首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polyplexes sensitive to redox potential gradients represent a promising class of vectors for delivery of nucleic acids. This review focuses on the recent advances in the development of these vectors. The biological rationale for the design of redox-sensitive polyplexes is discussed together with the basic synthetic approaches for introducing reducible disulfide bonds into the structure of the polyplexes. The biological properties of the redox-sensitive polyplexes of plasmid DNA, mRNA, antisense oligonucleotides and siRNA are reviewed with emphasis on in vitro cellular delivery, cytotoxicity and in vivo activity. Overall, redox-sensitive polyplexes represent a promising platform for further development as vectors for delivery of a wide variety of therapeutic nucleic acids.  相似文献   

2.
Gene therapy has received much attention in the field of drug delivery. Synthetic, nonviral gene delivery systems have gained increasing attention as vectors for gene therapy mainly due to a favorable immunogenicity profile and ease of manufacturing as compared to viral vectors. The great majority of these formulations are based on polycationic structures, due to their ability to interact with negatively charged nucleic acids to spontaneously form nanoparticles. In recent years, several polycationic systems have demonstrated high transfection in vitro. However, progress toward clinical applications has been slow, mainly because the cationic nature of these systems leads to intolerable toxicity levels, inappropriate biodistribution and unsatisfactory efficiency in vivo, particularly after systemic administration. Decationized polyplexes are a new class of gene delivery systems that have been developed as an alternative for conventional polycation-based systems. The major innovation introduced by decationized polyplexes is that these systems are based on neutral polymers, without any detrimental effect on the physicochemical stability or encapsulation ability, due to the transient presence of cationic charge and disulfide cross-links between the polymer chains by which the nucleic acids are physically entrapped in the particles. This editorial summarizes the most important features of decationized polyplexes and discusses potential implications for the development of new safe and efficient gene delivery systems.  相似文献   

3.
Introduction: Different gene therapy approaches have gained extensive interest lately and, after many initial hurdles, several promising approaches have reached to the clinics. Successful implementation of gene therapy is heavily relying on finding efficient measures to deliver genetic material to cells. Recently, non-viral delivery of nucleic acids and their analogs has gained significant interest. Among non-viral vectors, cell-penetrating peptides (CPPs) have been extensively used for the delivery of nucleic acids both in vitro and in vivo.

Areas covered: In this review we will discuss recent advances of CPP-mediated delivery of nucleic acid-based cargo, concentrating on the delivery of plasmid DNA, splice-correcting ONs, and small-interfering RNAs.

Expert opinion: CPPs have proved their potential as carriers for nucleic acids. However, similarly to other non-viral vectors, CPPs require further development, as efficient systemic delivery is still seldom achieved. To achieve this, CPPs should be modified with entities that would allow better endosomal escape, targeting of specific tissues and cells, and shielding agents that increase the half-life of the vehicles. Finally, to understand the clinical potential of CPPs, they require more thorough investigations in clinically relevant disease models and in pre-clinical and clinical studies.  相似文献   

4.
Introduction: Nucleic acids have witnessed a dramatic acceleration in their therapeutic exploitation and currently represent a growing number of applications in drug development pipelines. However, a more wide-spread development of therapeutics based on nucleic acids is restricted by their poor chemical and enzymatic stability in vivo, lack of cellular uptake and insufficient capability to reach intracellular targets.

Areas covered: Advanced formulation of nucleic acids in nano-sized carriers may help unlocking their potential as therapeutic agents. Nano-sized matters own specific features responsible for inducing characteristic interactions with biological molecules and tissues. These properties enable for the enhancement of the nano-formulation’s therapeutic efficacy, but on the other hand, the nanomatters interactions in biological fluids are also responsible for adverse effects. The purpose of this review is to reflect on the complexity in the therapeutic delivery of RNA interference-based drugs emerging from the recent clinical experiences and report the actual technological and analytical advances introduced to solve it.

Expert opinion: The complexity in the therapeutic delivery of nucleic acids and the heterogeneity of side effects make the interpretation of the therapeutic outcome difficult. Hence the development of analytical approaches applicable in the field of nucleic acid delivery is becoming a major challenge.  相似文献   

5.
ABSTRACT

Introduction: The delivery of nucleic acids such as DNA and short interfering RNA (siRNA) is promising for the treatment of many diseases, including cancer, by enabling novel biological mechanisms of action. Non-viral nanoparticles are a promising class of nucleic acid carriers that can be designed to be safer and more versatile than traditional viral vectors.

