip (p=0.04) but not at the spine (p=0.77).Conclusion We conclude that serum 25OHD is associated with bone health in older, community-dwelling men.  相似文献   

6.
Osteoporosis in men is a significant health problem, and factors associated with bone mass are being investigated. Although osteoporosis is a typical feature of hypogonadism, the influence of testosterone levels and other hormonal factors on bone mass of eugonadal males is unknown. Our aim was to identify several anthropometric and hormonal predictors that could be responsible for the variability in bone mineral density (BMD) in healthy men. One hundred elderly men (age 68 ± 7 years) were investigated in this cross-sectional study. BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral sites (femoral neck, Ward’s triangle, trochanter, intertrochanter and total femur). Anthropometric measures were obtained including: weight, height, body mass index (BMI), waist–hip ratio and testicular volume. Hormonal data measures were total, free and bioavailable testosterone, dihidrotestosterone, estradiol, sex hormone binding globulin (SHBG), insulin-like growth factor I (IGF-I), intact parathyroid hormone (iPTH) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). One subject was excluded because primary hypogonadism was found. SHBG levels were increased in 53.5% of men, and 8% showed a mild increase in iPTH levels. Twenty-eight subjects had densitometric criteria of osteoporosis (T-score ≤−2.5). All BMD sites were positively correlated with body weight (r= 0.29–0.48, p<0.001) and BMI (r= 0.24–0.47, p<0.001). A negative correlation between SHBG levels and intertrochanter (IT) and total femur (TL) BMD was found (r=−0.24 and r=−0.22, p<0.05). After adjusting for age and BMI, SHBG and IGF-I levels were negatively correlated (r=−0.33, p<0.001). In multiple linear regression analysis independent predictors of bone mass were body weight, SHBG and iPTH levels. The best predictive model accounted for 24–40% of the observed variability of BMD. However, most of the BMD variability was explained by body weight. In conclusion, in our study body weight, SHBG and iPTH levels were predictors of BMD in healthy elderly men. Received: 9 June 2000 / Accepted: 27 September 2000  相似文献   

7.
The aim of our study was to examine the relationship between bone mineral density (BMD) and serum ghrelin, insulin-like growth factor-1 (IGF-1), IGF-binding protein 3 (IGFBP-3), and testosterone levels in boys at different stages of puberty. The study included 60 healthy nonobese Estonian schoolboys at the age of 10–18 years. Subjects were divided in three groups (20 boys in each) based on the results of self-assessment using illustrated questionnaire of pubertal stage (G1, I; G2–G3, II; G3–G4, III). Morning fasting blood samples were collected for analysis of ghrelin, testosterone, IGF-1, and IGFBP-3. Total body BMD, lumbar BMD, lumbar apparent volumetric BMD (BMAD), and bone mineral content (BMC) were measured by DXA. Serum testosterone concentration was the most important biochemical predictor of BMD in the total group, explaining 48.8% of variability in total body BMD, 51.4% in lumbar BMD, and 36.8% in lumbar BMAD. Body mass and height were both related to BMD and BMC throughout puberty. The serum IGF-1/IGFBP-3 ratio was correlated with serum testosterone (r = 0.69) and ghrelin (r = −0.58) levels, but also with total BMD (r = 0.39), lumbar BMD (r = 0.42; P < 0.001 in all cases), BMAD (r = 0.29; P < 0.01), and total BMC (r = 0.48; P < 0.001). We conclude that serum testosterone concentration and serum IGF-1/IGFBP-3 molar ratio are the major determinants of bone mineral density in boys at different pubertal stages. Serum ghrelin concentration did not appear to have a direct independent effect on BMD. If present, the association may be mediated through sex hormones and the GH-IGF-I axis.  相似文献   

