首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 18-mer oligodeoxynucleotides (ODNs) that can inhibit survivin gene expression were selected as a model gene drug to study hepatic-targeting drug delivery system. Novel galactosylated polymers (cholesteryloxycarbonylamino) ethylamine-alpha,beta-polyasparthydrazied (CHE-PAHy-Lacs), which target asialoglycoprotein receptor on hepatic parenchymal cells (PC), were designed and synthesized as non-toxic, non-antigenic and non-teratogenic ligands for liposomes. The liposomes incorporating different CHE-PAHy-Lacs were prepared and characterized by zeta potential and particle size analyzer. The drug encapsulation efficiency was measured by gel filtration method. 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate was used as a marker for all the liposome preparations in the in vivo experiments. The CHE-PAHy-Lac liposomes produced a significant improvement in the encapsulation efficiency of ODNs (28.73-51.37%) compared with conventional liposomes (9.88%). The in vivo results showed that the liposomes incorporating CHE-PAHy-Lac, which contained about 30% (w/w) galactosyl residues, exhibited marked accumulation in the liver and hepatic PC. These results suggest that the novel galactosylated polymers used for liposomes have a great potential as a gene delivery system for hepatic targeting.  相似文献   

2.
A new delivery system for cutaneous administration combining the advantages of cyclodextrin inclusion complexes and those of deformable liposomes was developed, leading to a new concept: drug-in-cyclodextrin-in-deformable liposomes. Deformable liposomes made of soybean phosphatidylcholine (PC) or dimyristoylphosphatidylcholine (DMPC) and sodium deoxycholate as edge activator were compared to classical non-deformable liposomes. Liposomes were prepared by the film evaporation method. Betamethasone, chosen as the model drug, was encapsulated in the aqueous cavity of liposomes by the use of cyclodextrins. Cyclodextrins allow an increase in the aqueous solubility of betamethasone and thus, the encapsulation efficiency in liposome vesicles. Liposome size, deformability and encapsulation efficiency were calculated. The best results were obtained with deformable liposomes made of PC in comparison with DMPC. The stability of PC vesicles was evaluated by measuring the leakage of encapsulated calcein on the one hand and the leakage of encapsulated betamethasone on the other hand. In vitro diffusion studies were carried out on Franz type diffusion cells through polycarbonate membranes. In comparison with non-deformable liposomes, these new vesicles showed improved encapsulation efficiency, good stability and higher in vitro diffusion percentages of encapsulated drug. They are therefore promising for future use in ex vivo and in vivo experiments.  相似文献   

3.
Yu F  Jiang T  Zhang J  Cheng L  Wang S 《Die Pharmazie》2007,62(7):528-533
18mer oligodeoxynucleotides (ODNs) which can inhibit survivin gene expression were selected as a model gene drug. The glycolipid (5-cholestan-3beta-yl)-1-[2-(lactobionyl amido) ethylamido] formate (CHE-LA) which specific target to the cells expressing galactose receptors was synthesized through the reaction of lactone of lactobiono-1,5-lactone (LA) and the amino-group of 2-(cholesteryloxycarbonylamino) ethylamine (CHE). The galactosylated liposome incorporated with CHE-LA containing oligodeoxynucleotides was prepared with SPC, cholesterol, CHE-LA and oligodeoxynucleotides by the thin-film hydration method. 1,1'-Dioctadecyl-3,3,3',3'tetramethylindocarbocyanine perchlorate (Dil) was used as a marker for all the liposome preparations. Compared with conventional liposomes (CL), the galactosylated liposomes (GL) exhibited a drastically increased distribution to the liver in vivo and the galactosylated liposomes containing oligodeoxynucleotides (GLO) can also more efficiently induced an apoptosis of HepG2 cells in vitro than the conventional liposome containing oligodeoxynucleotides (CLO). In addition, the GLO represented an improving of the ODNs entrapment efficiency.  相似文献   