Areas covered: In this review, recent advances in the intracellular delivery of DNA and siRNA are described with a focus on non-viral nanoparticle-based delivery methods. Material properties that have enabled successful delivery are discussed as well as applications that have directly been applied to cancer therapy. Strategies to co-deliver different nucleic acids are highlighted, as are novel targets for nucleic acid co-delivery.

Expert opinion: The treatment of complex genetically-based diseases such as cancer can be enabled by safe and effective intracellular delivery of multiple nucleic acids. Non-viral nanoparticles can be fabricated to deliver multiple nucleic acids to the same cell simultaneously to prevent tumor cells from easily compensating for the knockdown or overexpression of one genetic target. The continued innovation of new therapeutic modalities and non-viral nanotechnologies to provide target-specific and personalized forms of gene therapy hold promise for genetic medicine to treat diseases like cancer in the clinic.  相似文献   

6.
Bioreducible polyplexes are promising vectors for delivery of nucleic acids due to low toxicity and favorable transfection activity. The often improved transfection is usually explained by enhanced intracellular reductive disassembly of the polyplexes. This study evaluated the effect of enhanced reductive disassembly on transfection activity of plasmid DNA and antisense oligonucleotide (AON) polyplexes based on a series of bioreducible poly(amido amine)s (PAA). We found that the presence of disulfide bonds in PAA had no effect on nucleic acid binding, hydrodynamic size and zeta potential of polyplexes. Increasing the disulfide content in PAA increased susceptibility to reduction-triggered DNA and AON release from the polyplexes. Increasing the disulfide content in PAA increased DNA transfection but had no effect on AON transfection. Plasma membrane protein thiols played a key role in the observed enhancement of DNA transfection. The presence of disulfide bonds in PAA had no significant effect on the rate of intracellular DNA clearance, suggesting that enhanced intracellular disassembly of the bioreducible polyplexes is not a major contributing factor to the improved transfection activity.  相似文献   

7.
ABSTRACT

Introduction: The whole delivery process of nucleic acids is very challenging. Appropriate carrier systems are needed, which show extracellular stability and intracellular disassembly. Viruses have developed various strategies to meet these requirements, as they are optimized by biological evolution to transfer genetic information into host cells. Taking viruses as models, smart synthetic carriers can be designed, mimicking the efficient delivery process of viral infection. These ‘synthetic viruses’ are pre-programmed and respond to little differences in their microenvironment, caused by either exogenous or endogenous stimuli.

Areas covered: This review deals with polymer-based, bioresponsive nanosystems (polyplexes) for the delivery of nucleic acids. Strategies utilizing pH-responsiveness, redox-responsiveness as well as sensitivity towards enzymes will be described more in detail. Systems, which respond to other endogenous triggers (i.e. reactive oxygen species, adenosine triphosphate, hypoxia), will be briefly illustrated. Moreover, some examples for combined bioresponsiveness will be presented.

Expert opinion: Bioresponsive polyplexes are a smart way to facilitate programmed, timely delivery of nucleic acids to desired, specific sites. Nevertheless, further optimization is necessary to improve the still moderate transfection efficiency and specificity – also in regard to medical translation. For this purpose, precise carrier structures are desirable and stability issues of bioresponsive systems must be considered.  相似文献   

8.
Short nucleic acids targeting biologically important RNAs and plasmids have been shown to be promising future therapeutics; however, their hydrophilic nature greatly limits their utility in clinics and therefore efficient delivery vectors are greatly needed. Cell-penetrating peptides (CPPs) are relatively short amphipathic and/or cationic peptides that are able to transport various biologically active molecules inside mammalian cells, both in vitro and in vivo, in a seemingly non-toxic fashion. Although CPPs have proved to be appealing drug delivery vehicles, their major limitation in nucleic acid delivery is that most of the internalized peptide-cargo is entrapped in endosomal compartments following endocytosis and the bioavailability is therefore severely reduced. Several groups are working towards overcoming this obstacle and this review highlights the evidence that by introducing chemical modification in CPPs, the bioavailability of delivered nucleic acids increases significantly.  相似文献   

9.
Introduction: In recent years, there has been a great deal of interest in the development of vectors which are being developed based on the capacity of polymers to mediate appropriate interactions with the cellular environment, or to interface with specific cellular processes. Several such vectors have been synthesized, resulting in biomacromolecules with low cytotoxicity and higher gene delivery ability.