8.
Metacarpal morphometry represents a potentially cheap and widely available non-invasive assessment of skeletal status. In two cross-sectional studies, we compared the performance characteristics of a semi-automated technique (the Teijin Bonalyzer) with an in-house manual measurement, and with measures of skeletal strength at other sites. The metacarpal cortical index (mCI) was measured on hand radiographs of 178 osteoporotic women using both the Teijin Bonalyzer and a digitizing tablet. Measurements on the latter were consistently lower than with the Bonalyzer except for mCI (0.443 ± 0.080 vs 0.364 ± 0.060, p<0.001), although correlation coefficients between these two methods were highly significant (r= 0.62–0.83, p<0.001). The reproducibility errors of metacarpal bone mineral density (mBMD) were constant (1.1–1.2%) whilst those for mCI showed a marked operator-dependency (2.0–7.9%). In 379 elderly community-dwelling women, Bonalyzer mCI and mBMD showed a significant decline with age (r=−0.30 and −0.27 respectively, p<0.05). Both mCI and mBMD correlated significantly with forearm BMD (r= 0.50 and 0.57 respectively, p<0.001) and hip BMD (r= 0.48 and 0.53 respectively, p<0.001). After adjustment for age and weight, hip BMD demonstrated the best discrimination for prevalent vertebral fractures as judged by the gradient of risk for a 1 SD decrease in measurement (odds ratio (OR) 2.17, 95% CI 1.56–3.01). Similar but smaller gradients of risk were shown by Bonalyzer mCI (OR 1.32, 95% CI 1.00–1.75), mBMD (OR 1.35, 95% CI 1.02–1.78) and forearm BMD (OR 1.39, 95% CI 1.08–1.80). MCI, and in particular mBMD, may be useful assessments of bone mass and fracture risk. In our study, it is comparable to peripheral assessment of skeletal status by forearm densitometry. Received: 22 February 2000 / Accepted: 6 June 2000  相似文献   

9.
Alendronate significantly increases bone mass and reduces hip and spine fractures in postmenopausal women. To determine whether forearm densitometry could be used to monitor the efficacy of alendronate, we examined changes in bone mineral density (BMD) at the forearm (one-third distal, mid-distal, ultradistal radius) versus changes at the hip (femoral neck, total hip) and spine (posteroanterior and lateral) in a double-masked, randomized, placebo-controlled clinical trial of 120 elderly women (mean age 70 ± 4 years) treated with alendronate for 2.5 years. We found that among women in the treatment group, BMD increased by 4.0–12.2% at the hip and spine sites (all p<0.001), whereas BMD increased only nominally at the one-third distal radius (1.3%, p<0.001) and mid-radius (0.8%, p<0.05), and remained stable at the ultradistal radius. At baseline, forearm BMD correlated with that of the hip (r= 0.55–0.64, p<0.001), femoral neck (r= 0.54–0.61, p<0.001) and posteroanterior spine (r= 0.56–0.63, p<0.001). Changes in radial BMD after 1 year of therapy were not correlated with changes in hip and spine BMD after 2.5 years of therapy. In contrast, short-term changes in total hip and spine BMD were generally positively associated with long-term changes in total hip, femoral neck and spine BMD (r= 0.30–0.71, p<0.05). Furthermore, long-term BMD changes at the forearm did not correlate with long-term hip and spine BMD changes, in contrast to the moderate correlations seen between spine and hip BMD at 2.5 years (r= 0.38–0.45, p<0.01). We conclude that neither short- nor long-term changes in forearm BMD predict long-term changes in overall BMD for elderly women on alendronate therapy, suggesting that measurements of clinically relevant central sites (hip and spine) are necessary to assess therapeutic efficacy. Received: 18 February 1999 / Accepted: 20 May 1999  相似文献   

10.
Bone disease occurs in the predialysis phase of chronic renal failure (CRF). The aim of this study was to examine how a decrease in renal function affects annual bone mineral density (BMD) changes in predialysis CRF patients and to examine the factors that affect BMD. The BMD of the distal radius in 53 predialysis CRF patients (age, 61.3 ± 10.8 years; serum creatinine 2.7 ± 1.2 mg/dl) was measured by peripheral quantitative computed tomography (pQCT) twice with a 1-year interval. The total BMD of the radius significantly decreased over a year (P < 0.001), and both trabecular and cortical BMD showed a significant decrease. Significant positive correlations with BMD changes were found for estimated creatinine clearance (r = 0.375, P < 0.01) and baseline serum 1,25(OH)2D (r = 0.434, P < 0.005), indicating that BMD decreased to a greater extent with larger reductions in creatinine clearance and serum 1,25(OH)2D. Of several bone metabolic markers examined, baseline serum osteocalcin was significantly positively correlated with annual BMD changes (r = −0.276, P < 0.05). Multiple regression analysis showed that baseline serum 1,25(OH)2D (β = 0.434) was a significant predictor of decreases in total and trabecular BMD (R 2 = 0.188, P < 0.01; and R 2 = 0.207, P < 0.01), independent of other confounding factors. These results indicate that BMD decreases as renal function deteriorates in predialysis CRF patients, and that osteocalcin is a clinically useful marker associated with the decrease in BMD. The serum 1,25(OH)2D level is the principal factor affecting BMD of the radius, suggesting that supplementation with an active form of vitamin D is of importance for predialysis CRF patients.  相似文献   