4.
In order to achieve a sustained pharmacological activity of oligonucleotides (ODNs) and avoid repeated administrations, we have developed a new concept of delivery system that combine sustained release and improved intracellular penetration. These systems are designed for the intravitreal delivery of antisense ODNs. The first concept consisted in using liposomes dispersed in a thermosensitive gel (poloxamer 407). After intravitreal administration in a rabbit model, liposomes and liposomes-gel formulations provided, 1-day postinjection, significantly higher drug levels than the control solution of the oligothymidilate pdT16. In addition, there was no significant difference in the amounts of pdT16 found in the vitreous humor between the liposomes and liposomes-gel. Nevertheless, because of their better stability in the absence of poloxamer, liposomes alone allowed to a larger extent to control the delivery of ODNs as compared to liposome-gel formulations since 37% of the ODNs were still found in the vitreous 15 days after administration. In addition, the ODNs found in the vitreous humor were protected against degradation by their encapsulation within liposomes. The second approach consisted in designing microspheres allowing to release in a controlled fashion pdT16. The ODN was encapsulated within poly(lactide-co-glycolide) microspheres alone or associated with polyethylenimine (PEI) at different nitrogen/phosphate (N/P) ratios. The introduction of PEI in the internal aqueous phase resulted in a strong increase of the ODN encapsulation efficiency. PEI affected microsphere morphology inducing the formation of very porous particles yielding to an accelerated release of pdT16. Porosity and controlled delivery was prevented by introducing sodium chloride in the external preparation medium. When incubated with HeLa cells, microspheres encapsulating pdT16/PEI complexes allowed an improvement of the intracellular penetration of the released ODN. Both liposomes and microspheres are suitable for local delivery of ODNs.  相似文献   

5.
This paper described the synthesis of a novel galactosylated lipid with mono-galactoside moiety, (5-Cholesten-3beta-yl) 4-oxo-4-[2-(lactobionyl amido) ethylamido] butanoate (CHS-ED-LA), and the targetability of doxorubicin (DOX), a model drug, in liposomes containing 10% mol/mol CHS-ED-LA (galactosylated liposomes, GalL) to the liver was studied. The weighted-average overall drug targeting efficiency (Te(*)) was used to evaluate the liver targetability of GalL DOX. The results showed that GalL DOX gave a relatively high (Te(*))(liver) value of 64.6%, while DOX in conventional liposome (CL DOX) only gave a (Te(*))(liver) value of 21.8%. In the liver, the GalL DOX was mainly taken up by parenchymal cells (88% of the total hepatic uptake). Moreover, preinjection of asialofetuin significantly inhibited the liver uptake of GalL DOX (from 70 to 12% of the total injected dose). It was suggested that liposomes containing such novel galactosylated lipid, CHS-ED-LA, had a great potential as drug delivery carriers for hepatocyte-selective targeting.  相似文献   

6.
Objectives The aim of this work was to investigate the anti‐inflammatory activity of C‐phycocyanin (C‐PC) on skin inflammation after topical administration and the influence of liposomal delivery on its pharmacokinetic properties. Methods Liposomes of different size and structure were prepared with different techniques using soy phosphatidylcholine and cholesterol. Vesicular dispersions were characterised by transmission electron microscopy, optical and fluorescence microscopy for vesicle formation and morphology, dynamic laser light scattering for size distribution, and Zetasizer for zeta‐potential. C‐PC skin penetration and permeation experiments were performed in vitro using vertical diffusion Franz cells and human skin treated with either free or liposomal drug dispersed in a Carbopol gel. Key findings The protein was mainly localised in the stratum corneum, while no permeation of C‐PC through the whole skin thickness was detected. Two percent C‐PC‐encapsulating liposomes showed the best drug accumulation in the stratum corneum and the whole skin, higher than that of the corresponding free 2% C‐PC gel. Moreover, skin deposition of liposomal C‐PC was dose dependent since skin accumulation values increased as the C‐PC concentration in liposomes increased. The topical anti‐inflammatory activity of samples was evaluated in vivo as inhibition of croton oil‐induced or arachidonic acid‐induced ear oedema in rats. Conclusions The results showed that C‐PC can be successfully used as an anti‐inflammatory drug and that liposomal encapsulation is effective in improving its anti‐inflammatory activity.  相似文献   

7.
Context: Development of carvedilol-loaded transfersomes for intranasal administration to overcome poor nasal permeability and hepatic first pass effect so as to enhance its bioavailability.

Objective: The purpose of this study was to develop carvedilol-loaded transfersomes containing different edge activators (EAs) then evaluating the in vivo behavior of the optimized formula in rabbits.

