首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme oxygenase (HO) enzymes catalyze the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, which is rapidly converted to bilirubin. HO-2 has been implicated in protection against oxidative stress, ischemia, and traumatic brain injury. The neuroprotective effects of HO-2 have been attributed to the generation of bilirubin, which is an important radical scavenger. However, the mechanism by which HO-2 provides protection is unclear. We utilized the olfactory system as a model to define the roles of HO-2 in glutathione depletion-induced oxidative injury, since olfactory receptor neurons (ORNs) express high levels of HO isoforms. We demonstrated that L-buthionine-[S, R]-sulfoximine (BSO), an inhibitor of glutathione biosynthesis, lowered glutathione levels and induced apoptosis of ORNs. Despite the presence of HO-1 in ORNs, HO-2 null animals displayed increased levels of neuronal death after BSO treatment compared to wild type mice. Levels of bilirubin and cGMP were also reduced in HO-2 null mice. Primary cultures of ORNs confirmed that the neuroprotective role of HO-2 was mediated by bilirubin and cGMP. Taken together, these results suggest that HO-2 plays a major role in neuroprotection from oxidative stress, an effect that is mediated by cGMP and bilirubin.  相似文献   

2.
Oxidative stress is considered as one of key factors related to Alzheimer’s disease (AD), while kinetin (KT) has been reported to exert anti-oxidative activities as well as neuroprotective effects both in vivo and in vitro. Thus, in this study, the neuroprotective effects of KT against glutamate-induced oxidative toxicity in HT22 cells were investigated. To evaluate the anti-oxidative capabilities of KT itself, several anti-oxidative assays in vitro were conducted. To evaluate the neuroprotective effects of KT, the levels of intracellular reactive oxygen species (ROS) and calcium influx, mitochondrial membrane potential (MMP), and cell death were measured by flow cytometry. Nuclear translocation of apoptosis inducing factor (AIF) and content of intracellular ATP were also determined. In addition, the phosphorylation levels of apoptosis signal-regulating kinase 1 (ASK-1), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinases (p38) were evaluated as well. Besides, nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) were also examined to reveal underlying mechanisms. Results showed that KT rescued cell death, and suppressed the accumulation of intracellular ROS and the increase of intracellular calcium influx. In addition, KT maintained normal function of mitochondria and inhibited the phosphorylation of ASK-1, JNK, and p38. KT also promoted nuclear translocation of Nrf2 and enhanced the expression of HO-1 both at protein and mRNA level. Importantly, blockage of Nrf2 almost completely abolished the neuroprotective effects of KT, while blockage of HO-1 expression partly neutralized its neuroprotective effects. Our results indicated that KT can protect HT22 cells from glutamate-induced cell death by activating Nrf2 pathway and inducing expression of HO-1, suggesting KT might be a drug candidate for treatment of AD and other neurodegenerative disorders related to oxidative stress.  相似文献   

3.
4.
The inducible protein heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to carbon monoxide (CO) and biliverdin, which play a concerted action in cytoprotection against oxidative stress and in the modulation of cell proliferation and differentiation. Here we report that both HO-1 expression and activity can be highly increased in undifferentiated human mesenchymal stem cells (MSCs) treated with hemin, a known HO-1 inducer. However, HO-1 mRNA and protein expression gradually decrease when MSCs undergo neural differentiation in vitro, making them extremely susceptible to glutamate-mediated cytotoxicity. A time course for HO-1 revealed that this protein is markedly down-regulated after 2 days and returns to control levels 6 days after differentiation. Treatment with glutamate (250 microM) after 2 days of neural differentiation resulted in a more pronounced lactate dehydrogenase release, a marker of cell injury, compared with undifferentiated cells. Notably, cells pretreated with hemin (50 microM) or compounds that release small amounts of CO (10 microM CORM-3 and CORM-A1) rendered cells more resistant to glutamate-induced toxicity; this effect was evident in both undifferentiated and differentiated MSCs. Our findings indicate that MSCs become more vulnerable to oxidative injury during the early stages of differentiation via mechanisms that involve a temporary inhibition of HO-1 expression. Thus, overexpression of HO-1 and CO-releasing molecules could provide a possible therapeutic strategy to improve cell viability during neural differentiation in applications that use stem cell technology.  相似文献   

