首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recently hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) was used for BS-RNase modification to prevent its degradation in bloodstream or fast elimination. Polymer-conjugated BS-RNase preparations proved to be cytotoxic after intravenous or intraperitoneal application, whereas native BS-RNase was ineffective. Here RNase A unimer was conjugated with two HPMA polymers (classic and star) and their antitumor effects both in vitro and in vivo were compared with those of BS-RNase polymers. Surprisingly, the antitumor effect of RNase A conjugates was also pronounced. The RNase A conjugates (classic and star) injected intravenously to mice bearing melanoma tumor caused a significant reduction in tumor volume following ten doses of 5 and 1 mg/kg, respectively. Despite the antitumor activity observed in vivo, the in vitro tested cytotoxic activity of RNase A did not differ from that caused by native RNase A while native BS-RNase (50 microg/ml) totally inhibited DNA synthesis in treated cells. The experiments with 125I-labeled preparations demonstrated concentration-dependent internalization of native BS-RNase by tumor cells within an hour, whereas the polymer conjugate (S-BS) was not internalized. On the contrary, the in vivo experiments showed that whereas 40% of S-BS conjugate persisted in bloodstream for 24h after administration, 98% of the native BS-RNase was already eliminated. Improved antitumor activities of PHPMA-modified RNases in vivo might be ascribed to their prolonged retention in bloodstream, better proteolytic stability and resistance to the action of the ribonuclease inhibitor.  相似文献   

2.
Purpose. Two different monoclonal antibody-targeted HPMA copolymer-doxorubicin conjugates, classic and starlike, were synthesized to be used for site-specific cancer therapy. The anti-mouse Thy-1.2 (IgG3) and two anti-human CD71/A (IgG1) and CD71/B (IgG2a) monoclonal antibodies were used as targeting structures. Methods. Their binding and cytotoxic activity in vitro, body distribution, and anticancer activity in vivo were evaluated. Results. The results of flow cytometric analysis showed comparable binding of classic and starlike conjugates to the target cells. The in vitro cytotoxic effect was 10-fold higher if cancer cells were exposed to the starlike conjugate compared to the classic one. Biodistribution studies showed that the starlike conjugate remained in a relatively high concentration in blood, whereas the classic conjugate was found in a 6.5-times lower amount. In contrast to the low antitumor activity of free doxorubicin and nontargeted HPMA copolymer-doxorubicin conjugate, both anti-Thy-1.2 targeted conjugates (classic and starlike) cured all mice bearing T-cell lymphoma EL4. On the other hand, starlike conjugates containing anti-CD71/A or anti-CD71/B monoclonals as targeting structures were more effective against human colorectal cancer SW 620 than the classic one. Conclusions. We have shown that the starlike conjugates are more effective systems for targeted drug delivery and cancer treatment than classic conjugates.  相似文献   

3.
Bovine seminal ribonuclease (BS-RNase) is a protein with a number of biological effects. It shows antitumoral, aspermatogenic, antiembryonic, immunosuppressive and antiviral properties. The cytotoxic effects appear to be specific for tumor cells as non-malignant cells seem to be unaffected in vitro. Unfortunately, the in vivo application of BS-RNase so far was successful only when it was administered intratumorally. Therefore, the objective of the present investigation was to improve the properties of BS-RNase by attachment to nanoparticles made of polylactic acid (PLA-NP) using an adsorption method. This preparation was tested in vitro against leukemia (MOLT-4) and lymphoma (H9) cell lines sensitive and resistant to cytarabine. No difference between the nanoparticle preparation and pure BS-RNase was found in these tests. To examine the in vivo effects, the preparations were tested for their aspermatogenic and antiembryonal efficacy compared to the pure BS-RNase as a rapid test for antitumoral activity. The aspermatogenic and antiembryonal effects were enhanced by the nanoparticle preparation. Consequently, BS-RNase loaded adsorptively to PLA-NP holds promise for the in vivo use as an antitumoral agent. Further research will investigate the efficacy of this preparations in an in vivo tumor model.  相似文献   