Methods: The vesicles were prepared by incorporating different EAs including Span 20, Span 60, Tween 20, Tween 80, and sodium deoxycholate (SDC) in the lipid bilayer and each EA was used in three different ratios with respect to phosphatidylcholine (PC) including 95:5%, 85:15%, and 75:25% w/w (PC:EA). Evaluation of transfersomes was carried out in terms of shape, size, entrapment efficiency (EE), in vitro release, ex vivo permeation, confocal laser scanning microscopy (CLSM), and stability studies. The pharmacokinetic study of the optimized formula was conducted in rabbits.

Results: The mean diameter of the vesicles was in the range of 295–443?nm. Transfersomes prepared with 95:5% (w/w) (PC:EA) ratio showed highest EE% where Span 60 gave the highest values. Whereas those prepared using 85:15% w/w ratio showed highest percentages of drug release where SDC was superior to other EAs. The developed transfersomes exhibited significantly higher amounts of carvedilol permeated through nasal mucosa. CLSM of formula T14 containing SDC with 85:15% (w/w) (PC:EA) ratio revealed high permeation across the nasal mucosa.

Conclusion: The nanotransfersomal vesicles were significantly more efficient in nasal delivery of carvedilol with absolute bioavailability of 63.4%.  相似文献   

8.
Novel galactosylated neutral liposomes containing cholesten-5-yloxy-N-(4-((1-imino-2-beta-D-thiogalactosylethyl)amino)butyl)formamide (Gal-C4-Chol) as a "homing" device were developed for hepatocyte-selective drug targeting. Distearoylphosphatidylcholine (DSPC)/cholesterol (Chol) (60:40) and DSPC/Chol/Gal-C4-Chol (60:35:5) liposomes were prepared and labeled with [3H]cholesteryl hexadecyl ether (CHE). [3H]Prostaglandin E1 (PGE1) and [14C]probucol were incorporated in liposomes as model lipophilic drugs. After intravenous injection of the liposomes, mice were sacrificed at suitable time periods, and the lung, liver, kidney, spleen, and heart were excised. DSPC/Chol/Gal-C4-Chol liposomes rapidly disappeared from the blood, and 85% of the dose had accumulated in the liver within 10 min compared with hepatic accumulation of DSPC/Chol liposomes of 12%. The liver was perfused with collagenase, and liver parenchymal cells (PC) and liver nonparenchymal cells (NPC) were separated by centrifugal differentiation to determine the cellular distribution. The PC/NPC ratios for DSPC/Chol/Gal-C4-Chol and DSPC/Chol liposomes were 15.1 and 1.1, respectively. The hepatic uptake of DSPC/Chol/Gal-C4-Chol liposomes, but not that of DSPC/Chol liposomes, was significantly inhibited by the predosing of galactosylated bovine serum albumin. [14C]Probucol and [3H]PGE1 incorporated in DSPC/Chol/Gal-C4-Chol liposomes was also efficiently delivered to the liver. In conclusion, newly developed galactosylated liposomes have been proven to be a useful carrier for hepatocyte-selective targeting that will have many practical applications.  相似文献   

9.
The aim of the present investigation was to reduce the hepatic toxicity, enhance the cellular uptake and alter the pharmacokinetics of stavudine using galactosylated liposomes. beta-D-1-Thiogalactopyranoside residues were covalently coupled with dimyristoyl phosphatidylethanolamine, which was then used to form liposomes. The galactosylated liposomal system was assessed for in vitro ligand-specific activity. The drug release from liposomes was studied by dialysis method. Ex vivo cellular uptake study was performed using liver parenchymal cells harvested from male albino rats. Changes in hematological parameters, hepatic enzymes, hepatomegaly, plasma and tissue distribution of the formulations (free stavudine solution, uncoated liposomal and galactosylated liposomes) were determined using albino rats. Percent cumulative drug release in 24h was low (34.8+/-2.6%). Enhanced hepatic cellular d4T uptake (27.96+/-2.41pg d4T/million cells) was seen in case of galactosylated liposomal d4T. Galactosylated liposomes maintained a significant level of d4T in tissues rich in galactose specific receptors and had a prolonged residence (11.44+/-1.25h) in the body resulting in enhanced half-life of d4T (23.07+/-1.25h). This formulation did not show either hematological or hepatic toxicity. Galactosylation of liposomes alter the biodistribution of encapsulated drug thereby delivering the drug to cells bearing galactose specific receptors.  相似文献   