11.
Quantitative ultrasound (QUS) is emerging as a simple, inexpensive and noninvasive method for assessing bone quality and assessing fracture risk. We assessed the usefulness of a contact calcaneal ultrasonometer by studying normal premenopausal women (group I, n= 53), normal postmenopausal women (group II, n= 198), and osteoporotic women without (group III, n= 141) and with vertebral fractures (group IV, n= 53). The osteoporotic subjects had a T-score of the spine or hip neck bone mineral density (BMD) <−2.5 based on the local Chinese peak young mean values. When compared with postmenopausal controls, mean broadband ultrasound attenuation (BUA), speed of sound (SOS), and quantitative ultrasound index (QUI) were 26%, 2.1% and 25% lower in women with vertebral fractures (p all <0.005). The correlation coefficients between QUS parameters and BMD of the spine and hip ranged between 0.4 and 0.5. The ability of the QUS to discriminate between patients groups was determined based on the mean value of normal premenopausal women in group I. The mean T-score for women with fractures was −2.87 ± 1.02 for BUA, −2.54 ± 0.79 for SOS, −3.17 ± 0.70 for QUI, −2.65 ± 0.86 for L2–4 BMD and −2.53 ± 0.66 for hip neck BMD. After adjustment for age and body mass index, the odds ratio of vertebral fracture was 1.71 (95% CI 1.2–2.6) for each 1 SD reduction in BUA, 2.72 (1.3–5.3) for SOS, 2.58 (1.4–4.6) for QUI, 2.33 (1.6–3.3) for L2–4 BMD, 2.09 (1.37–3.20) for femoral neck BMD and 1.88 (1.34–2.92) for total hip BMD. The association between the QUS parameters and vertebral fracture risk persisted even adjustment for BMD. The area under the receiver operating characteristic curve for BUA for vertebral fracture was 0.92, for SOS, QUI, L2–4 BMD and femoral neck BMD was 0.95, and for total hip was 0.91. Received: 7 January 1999 / Accepted: 18 May 1999  相似文献   

12.
Studies examining the relationship between total circulating 25‐hydroxyvitamin D [25(OH)D] levels and bone mineral density (BMD) have yielded mixed results. Vitamin D–binding protein (DBP), the major carrier protein for 25(OH)D, may alter the biologic activity of circulating vitamin D. We hypothesized that free and bioavailable 25(OH)D, calculated from total 25(OH)D, DBP, and serum albumin levels, would be more strongly associated with BMD than levels of total 25(OH)D. We measured total 25(OH)D, DBP, and serum albumin levels in 49 healthy young adults enrolled in the Metabolic Abnormalities in College‐Aged Students (MACS) study. Lumbar spine BMD was measured in all subjects using dual‐energy X‐ray absorptiometry. Clinical, diet, and laboratory information also was gathered at this time. We determined free and bioavailable (free + albumin‐bound) 25(OH)D using previously validated formulas and examined their associations with BMD. BMD was not associated with total 25(OH)D levels (r = 0.172, p = .236). In contrast, free and bioavailable 25(OH)D levels were positively correlated with BMD (r = 0.413, p = .003 for free, r = 0.441, p = .002 for bioavailable). Bioavailable 25(OH)D levels remained independently associated with BMD in multivariate regression models adjusting for age, sex, body mass index, and race (p = .03). It is concluded that free and bioavailable 25(OH)D are more strongly correlated with BMD than total 25(OH)D. These findings have important implications for vitamin D supplementation in vitamin D–deficient states. Future studies should continue to explore the relationship between free and bioavailable 25(OH)D and health outcomes. © 2011 American Society for Bone and Mineral Research.  相似文献   