4.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel-RGDfK conjugate was synthesized, characterized, and evaluated in vitro and in vivo in comparison with untargeted low and high molecular weight HPMA copolymer-docetaxel conjugates. The targeted conjugate was designed to have a hydrodynamic diameter below renal threshold to allow elimination post treatment. All conjugates demonstrated the ability to inhibit the growth of DU145 and PC3 human prostate cancer cells and the HUVEC at low nanomolar concentrations. The targeted conjugate showed active binding to α(v)β(3) integrins in both HUVEC and DU145 cells, whereas the untargeted conjugate demonstrated no evidence of specific binding. Efficacy at two concentrations (20 mg/kg and 40 mg/kg) was evaluated in nu/nu mice bearing DU145 tumor xenografts treated with a single dose of conjugates and compared with controls. RGDfK targeted and high molecular weight nontargeted conjugates exhibited the highest antitumor efficacy as evaluated by tumor regression. These results demonstrate that α(v)β(3) integrin targeted polymeric conjugates with improved water solubility, reduced toxicity and ease of elimination post treatment in vivo are promising candidates for prostate cancer therapy.  相似文献   

5.
Poly-alpha-(l-glutamic acid) (PG) conjugates of 20(S)-camptothecin (1, CPT) displayed improved aqueous solubility compared to CPT, were stable in aqueous solution at neutral pH, and were potent antitumor agents in vivo. Evaluation of PG molecular weight, CPT loading, aqueous solubility, and CPT equivalent dosing with respect to in vivo antitumor potencies of various linked conjugates led to identification of a preferred conjugate composition.  相似文献   

6.
Du H  Cui C  Wang L  Liu H  Cui G 《Molecular pharmaceutics》2011,8(4):1224-1232
Arginine-glycine-aspartate (RGD) has been shown to possess a strong affinity for the integrins overexpressed in tumor cells, especially during tumor invasion, angiogenesis and metasis. Based on work from others, a novel tetrapeptide, arginine-glycine-aspartate-phenylanaline (RGDF), has been designed and studied as a homing device to direct liposomal doxorubicin (DOX) to tumor cells in this work. In order to incorporate RGDF into liposomal DOX preparations, RGDF was conjugated with three different fatty alcohols to achieve RGDF-fatty alcohol conjugates. Glycine-glycine-aspartate-phenylanaline (GGDF)-lauryl alcohol conjugate was synthesized as a negative control. RGDF-fatty alcohol conjugates (RGDFO(CH(2))(n)CH(3)) and GGDF-lauryl alcohol conjugate (L-GGDFC12-DOX) incorporated liposomal preparations were obtained by first preparing liposomes using the film dispersion method followed by loading DOX using a transmembrane pH gradient method. Because of their amphipathic nature, RGDF- or GGDF-fatty alcohol conjugates are expected to be readily incorporated into liposomes with their fatty alkanyl chains being intercalated between fatty acyl chains of liposomal bilayers and the hydrophilic peptide moiety (RGDF or GGDF) being anchored on the surface of liposomes. The particle size and zeta potential of liposomal DOX preparations containing RGDF-fatty alcohol conjugate (L-RGDF-DOXs) or L-GGDFC12-DOX were measured, and their morphology was studied using transmission electron microscopy. In vitro DOX release profile from RGDF incorporated liposomal DOX was measured. The antitumor activities of RGDF incorporated liposomal DOX preparations were evaluated in ICR mice inoculated with sarcoma S(180), which is known to express α(v)β(3) integrin. Both conventional liposomal DOX preparation (L-DOX) without RGDFO(CH(2))(n)CH(3) and L-GGDFC12-DOX were used as negative controls. Our results showed improved tumor growth inhibition with L-RGDF-DOXs over doxorubicin hydrochloride solution, L-DOX and L-GGDFC12-DOX. Pathological examination of tumor biopsy demonstrated that L-RGDF-DOXs induced enhanced tumor cell death in comparison to negative controls. Pharmacokinetic studies showed that the concentrations of DOX found in tumor sites were increased by 1.7-4.5-fold when liposomal DOX preparation containing RGDF-lauryl alcohol conjugate (L-RGDFC12-DOX) was administered in comparison to when L-GGDFC12-DOX or doxorubicin hydrochloride solution was administered. The concentrations of DOX found in the heart, which is the main site of toxic effects of DOX, were significantly reduced when L-RGDFC12-DOX was administered in comparison to when L-GGDFC12-DOX or doxorubicin hydrochloride solution was administered.  相似文献   