Areas covered: This review briefly describes the recent success of poly(amido amine)s (PAAs) as non-viral vectors, and highlights their promising future in the development of nucleic acid-based therapy. It also provides an overview on the synthesis, characterization and application of PAAs as gene carriers, which will be useful for various biological motifs. This review helps the readers to better understand the emergence of non-viral vectors for gene therapy, especially PAAs, their properties, their advantages and disadvantages and the gene therapy based on them.

Expert opinion: The future of gene-based therapy needs to identify approaches to develop new carriers, depending on the properties of the biological membranes they face, and their physicochemical properties, in order to successfully deliver the genes to the target sites. With the emergence of a variety of non-viral vectors, such as biodegradable polymers, it may not take long before non-viral vectors are observed that are not just safe and tissue-specific, but even more efficient than viral vectors.  相似文献   

10.
DNA/cationic lipid (lipoplexes), DNA/cationic polymer (polyplexes) and DNA/cationic polymer/cationic lipid (lipopolyplexes) electrostatic complexes are proposed as non-viral nucleic acids delivery systems. These DNA-nanoparticles are taken up by the cells through endocytosis processes, but the low capacity of DNA to escape from endosomes is regarded as the major limitations of their transfection efficiency. Here, we present a current report on a particular class of carriers including the polymers, peptides and lipids, which is based on the exploitation of the imidazole ring as an endosome destabilization device to favour the nucleic acids delivery in the cytosol. The imidazole ring of histidine is a weak base that has the ability to acquire a cationic charge when the pH of the environment drops bellow 6. As it has been demonstrated for poly(histidine), this phenomena can induce membrane fusion and/or membrane permeation in an acidic medium. Moreover, the accumulation of histidine residues inside acidic vesicles can induce a proton sponge effect, which increases their osmolarity and their swelling. The proof of concept has been shown with polylysine partially substituted with histidine residues that has caused a dramatic increase by 3–4.5 orders of magnitude of the transfection efficiency of DNA/polylysine polyplexes. Then, several histidine-rich polymers and peptides as well as lipids with imidazole, imidazolinium or imidazolium polar head have been reported to be efficient carriers to deliver nucleic acids including genes, mRNA or SiRNA in vitro and in vivo. More remarkable, histidylated carriers are often weakly cytotoxic, making them promising chemical vectors for nucleic acids delivery.This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009  相似文献   

11.
Despite their relatively lower efficiency, nonviral approaches are emerging as safer alternatives in gene therapy to viral vectors. Delivery of nucleic acids to the target site is an important factor for effective gene expression (plasmid DNA) or knockdown (siRNA) with minimal side effects. Direct deposition at the target site by physical methods, including ultrasound, electroporation and gene gun, is one approach for local delivery. For less accessible sites, the development of carriers that can home into the target tissue is required. Cationic peptides, lipoplexes, polyplexes and nanoplexes have been used as carriers for delivery of nucleic acids. Targeting ligands, such as cell targeting peptides, have also been applied to decorate delivery vehicles in order to enhance their efficacy. This review focuses on delivery strategies and recent progress in non-viral carriers and their modifications to improve their performance in targeting and transfection.  相似文献   