13.
Parathyroid hormone (PTH) may be an important determinant of cortical bone remodeling in the elderly. Vitamin D status is one of the determining factors in this relationship. The aim of this study was to quantify the relationship between serum PTH, vitamin D and bone mineral density (BMD) in elderly women in Reykjavik (64° N), where daily intake of cod liver oil is common and mean calcium intake is high. ln PTH correlated inversely with 25(OH)D (r=−0.26, p<0.01). In multivariate analysis PTH correlated inversely with whole body BMD (mostly cortical bone) (R 2= 2.2%, p = 0.04) but not with the lumbar spine BMD, reflecting more cancellous bone. No association was found between 25(OH)D levels and BMD at any site in univariate or multivariate analysis. Osteocalcin, a measure of bone turnover, was negatively associated with BMD and this association remained significant when corrected for PTH levels. In summary, in this fairly vitamin D replete population with high calcium intake, PTH was negatively associated with total body BMD. We infer that suppression of PTH may reduce cortical bone loss, but other factors are likely to contribute to age-related bone remodeling and osteoporosis. Received: 3 January 2000 / Accepted: 10 April 2000  相似文献   

14.
The stiffness and strength of cancellous bone are important in the management of skeletal diseases such as osteoporosis. These properties are a function not only of bone density but also of bone architecture, some measure of which can be provided by quantitative ultrasound. The ability of quantitative ultrasound and bone mineral density (BMD) to predict stiffness and strength of human femoral heads removed from live subjects during hip replacement was assessed. Stiffness and strength were measured using a uniaxial compression test. Ultrasound velocity was measured using the pulse-submersion technique (McClue CUBAResearch) and BMD using DXA (Lunar DPX-L). Ultrasound velocity (quantitative ultrasound) and stiffness varied with the three orthogonal directions, the highest significance being between the proximo-distal (PD) and antero-posterior (AP) directions (p < 0.0001) for stiffness and p = 0.0003 for velocity). Ultrasound velocity was significantly correlated with compressive bone strength (r = 0.76, p < 0.0001) and stiffness (r = 0.79–0.83, p < 0.0001). BMD was also significantly correlated with compressive strength (r = 0.82, p < 0.0001) and stiffness (r = 0.66–0.81, p < 0.001). Using multiple regression analysis both BMD and velocity were significant predictors of strength (r = 0.88, p = 0.0004 and 0.0054 respectively) and stiffness r = 0.92, p = 0.0001 and 0.0003 respectively). BMD and velocity were still independent significant predictors of both stiffness (r = 0.93, p < 0.0001 and 0.0001 respectively) and strength (r = 0.89, p < 0.0001 and 0.02) when they combined as a product (BMDn*Vm). This suggests that BMD measured using DXA, if used in conjunction with ultrasound velocity, may be able to improve osteoporosis risk assessment. The information about femur anisotropy may also be important for hip prosthesis and in vivo modelling.  相似文献   

15.
The skeletal status in 30 children, adolescents and young adults (18 females, 12 males) with end-stage renal failure (ESRF) aged 9-23 years (mean 15.8 ± 3.6 years) was evaluated using measurements of bone mineral density (BMD, g/cm2) at the spine and total body (TB) (Lunar DPX-L, USA), quantitative ultrasound (QUS) of the hand phalanges (DBM Sonic 1200, IGEA, Italy) and laboratory investigations (parathyroid hormone, serum total and ionized calcium, serum phosphate). Eleven subjects were treated with hemodialysis and 19 with peritoneal dialysis. The mean value of the amplitude-dependent speed of sound (Ad-SoS, m/s) measured by QUS was significantly decreased in comparison with the value obtained in a group of 686 age-matched controls (1942 ± 74 m/s vs 2050 ± 77 m/s, p<0.0001). BMD measurements were also decreased in comparison with mean values for the healthy population (Z-scores for spine −1.47, and for TB −1.53). Duration of dialysis correlated significantly with spine-BMD, TB-BMD and Ad-SoS (r=−0.37, r = −0.45, r=−0.55, respectively, p<0.05), while duration of ESRF did not have such an influence. Laboratory investigations did not correlate with skeletal parameters. Ad-SoS correlated significantly with spine-BMD (r= 0.45, p<0.05) and TB-BMD (r= 0.56, p<0.01). Both QUS and BMD values correlated significantly with Tanner stages (r ranged from 0.59 to 0.69, p<0.001) and did not increase with age except for correlation between age and TB-BMD. In conclusion, skeletal status in the population studied is strongly affected by ESRF. Both QUS and BMD measurements show an ability to express skeletal changes in a similar manner, though the QUS parameter seems to be more sensitive at revealing changes due to renal failure. Received: 12 July 2001 / Accepted: 8 November 2001  相似文献   