7.
聚谷氨酸-顺铂复合物的制备及其生物活性   总被引:1,自引:1,他引:0  
本文介绍了制备一种γ-聚谷氨酸-顺铂复合物,并考察其体外的抗肿瘤活性。主要通过生物发酵法获得γ-聚谷氨酸,酸降解法得到小分子γ-聚谷氨酸;利用PCR方法检测γ-聚谷氨酸-顺铂复合物对DNA的作用;利用MTT法来检测该复合物的体外抗肿瘤作用;利用流式细胞仪检测其对细胞凋亡的作用;利用小鼠体内实验检测其体内毒性作用。实验结果表明:成功获得γ-聚谷氨酸-顺铂复合物,该复合物载药率达10%~12%;该复合物对人肝癌细胞BEL7404、人非小细胞肺癌细胞H446和人结肠癌细胞RKO均具有显著的杀伤作用,能引起细胞凋亡(出现凋亡峰);并且小鼠体内毒性试验表明该聚谷氨酸-顺铂复合物的毒性要比游离顺铂低。因此,γ-聚谷氨酸-顺铂复合物是一种有效的抗肿瘤药物,具有潜在的临床应用价值;生物发酵的γ-聚谷氨酸可用于药物载体,赋予药物新的特点。  相似文献   

8.
Biomedical imaging is valuable for noninvasive investigation of in vivo drug delivery with polymer conjugates. It can provide real-time information on pharmacokinetics, biodistribution, and drug delivery efficiency of the conjugates. Noninvasive visualization of in vivo drug delivery of polymer conjugates with contrast-enhanced magnetic resonance imaging (MRI) was studied with paramagnetically labeled poly(L-glutamic acid) in an animal tumor model. Poly(L-glutamic acid) is a biocompatible and biodegradable drug carrier for diagnostics and therapeutics. Poly(L-glutamic acid)-1,6-hexanediamine--(Gd-DO3A) conjugates with molecular weights of 87, 50, and 28 kDa and narrow molecular weight distributions were prepared and studied in mice bearing MDA-MB-231 human breast cancer xenografts. Contrast-enhanced MRI resulted in real-time and three-dimensional visualization of blood circulation, pharmacokinetics, biodistribution, and tumor accumulation of the conjugates, and the size effect on these pharmaceutics properties. The conjugate of 28 kDa rapidly cleared from the circulation and had a relatively lower tumor accumulation. The conjugates with higher molecular weights exhibited a more prolonged blood circulation and higher tumor accumulation. The difference between the conjugates of 87 and 50 kDa was not significant. Contrast-enhanced MRI is effective for noninvasive real-time visualization of in vivo drug delivery of paramagnetically labeled polymer conjugates.  相似文献   

9.
In studies on antitumor antibody-cytotoxic drug conjugates as potential antitumor agents with improved tumor specificity, daunomycin (DM) was first linked to a poly-L-glutamic acid (PLGA) derivative having a single masked thiol group. At the thiol group, DM-linked PLGA was bound to horse anti-rat alpha-fetoprotein (AFP) antibody. The anti-AFP antibody-PLGA-DM conjugate (anti-AFP conjugate, DM/PLGA/Ig molar binding ratio, 7.5/1.2/1.0) retained most of the antigen-binding activity of the parent antibody and was more potent than either unconjugated DM, a conjugate similarity prepared with normal horse immunoglobulin (normal conjugate), or an unconjugated mixture of anti-AFP antibody and DM in an in vitro cytotoxicity assay against the AFP-producing rat ascites hepatoma cell line AH66. Anti-AFP conjugate tended to be less cytotoxic than DM against the AFP-nonproducing rat ascites hepatoma AH272 cells, and in this case there was no difference between the cytotoxicities of anti-AFP conjugate and of normal conjugate.  相似文献   