12.
Purpose In vitro transfection of secreting cells is regarded as one strategy for improved cell engineering/transplantation. Insulin-secreting insulinoma cell lines or pancreatic β-cells could be genetically engineered using designed polymeric vectors which are safer than viral vectors. This study investigates the effects of the constituents in transfection media on polymeric transfection.Methods Polyplexes conjugated with sulfonylurea (SU) were evaluated under different transfection conditions for gene transfection and their effects on cytotoxicity and insulin secretion. Several components in transfection media specifically associated with the insulin secretion pathway were amino acids, vitamins, Ca2+ and K+. The interactions of the polyplexes with insulin were monitored by surface charge and particle size to monitor how insulin as a protein influences transfection.Results For an insulin-secreting cell line (RINm5F), polyplexes in Ca2+-containing KRH medium (Ca2+(+)KRH) enhanced transfection and did not cause damage to biological functions. When adding amino acids, vitamins, or K+ or depleting Ca2+ from Ca2+(+)KRH, poly(l-lysine)/DNA complexes showed a greater reduction in transfection than SU receptor (SUR)-targeting polyplexes (SU-polyplex). Positively charged polyplexes interacted with insulin, developing a negative surface charge, and these interactions may cause a decrease in transfection.Conclusion The findings suggest that in vitro and ex vivo polymeric transfection of insulin-secreting cells can be modulated and enhanced by adjusting the transfection conditions.  相似文献   

13.
The potential of gene therapy to treat cancer is currently limited by the low expression of therapeutic genes in the tumors. Because amino acids are known to have excellent properties in cell penetration and gene expression regulation, we investigated if the conjugation of arginine (Arg), lysine (Lys) and leucine (Leu) onto the surface of the gene delivery system polyethylenimine (PEI) could lead to an improved gene expression in tumors. The intravenous administration of Arg-, Lys- and Leu-bearing PEI polyplexes led to a significant increase of gene expression in the tumor, with a β-galactosidase expression amount at least threefold higher than that obtained after treatment with unmodified PEI polyplex. The three amino acid-bearing PEI polyplexes led to similar levels of gene expression in the tumor. The treatments were well tolerated by the mice. Arg-, Lys- and Leu-bearing PEI polyplexes are therefore highly promising gene delivery systems for cancer therapy.

From the Clinical Editor

In this paper, amino-acid based modulations of gene delivery enhancement are reported. Intravenous administration of Arg-, Lys- and Leu-bearing polyethylenimine polyplexes led to a significant increase of gene expression in the studied tumor model, which may enable the development of more efficient gene delivery strategies for future clinical applications.  相似文献   

14.
Effective gene therapy for cancer remains an elusive goal, even after more than a decade of intensive research. There has been, however, tremendous progress in the development of increasingly sophisticated non-viral (or synthetic) delivery vectors for local and systemic administration of nucleic acids. Recent clinical data has also indicated the feasibility of using antisense oligonucleotides to inhibit inappropriately expressed or mutated genes in human cancers. The purpose of this review is to provide an update of the patent literature on the development of non-viral approaches for cancer gene therapy. In particular, patents on lipoplexes and polyplexes for delivery of therapeutic genes and antisense oligonucleotides are reviewed. The diverse range of antisense strategies being developed and recent clinical data are also highlighted.  相似文献   

15.
Introduction: Branched and linear polyethylenimines (PEIs) are cationic polymers that have been used to deliver nucleic acids both in vitro and in vivo. Owing to the high cationic charge, the branched polymers exhibit high transfection efficiency, and particularly PEI of molecular weight 25 kDa is considered as a gold standard in gene delivery. These polymers have been extensively studied and modified with different ligands so as to achieve the targeted delivery.

Areas covered: The application of PEI in vivo promises to take the polymer-based vector to the next level wherein it can undergo clinical trials and subsequently could be used for delivery of therapeutics in humans. This review focuses on the various recent developments that have been made in the field of PEI-based delivery vectors for delivery of therapeutics in vivo.

Expert opinion: The efficacy of PEI-based delivery vectors in vivo is significantly high and animal studies demonstrate that such systems have a potential in humans. However, we feel that though PEI is a promising vector, further studies involving PEI in animal models are needed so as to get a detailed toxicity profile of these vectors. Also, it is imperative that the vector reaches the specific organ causing little or no undesirable effects to other organs.  相似文献   

16.
Importance of the field: Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined.

Areas covered in this review: The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations.

What the reader will gain: This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery.