10.
Docetaxel comprises one of the most effective anti-cancer drugs despite of serious side effects. Liposomes encapsulation is practically feasible to deliver the drug. However, due to the significant hydrophobicity, docetaxel will be integrated into the lipid bilayer resulting in poor encapsulation capacity. Here, we evaluated a remote loading strategy using a solubility gradient made between the two solvents for 7-glucosyloxyacetyldocetaxel, which has enhanced water solubility of docetaxel with a coupled glucose moiety. Therefore, 7-glucosyloxyacetyldocetaxel was more effectively encapsulated into liposomes with 71.0% of encapsulation efficiency than docetaxel. While 7-glucosyloxyacetyldocetaxel exhibited 90.9% of tubulin stabilisation activity of docetaxel, 7-glucosyloxyacetyldocetaxel encapsulated in liposomes significantly inhibited the growth of tumour in vivo with side effects less than unencapsulated drug. Collectively, the encapsulation of 7-glucosyloxyacetyldocetaxel into liposomes by remote loading under the solubility gradient is considered to be a promising application to prepare practical drug delivery system.  相似文献   

11.
In order to target liposomes to the lectin receptors present on macrophages, galactosylated liposomes were prepared and characterized in vitro. O-palmitoylgalactose (OPG) for liposomal coating was synthesized by esterification of galactose with palmitoyl chloride. The galactose binding Ricinus communis lectin was employed as a model system for the determination of in vitro ligand binding capacity. Cellular drug uptake studies were performed using alveolar macrophages. Hematological changes, bone marrow toxicity, plasma and tissue distribution study of free, uncoated plain liposomal and galactosylated liposomal encapsulated azidothymidine (AZT) were determined following a bolus intravenous injection in Sprague-Dawley rats. Lectin (R. communis) carbohydrate interaction has been utilized for the effective delivery of AZT entrapped in galactosylated vesicles. Aggregation of galactosylated liposomes increased as lectin concentration was increased from 5 to 30 microg/ml. Cellular uptake of galactosylated liposomal formulation was maximum. No hematological toxicity was observed even after 10 days in case of galactosylated vesicle entrapped AZT. This formulation maintained a significant level of AZT in tissues rich in galactose specific receptors and had a prolonged residence in the body resulting in enhanced half-life of AZT. Conclusively, galactosylated liposomes are the potential candidate for targeted drug delivery and are anticipated to be promising in the treatment of AIDS6.  相似文献   

12.
《Journal of drug targeting》2013,21(10):925-932
Dendrosomes are lipid vesicular entities containing entrapped dendrimer-DNA complexes and possessing low toxicity, acceptable transfection efficiency, and good in vivo tolerance. Herein, an attempt was made to explore the potential of dendrosomes as a gene delivery system combining the advantages of both polyamidoamine (PAMAM) dendrimer (nucleic acid condensation, facilitated endosomal release) and of non-cationic liposomes (increased cellular uptake, low cytotoxicity), and at the same time overcoming the drawbacks of these system (low encapsulation efficiency of non-cationic liposome and toxicity of dendrimers). Dendrosomes were assembled by loading optimized DNA-dendrimer complexes into liposomes prepared by solvating of dried lipid films made of DOPE/EggPC/Cholesterol (4.74:4.75:1.5 mole ratio). Dendrosomes were characterized in terms of size, zeta, encapsulation efficiency and the ability to protect the system from DNA degradation. The transfection efficiency and toxicity of the preparations were evaluated in HeLa cells using flow cytometry and CellTiter-Blue® methods. The efficient transfection and low toxicity makes them an appealing alternative to be further explored for gene delivery in vivo.  相似文献   

13.
A wide variety of nanoparticles (NPs) that can deliver incorporated therapeutic materials such as compounds, proteins, genes and siRNAs to the human liver have been developed to treat liver-related diseases. This review describes NP-based drug and gene delivery systems such as liposomes (including lipoplex), polymer micelles, polymers (including polyplex) and viral vectors. It focuses upon the modification of these NPs to enhance liver specificity or delivery efficiency in vitro and in vivo. We discuss recent advances in drug and gene delivery systems specific to the human liver utilizing bio-nanocapsules comprising hepatitis B virus (HBV) envelope L protein, which has a pivotal role in HBV infection. These NP-based medicines may offer novel strategies for the treatment of liver-related diseases and contribute to the development of nanomedicines targeting other tissues.  相似文献   