10.
Taxoids bearing methyldisulfanyl(alkanoyl) groups for taxoid-antibody immunoconjugates were designed, synthesized and their activities evaluated. A highly cytotoxic C-10 methyldisulfanylpropanoyl taxoid was conjugated to monoclonal antibodies recognizing the epidermal growth factor receptor (EGFR) expressed in human squamous cancers. These conjugates were shown to possess remarkable target-specific antitumor activity in vivo against EGFR-expressing A431 tumor xenografts in severe combined immune deficiency mice, resulting in complete inhibition of tumor growth in all the treated mice.  相似文献   

11.
Polymeric anticancer drugs with pH-controlled activation   总被引:2,自引:0,他引:2  
The paper is dealing with the synthesis and properties of new, nontargeted or antibody-targeted pH-sensitive polymer-doxorubicin (DOX) conjugates designed as anticancer drugs facilitating site-specific therapy. These conjugates are stable and inactive during transport in the body but activate inside target cells as a result of pH changes outside and inside the cells. Cytotoxicity of the conjugates depends on the detailed structure of the polymer and of the spacer between the drug and polymer carrier. In both protective and therapeutic regimes of drug administration, the in vivo antitumor activity of the pH-sensitive conjugates containing DOX was significantly enhanced (T-cell lymphoma EL 4, C57BL/16 mice) in comparison with the free DOX or classic PK1, the PHPMA-DOX conjugate clinically tested at present.  相似文献   

12.
Human ovarian cancer cells specifically bind the isoflavone daidzein. A chemical conjugate between daidzein and the garlic enzyme alliinase was prepared. The conjugate specifically bound to ovarian cancer cells and upon addition of the prodrug alliin, it effectively produced cytotoxic allicin molecules which killed the cancer cells. In vivo targeting and antitumor effect was confirmed by NIR and bioluminescence imaging using daidzein-alliinase-CyTE-777 conjugates and luciferase-expressing ovarian cancer cells. Co-localization of the fluorescent conjugate with bioluminescence was observed for intraperitoneal tumors while nonconjugated alliinase did not accumulate. Biodistribution studies with Europium-labeled conjugate revealed a five fold higher uptake in tumors as compared to other tissues. Treatment of tumor bearing mice with daidzein-alliinase and alliin effectively attenuated tumor progression during the first 12 days while a 5-fold increase in bioluminescence was detected in placebo-treated animals. Autopsy revealed only small individual foci of luminescence at the site of tumor cells inoculation. Histological examination of organs and tissues did not reveal any additional foci of carcinoma or signs of toxicity. These results suggest that the targeted alliinase conjugates in the presence of alliin, generated therapeutically effective levels of allicin which were capable of suppressing tumor progression of intraperitoneal ovarian cancer in an animal model.  相似文献   

13.
Lai CL  Lai L  Zhao JB  Chen JH 《药学学报》2010,45(7):920-925
To prepare polyrotaxane-camptothecin conjugates and evaluate its anti-tumor effect, polyrotaxane-camptothecin conjugates were successfully synthesized, and the release behavior was performed; MTT assay and cell morphology were used to examine the inhibition of cells' proliferation effect in vitro. The experimental study of the antitumor effect on S180 mice in vivo was also performed to further evaluate the anti-tumor effect of conjugate. The result showed polyrotaxane-camptothecin conjugates can effectively inhibit the proliferation in a dose dependent effect. In vivo study and cell morphology observation of S180 mice showed significant decrease in growth of tumor, degree of tumor infiltration and blood vessel number. The result indicated anti-tumor mechanism may be through affect the angiogenesis and reduced blood supply to tumor cells and then leading to necrosis.  相似文献   