16.
The purpose of this study was to investigate the association between vitamin D analogs and peak bone mineral density (BMD, g/cm2) in young men. The cohort consisted of 78 healthy young males with a mean age of 22.6 years at baseline. BMD of the total body, hip, and spine and lean body mass were measured at baseline and at follow-up 2 years later. Blood samples were assayed for 25−hydroxyvitamin D2 (25OHD2), 25-hydroxyvitamin D3 (25OHD3), and 25-hydroxyvitamin D (25OHD) at baseline using high-performance liquid chromatography. Levels of 25OHD3 significantly correlated to BMD at all sites and to lean body mass (r = 0.23–0.35, P < 0.05). In contrast, levels of 25OHD2 significantly negatively correlated with BMD of the total body (r = −0.28, P = 0.01) and spine (r = −0.27, P = 0.02). BMD was then adjusted for the influence of age, body weight, body height, and physical activity (hours/week). Level of 25OHD3 was then found to be an independent predictor of BMD of the total body (beta = 0.24, P = 0.03) and spine (beta = 0.25, P = 0.03), while level of 25OHD2 was an independent negative predictor at the same sites (beta = −0.23 for both, P = 0.03). There was a negative association between levels of 25OHD3 and 25OHD2 (r = −0.31, P = 0.006). In summary, our novel results suggest an inverse relationship between 25OHD3 and 25OHD2 and an opposite relationship of these vitamin D analogs to BMD in young men.  相似文献   

17.
A higher calcium intake is still the primary recommendation for the prevention of osteoporosis, whereas vitamin D deficiency is often not addressed. To study the relative importance of dietary calcium intake and serum 25‐hydroxyvitamin D [25(OH)D] status in regard to hip BMD, 4958 community‐dwelling women and 5003 men ≥20 yr of age from the U.S. NHANES III population‐based survey were studied. Calcium supplement users and individuals with a prior radius or hip fracture were excluded. We calculated standardized means for BMD by quartiles of sex‐specific calcium intake for three 25(OH)D categories (<50, 50–74, and 75+ nM) among men and women, separately controlling for other important predictors of BMD. A higher calcium intake was significantly associated with higher BMD (p value for trend: p = 0.005) only for women with 25(OH)D status <50 nM, whereas calcium intake beyond the upper end of the lowest quartile (>566 mg/d) was not significantly associated with BMD at 25(OH)D concentrations >50 nM. Among men, there was no significant association between a higher calcium intake beyond the upper end of the lowest quartile (626 mg/d) and BMD within all 25(OH)D categories. Among both sexes, BMD increased stepwise and significantly with higher 25(OH)D concentrations (<50, 50–74, 75+ nM; p value for trend: women < 0.0001; men = 0.0001). Among men and women, 25(OH)D status seems to be the dominant predictor of BMD relative to calcium intake. Only women with 25(OH)D concentrations <50 nM seem to benefit from a higher calcium intake.  相似文献   

18.
Summary The association between a newly identified CA repeat polymorphism of the estrogen receptor alpha gene (ESR1) with osteoporosis was investigated. Postmenopausal women with <18 CA repeats had low BMD, increased rate of bone loss and increased fracture risk. Introduction Studies have shown that intronic dinucleotide repeat polymorphisms in some genes are associated with disease risk by modulating mRNA splicing efficiency. D6S440 is a newly identified intronic CA repeat polymorphism located downstream of the 5’-splicing site of exon 5 of ESR1. Methods The associations of D6S440 with bone mineral density (BMD), rate of bone loss and fracture risk were evaluated in 452 pre-, 110 peri- and 622 postmenopausal southern Chinese women using regression models. Results Post- but not premenopausal women with less CA repeats had lower spine and hip BMD. The number of CA repeats was linearly related to hip BMD in postmenopausal women (β = 0.008; p = 0.004). Postmenopausal women with CA repeats <18 had higher risks of having osteoporosis (BMD T-score<−2.5 at the spine: OR 2.46, 95% CI 1.30–4.65; at the hip: OR 3.79(1.64–8.74)) and low trauma fractures (OR 2.31(1.29–4.14)) than those with ≥18 repeats. Perimenopausal women with <18 CA repeats had significantly greater bone loss in 18 months at the hip than those with ≥18 repeats (−1.96% vs. −1.61%, p = 0.029). Conclusions ESR1 CA repeat polymorphism is associated with BMD variation, rate of bone loss and fracture risk, and this may be a useful genetic marker for fracture risk assessment. Funding Source: This project is supported by CRCG Grant, Bone Health Fund, Matching Grant and Osteoporosis and Endocrine Research Fund of the University of Hong Kong.  相似文献   