14.
Estrone-appended liposomal formulation of doxorubicin was designed to enhance the capability of clinically used liposomal doxorubicin formulation with the added advantage of delivery of doxorubicin to its destination site, i.e. cancerous cells over-expressing estrogen receptors (ERs). Estrone was conjugated with distearoyl phosphatidylethanolamine (DSPE) using succinic anhydride as a linker and the conjugate was characterized by IR and mass spectroscopies. Estrone-coupled liposomes were prepared with the composition of egg phosphatidylcholine/cholesterol/distearoyl phosphatidylethanolamine–estrone (PC/CHOL/DSPE–ES) at the molar and drug–lipid ratios of 7:3:0.5 and 0.1:1 (w/w), respectively. The average vesicle sizes of the conventional and estrone-appended liposomes were found to be 193 ± 24 and 207 ± 28 nm, respectively. The fluorescent microscopy studies were performed with estrone-appended liposomes loaded with 6-carboxyfluorescein (6-CF). Results of in vivo biodistribution studies showed that estrone-appended liposomes were effectively taken up by cells expressing ERs. The drug uptake study showed that accumulation of ligand-appended liposomes in the breast and uterus was 13.9 and 12.7 times higher when compared with plain drug, and 11.05 and 10.3 times higher when compared with conventional liposomes, respectively, after 8 h of tail vein intravenous administration. The findings are seminal for selective targeting of antineoplastic agents to the ER, which are frequently over-expressed on carcinoma of breast and uterine origin, and opens the promising possibilities for non-immunogenic, site-specific delivery of bioactive(s) to these sites.  相似文献   

15.
Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.  相似文献   

16.
Small interfering RNA (siRNA), antisense oligonucleotides (ODNs), ribozymes and DNAzymes have emerged as sequence-specific inhibitors of gene expression that may have therapeutic potential in the treatment of a wide range of diseases. Due to their rapid degradation in vivo, the efficacy of naked gene silencing nucleic acids is relatively short lived. The entrapment of these nucleic acids within biodegradable sustained-release delivery systems may improve their stability and reduce the doses required for efficacy. In this study, we have evaluated the potential in vitro and in vivo use of biodegradable poly (d,l-lactide-co-glycolide) copolymer (PLGA) microspheres as sustained delivery devices for ODNs, ribozyme, siRNA and DNA enzymes. In addition, we investigated the release of ODN conjugates bearing 5′-end lipophilic groups. The in vitro sustained release profiles of microsphere-entrapped nucleic acids were dependent on variables such as the type of nucleic acid used, the nature of the lipophilic group, and whether the nucleic acid used was single or double stranded. For in vivo studies, whole body autoradiography was used to monitor the bio-distribution of either free tritium-labelled ODN or that entrapped within PLGA microspheres following subcutaneous administration in Balb-c mice. The majority of the radioactivity associated with free ODN was eliminated within 24 h whereas polymer-released ODN persisted in organs and at the site of administration even after seven days post-administration. Polymer microsphere released ODN exhibited a similar tissue and cellular tropism to the free ODN. Micro-autoradiography analyses of the liver and kidneys showed similar bio-distribution for polymer-released and free ODNs with the majority of radioactivity being concentrated in the proximal convoluted tubules of the kidney and in the Kupffer cells of the liver. These findings suggest that biodegradable PLGA microspheres offer a method for improving the in vivo sustained delivery of gene silencing nucleic acids, and hence are worthy of further investigation as delivery systems for these macromolecules.  相似文献   