14.
A method has been developed to allow the direct coupling of the cytotoxic vinca alkaloid 4-desacetylvinblastine-3-carbohydrazide (DAVLB hydrazide) to a variety of murine monoclonal antibodies directed against human solid tumors. Periodate oxidation of carbohydrate residues on the antibodies, followed by reaction with DAVLB hydrazide in aqueous acid affords, in most cases, conjugates with conjugation ratios of 4-6 vincas per antibody in high yield without significantly impairing antigen binding or solubility. The outcome of the conjugation reaction is highly dependent on the concentration of, and time of exposure of the protein to, the oxidant. These conjugates exhibit potent antitumor activity in vivo against a number of human solid tumor-nude mouse xenografts, with efficacy and safety increased over unconjugated DAVLB hydrazide. This antitumor activity is also superior to that of similarly prepared but nontarget tumor binding antibody-DAVLB hydrazide conjugates. MoAb-DAVLB hydrazide conjugates release DAVLB hydrazide in solution in a temperature- and pH-dependent manner. Hydrolytic release of unmodified DAVLB hydrazide from tumor-localized MoAb-DAVLB hydrazide conjugates in vivo may be an important factor in their antitumor activity.  相似文献   

15.
张永健  王耐勤  刘彤  董志伟 《药学学报》1990,25(12):886-890
以牛血清白蛋白为中间载体,将血卟啉衍生物(HPD)与抗胃癌单克隆抗体3H11交联。交联物3H11-BSA-HPD的克分子比为1:1:200。本文对3H11-BAS-HPD的体内外抗肿瘤作用进行了研究,并与直接交联物3H11-HPD进行比较。3H11-BSA-HPD和3H11-HPD对胃癌靶细胞BGC-823的细胞毒效应相似,并均明显比游离HPD强。在接种靶细胞(2×10~5细胞/只)的裸鼠中,对照组和HPD组均于接种后13天内形成瘤块,而间接和直接交联物处理组在34天实验期内仅有1/6动物形成肿瘤。结果表明3H11-BSA-HPD和3H11-HPD在HPD相等剂量下,具有相似的导向杀伤肿瘤细胞的作用。  相似文献   

16.
The antitumor activity of the organometallic ruthenium(II)-arene complexes, RuCl(2)(eta(6)-arene)(PTA), (arene = p-cymene, toluene, benzene, benzo-15-crown-5, 1-ethylbenzene-2,3-dimethylimidazolium tetrafluoroborate, ethyl benzoate, hexamethylbenzene; PTA = 1,3,5-triaza-7-phosphaadamantane), abbreviated RAPTA, has been evaluated. In vitro biological experiments demonstrate that these compounds are active toward the TS/A mouse adenocarcinoma cancer cell line whereas cytotoxicity on the HBL-100 human mammary (nontumor) cell line was not observed at concentrations up to 0.3 mM, which indicates selectivity of these ruthenium(II)-arene complexes to cancer cells. Analogues of the RAPTA compounds, in which the PTA ligand is methylated, have also been prepared, and these prove to be cytotoxic toward both cell lines. RAPTA-C and the benzene analogue RAPTA-B were selected for in vivo experiments to evaluate their anticancer and antimetastatic activity. The results show that these complexes can reduce the growth of lung metastases in CBA mice bearing the MCa mammary carcinoma in the absence of a corresponding action at the site of primary tumor growth. Pharmacokinetic studies of RAPTA-C indicate that ruthenium is rapidly lost from the organs and the bloodstream.  相似文献   

17.
The α(v)β(3) integrin receptor plays an important role in human metastasis and tumor-induced angiogenesis. Cyclic Arg-Gly-Asp (cRGD) peptide represents a selective α(v)β(3) integrin ligand that has been extensively used for research, therapy, and diagnosis of neoangiogenesis. For developing photosensitizers with enhanced PDT efficacy, we here report the synthesis of a series of bifunctional agents in which the 3-(1'-hexyloxyethyl)-3-devinylpyropheophorbide a (HPPH), a chlorophyll-based photosensitizer, was conjugated to cRGD and the related analogues. The cell uptake and in vitro PDT efficacy of the conjugates were studied in α(v)β(3) integrin overexpressing U87 and 4T1 cell lines whereas the in vivo PDT efficacy and fluorescence-imaging potential of the conjugates were compared with the corresponding nonconjugated photosensitizer HPPH in 4T1 tumors. Compared to HPPH, the HPPH-cRGD conjugate in which the arginine and aspartic acid moieties were available for binding to two subunits of α(v)β(3) integrin showed faster clearance, enhanced tumor imaging and enhanced PDT efficacy at 2-4 h postinjection. Molecular modeling studies also confirmed that the presence of the HPPH moiety in HPPH-cRGD conjugate does not interfere with specific recognition of cRGD by α(v)β(3) integrin. Compared to U87 and 4T1 cells the HPPH-cRGD showed significantly low photosensitizing efficacy in A431 (α(v)β(3) negative) tumor cells, suggesting possible target specificity of the conjugate.  相似文献   