19.
The association between vitamin D levels and incident fractures in older men is uncertain. To test the hypothesis that low serum 25‐hydroxyvitamin D [(25(OH)D] levels are associated with an increased risk of fracture, we performed a case‐cohort study of 436 men with incident nonspine fractures, including 81 hip fractures, and a random subcohort of 1608 men; average follow‐up time 5.3 years. Serum vitamin D2 and vitamin D3 were measured on baseline sera using mass spectrometry and summed for total vitamin D. Modified Cox proportional hazards models were used to estimate the hazard ratio (HR) of fracture with 95% confidence intervals (CIs). Multivariable models included age, clinic, season, race, height, weight, and physical activity. The mean (SD) total 25(OH)D was 24.6 (7.8) ng/mL in nonspine fracture subjects, 21.5 (7.9) ng/mL in hip fracture subjects, and 25.2 (7.8) ng/mL in controls (nonspine fracture subjects versus nonpatients, p = .14; hip fracture subjects versus controls, p < .0001). 25(OH)D levels were unrelated to nonspine fractures. One SD decrease in total 25(OH)D was associated with an increased risk of hip fracture (multivariate HR = 1.60; 95% CI 1.18–2.17). Compared with men in the top quartile of total 25(OH)D (≥28), the HR of hip fracture was 2.36 (95% CI 1.08–5.15) for men in the lowest quartile (<20) (p = .009 for trend). Adjusting for hip bone mineral density attenuated the association by more than 50% (p = .065 for trend). Low serum 25(OH)D concentrations are associated with a higher risk of hip fracture in older men. Measurement of 25(OH)D may be useful in identifying men at high risk of hip fracture. © 2010 American Society for Bone and Mineral Research.  相似文献   

20.
Sclerostin is synthesized by osteocytes and inhibits bone formation. We measured serum sclerostin levels in 710 men aged 50 years and older. Bone mineral density (BMD) was measured at the lumbar spine, hip, and distal forearm. Serum sclerostin increased with age (unadjusted r = 0.30, p < 0.001). After adjustment for age, weight, and bioavailable 17β‐estradiol, serum sclerostin correlated positively with BMD (r = 0.24 to 0.35, p < 0.001) and negatively with the levels of bone turnover markers (r = ? 0.09 to ? 0.23, p < 0.05 to 0.001). During a 10‐year follow‐up, 75 men sustained fragility fractures. Fracture risk was lower in the two upper quintiles of sclerostin combined versus three lower quintiles combined (6.1 versus 13.5%, p < 0.01). We compared fracture risk in the two highest quintiles combined versus three lower quintiles combined using the Cox model adjusted for age, weight, leisure physical activity, BMD, bone width (tubular bones), prevalent fracture, prevalent falls, ischemic heart disease, and severe abdominal aortic calcification. Men with higher sclerostin concentration had lower fracture risk (adjusted for hip BMD, hazard ratio [HR] = 0.55, 95% confidence interval [CI] 0.31 to 0.96, p < 0.05). The results were similar in 47 men with major fragility fractures (adjusted for lumbar spine BMD: HR = 0.39, 95% CI 0.17 to 0.90, p < 0.05). Men who had higher sclerostin and higher BMD (two highest quintiles) had lower risk of fracture compared with men who had lower BMD and lower sclerostin levels (three lower quintiles) (HR = 0.24, 95% CI 0.10 to 0.62, p < 0.005). Circulating sclerostin was not associated with mortality rate or the incidence of major cardiovascular events. Thus, in older men, higher serum sclerostin levels are associated with lower risk of fracture, higher BMD, and lower bone turnover rate. © 2013 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号