17.
Cell-specific delivery of genes with glycosylated carriers.   总被引:13,自引:0,他引:13  
Cationic liposomes and polymers have been accepted as effective non-viral vectors for gene delivery with low immunogenicity unlike viral vectors. However, the lack of organ or cell specificity sometimes hampers their application and the development of a cell-specific targeting technology for them attracts great interest in gene therapy. In this review, the potential of cell-specific delivery of genes with glycosylated liposomes or polymers is discussed. Galactosylated liposomes and poly(amino acids) are selectively taken up by the asialoglycoprotein receptor-positive liver parenchymal cells in vitro and in vivo after intravenous injection. DNA-galactosylated cationic liposome complexes show higher DNA uptake and gene expression in the liver parenchymal cells in vitro than DNA complexes with bare cationic liposomes. In the in vitro gene transfer experiment, galactosylated liposome complexes are more efficient than DNA-galactosylated poly(amino acids) complexes but they have some difficulties in their biodistribution control. On the other hand, introduction of mannose residues to carriers resulted in specific delivery of genes to non-parenchymal liver cells. These results suggest advantages of these glycosylated carriers in cell-specific targeted delivery of genes.  相似文献   

18.
After a decade of clinical trials, gene therapy seems to have found its place between excessive ambitions and feasible aims, with encouraging results obtained in recent years. Intracellular delivery of genetic material is the key step in gene therapy. Optimization of delivery vectors is of major importance for turning gene therapy into a successful therapeutic method. Nonviral gene delivery relies mainly on the complexes formed from cationic liposomes (or cationic polymers) and DNA, i.e., lipoplexes (or polyplexes). Many lipoplex formulations have been studied, but in vivo activity is generally low compared to that of viral systems. This review gives a concise overview of studies on the application of cationic liposomes in vivo in animal models of diseases and in clinical studies. The transfection efficiency, the pharmacokinetic and pharmacodynamic properties of the lipid-DNA complexes, and potentially relevant applications for cationic liposomes are discussed. Furthermore, the toxicity of, and the induction of an inflammatory response in association with the administration of lipoplexes are described. Increasing understanding of lipoplex behavior and gene transfer capacities in vivo offers new possibilities to enhance their efficiency and paves the path to more extensive clinical applications in the future.  相似文献   

19.
Purpose. To investigate the effects of the lipid composition of galactosylated liposomes on their targeted delivery to hepatocytes. Methods. Several types of liposomes with a particle size of about 90 nm were prepared using distearoyl-L-phosphatidylcholine (DSPC), cholesterol (Chol) and cholesten-5-yloxy-N-(4-((1-imino-2-D-thiogalactosylethyl)amino)butyl)formamide (Gal-C4-Chol), and labeled with [3H]cholesterol hexadecyl ether. Their tissue disposition was investigated in mice following intravenous injection. The binding and internalization characteristics were also studied in HepG2 cells. Results. Compared with [3H]DSPC/Chol (60:40) liposomes, [3H]D-SPC/Chol/Gal-C4-Chol (60:35:5) liposomes exhibit extensive hepatic uptake. Separation of the liver cells showed that galactosylated liposomes are preferentially taken up by hepatocytes, whereas those lacking Gal-C4-Chol distribute equally to hepatocytes and nonparenchymal cells (NPC). Increasing the molar ratio of DSPC to 90% resulted in enhanced NPC uptake of both liposomes, suggesting their uptake via a mechanism other than asialoglycoprotein receptors. DSPC/Chol/Gal-C4-Chol (60:35:5) and DSPC/Chol/Gal-C4-Chol (90:5:5) liposomes exhibited similar binding to the surface of HepG2 cells, but the former were taken up faster by the cells. Conclusions. The recognition of galactosylated liposomes by the asialoglycoprotein receptors is dependent on the lipid composition. Cholesterol-rich galactosylated liposomes, exhibiting less non-specific interaction and greater receptor-mediated uptake, are better for targeting drugs to hepatocytes in vivo.  相似文献   

20.
目的 制备西罗莫司脂质体并对处方进行筛选,以期得到高包封率的脂质体制剂.方法 选用乙醇注入法制备西罗莫司脂质体,微柱离心-HPLC法测定包封率,以包封率为评价指标,考察磷脂浓度、磷脂胆固醇质量比、药脂比、水相介质pH等因素对脂质体的影响,在此基础上运用正交设计对处方进行优化.结果 正交试验结果表明磷脂浓度为4%,磷脂与胆固醇质量比例为8:1,药物磷脂质量比为1:20,水相pH为7.4为最佳处方,制得的脂质体包封率为(82.11±2.13)%.结论 优选出最佳处方,制得的西罗莫司脂质体包封率高,重现性好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号