18.
Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris® (anti-CD30-drug conjugate) and Kadcyla® (anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.  相似文献   

19.
Bovine seminal ribonuclease (BS-RNase) is an antitumoral active enzyme exhibiting specific antitumoral action against a number of different cancer cell lines. However, its systemic use is limited by its pharmacokinetic properties and antigenicity. Therefore, it was conjugated to polyethylene glycol (PEG) chains to overcome these problems. Measurement of aspermatogenic effects of the preparation after s.c. injection and injection into the scrotum was chosen as a model for the distribution of the enzyme in the body mediated by the linkage to PEG chains. Additionally, the antigenicity of BS-RNase coupled to PEG chains (BS-RNase-PEG) was compared to that of free BS-RNase, as antigenicity is known to be one of the main obstacles in the use of protein-based drugs. BS-RNase-PEG caused aspermatogenic effects after systemic administration to mice in very low concentrations at which free BS-RNase is not effective. Moreover, BS-RNase possessed a very low antigenicity as long as it was coupled to the PEG chains. In order to investigate the antitumoral efficacy of BS-RNase-PEG in vivo, preliminary experiments on the effect of the conjugate on neuroblastoma growth in mice were performed in a UKF-NB-3 xeno-transplantate model, demonstrating a drastically increased anti-tumoral activity of the conjugate compared to the free enzyme.  相似文献   

20.
The antiproliferative and antitumor effect of wheat leaf ribonuclease was tested in vitro on the human ML-2 cell line and in vivo on athymic nude mice bearing human melanoma tumors. The antiproliferative activity of this plant ribonuclease was negligible in comparison with bovine seminal ribonuclease. In the experiments in vivo, a significant decrease of the tumor size, however, was observed in the mice treated with wheat leaf ribonuclease (27 kDa) compared with the control RNase A and polyethylene glycol. In nude mice injected intratumoraly with wheat leaf ribonuclease, the tumor size decreased from 100% in the control mice to 39% in treated mice. In the mice treated with polyethylene glycol-conjugated wheat leaf ribonuclease, the tumor reduction was observed from 100 to 28%, whereas in counterparts treated with polyethylene glycol-conjugated bovine seminal ribonuclease the tumor inhibition was reduced from 100 to 33%. Certain aspermatogenic and embryotoxic activity of wheat leaf ribonuclease and bovine seminal ribonuclease also appeared, but was lower in comparison with the effect of onconase. Mutual immunological cross-reactivity between wheat leaf ribonuclease antigens on one side and animal RNases (bovine seminal ribonuclease, RNase A, human HP-RNase and onconase) on the other side proved a certain structural similarity between animal and plant ribonucleases. Immunogenicity of wheat leaf ribonuclease was weaker in comparison with bovine seminal ribonuclease (titer of antibodies 160-320 against 1280-2560 in bovine seminal ribonuclease). Interestingly, immunosuppressive effect of wheat leaf ribonuclease tested on mixed lymphocyte culture-stimulated human lymphocytes reached the same level as that of bovine seminal RNase. The antibodies against wheat leaf ribonuclease produced in the injected mice did not inactivate the biological effect of this plant RNase in vivo. This is probably the first paper in which plant ribonuclease was used as antiproliferative and antitumor drug against animal and human normal and tumor cells and tissues in comparison with animal ribonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号