Take home message: A thorough understanding of biological barriers and the structure–activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy.  相似文献   

17.
Certain disease states can be corrected by using nucleic acids as therapeutic agents. To achieve this, nucleic acids must be delivered into the affected cells efficiently. At the core of a successful gene therapy protocol is the design of the nucleic acid carrier. Cationic lipids, as one of the gene delivery systems, have a wide potential in delivering nucleic acids both in vivo and in vitro. They are synthetic in origin and, hence, can be produced in required quantities and are biologically safe. Significant inputs from synthetic chemists in the recent past have resulted in the exploration of cationic lipids with very interesting functionalities. Transfection efficiencies of cationic lipids are comparable to viral-mediated transfection in vitro. However, viral-based methods for gene delivery in vivo are comparatively more efficient. Current understanding of lipid-mediated transfection is partially due to incomplete characterisation of the lipoplex, poor understanding of cell biology of transfection and cell type variations in transfection efficiencies. The published patents and research demonstrates the need for incorporation of the biological information in the design of the gene delivery formulations. In this review, the cell biological aspects critical for lipid-mediated transfection are emphasised. The parameters that influence the colloidal stability of the lipoplexes, cell biological processes relevant to gene delivery, such as cell association/uptake, cytoplasmic stability of the DNA and nuclear import, are discussed. The main focus of this review is patents published in the last 5 years.  相似文献   

18.
《Drug delivery》2013,20(1):100-110
Abstract

Context: Ultrapure oligochitosans (UOCs) have recently been reported as efficient nonviral vectors for corneal and retinal gene delivery. However, the influence of some physicochemical factors on the transfection efficiency, such as the pH, remains unclear. Deeper in vitro research of these factors could provide valuable information for future clinical applications.

Objective: The aim of this study is to determine the influence of the pH decrease on the transfection efficiency of UOC/pDNA polyplexes in HEK293 and ARPE19 cells.

Materials and methods: We elaborated self-assembled UOC/pCMS-EGFP polyplexes. The influence of the most important factors on the particle size and the zeta potential was studied by an orthogonal experimental design. We evaluated, in vitro, the cellular uptake and the transfection efficiency by flow cytometry, and the cytotoxicity of the vectors by CCK-8 assay.

Results and discussion: The pH of the medium strongly influences the physicochemical properties of the polyplexes, and by its modulation we are able to control their superficial charge. A significant increase on the cellular uptake and transfection efficiency of UOCs was obtained when the pH was acidified. Neither of our UOC/pCMS-EGFP polyplexes caused cytotoxicity; however, cells treated with Lipofectamine 2000? showed decreased cell viability.

Conclusion: This kind of UOC vectors could be useful to transfect cells that are in an acidic environment, such as tumor cells. However, additional in vivo studies may be required in order to obtain an effective and safe medicine for nonviral gene therapy purpose.  相似文献   

19.
Dendrimers in gene delivery   总被引:13,自引:0,他引:13  
Dendrimers have unique molecular architectures and properties that make them attractive materials for the development of nanomedicines. Key properties such as defined architecture and a high ratio of multivalent surface moieties to molecular volume also make these nanoscaled materials highly interesting for the development of synthetic (non-viral) vectors for therapeutic nucleic acids. Rational development of such vectors requires the link to be made between dendrimer structure and the morphology and physicochemistry of the respective nucleic acid complexes and, furthermore, to the biological performance of these systems at the cellular and systemic level. The review focuses on the current understanding of the role of dendrimers in those aspects of synthetic vector development. Dendrimer-based transfection agents have become routine tools for many molecular and cell biologists but therapeutic delivery of nucleic acids remains a challenge.  相似文献   

20.
Localized delivery of drugs is an emerging field both with regards to drug delivery during disease as well as in tissue engineering. Despite significant achievements made in the last decades, the efficient delivery of proteins and peptides remains challenging, especially in cases requiring long-term release of proteins after application. The localized delivery of nucleic acids (NA) represents an interesting alternative due to higher physicochemical stability of NA, increased efficiency by harnessing cells as bioreactors for the production of required proteins and improved versatility with regards to expression of specific proteins through plasmid DNA or repression of gene products through siRNA. However, unlike most proteins and peptides, NA must be delivered to the cytoplasm or nucleus to be efficacious, resulting in significant delivery challenges. We herein describe frequently used non-viral vectors for the delivery of NA including polyplexes, lipoplexes and lipopolyplexes and summarize recent developments in the field of nucleic acid delivery systems for local application based on hydrogels, solid scaffolds and physical delivery methods. The challenges associated with the different approaches are identified and options to address these challenges are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号