5.
血红素加氧酶系统在神经系统疾病中变化的研究进展   总被引:3,自引:0,他引:3  
血红素加氧酶(HO)在神经系统广泛分布,其反应产物即铁离子、一氧化碳和胆色素都是生物活性分子,对细胞的生存和增殖有广泛的生物学作用。同工酶HO-1和HO-2不同的分子特性和脑内不同的调控特点决定了两者神经功能的差别。HO-2在生理情况下大量表达维持脑的正常功能;而HO-1与神经系统疾病密切相关。大量研究表明HO-1的上调表达对氧化应激引起的神经系统疾病有保护作用,另一方面使铁离子病理性沉积促进了神经系统变性疾病的发生。  相似文献   

6.
In recent years, repetitive transcranial magnetic stimulation (rTMS) of the human brain has been used as a therapeutic tool in a variety of psychiatric and neurological disorders. However, to understand the mechanisms underlying any potential therapeutic effects, and possible adverse effects, studies are necessary on how magnetic stimuli induced by rTMS interact with central nervous system (CNS) regulation. In the current study, we failed to find cognitive impairments or structural alterations in rat brains after 11 weeks of long-term treatment with rTMS, which if present would indicate neuronal damage. In contrast, our in vitro studies showed that magnetic stimulation analogous to rTMS increased the overall viability of mouse monoclonal hippocampal HT22 cells and had a neuroprotective effect against oxidative stressors, e.g. amyloid beta (Abeta) and glutamate. The treatment increased the release of secreted amyloid precursor protein (sAPP) into the supernatant of HT22 cells and into cerebrospinal fluid from rats. HT22 cells preincubated with cerebrospinal fluid from rTMS-treated rats were found to be protected against Abeta. These findings suggest that neurochemical effects induced by rTMS do not lead to reduced neuronal viability, and may even reduce the detrimental effects of oxidative stress in neurons.  相似文献   

7.
Hemin, the oxidized form of heme, is released from hemoglobin after CNS hemorrhage and may contribute to injury to surrounding tissue. The heme oxygenase (HO) enzymes catalyze the breakdown of hemin to biliverdin, carbon monoxide, and ferric iron. Although HO-2, the isoform expressed predominantly in neurons, accelerates heme-mediated neuronal injury, inhibitor studies suggest that HO-1 induction has a protective effect on astrocytes. In the present study, we directly compared the vulnerability of cultured HO-1 knockout and wild-type astrocytes to hemin. Consistent with prior observations, exposure of wild-type cultures to hemin for 24 hr resulted in protein carbonylation and concentration-dependent cell death between 10 and 60 microM, as determined by MTT and lactate dehydrogenase release assays. In cultures prepared from mice lacking the HO-1 gene, oxidative cell injury was approximately doubled. Both protein oxidation and cell death in HO-1 knockout astrocytes were significantly reduced by pretreating cultures with an adenovirus encoding the HO-1 gene prior to hemin exposure. HO-2 expression was observed in both knockout and wild-type cultures and was not altered by HO-1 gene deletion. Cell hemin accumulation after 20 hr hemin exposure was 4.7-fold higher in knockout cells. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Selectively increasing its expression in astrocytes may be beneficial after hemorrhagic CNS injuries.  相似文献   

8.
Heme oxygenase (HO) and cyclooxygenase (COX) are two hemeproteins involved in the regulation of several functions in the nervous system. Heme oxygenase is the enzyme responsible for the degradation of heme into ferrous iron, carbon monoxide (CO), and biliverdin, the latter being further reduced in bilirubin (BR) by biliverdin reductase. Heme oxygenase-derived CO is a gaseous neuromodulator and plays an important role in the synaptic plasticity, learning and memory processes, as well as in the regulation of hypothalamic neuropeptide release, whereas BR is an endogenous molecules with antioxidant and anti-nitrosative activities. Cyclooxygenase is considered a pro-inflammatory enzyme as free radicals and prostaglandins (PGs) are produced during its catalytic cycle. Although PGs are also involved in a variety of physiologic conditions including angiogenesis, hemostasis, or regulation of kidney function, upregulation of COX and increase in PGs levels are a common feature of neuroinflammation. In the brain, a functional interplay exists between HO and COX. Heme oxygenase regulates COX activity by reducing the intracellular heme content or by generating CO, which stimulates PGE(2) release. Increased levels of PGs, free radicals, and the associated oxidative stress serve in the brain as a trigger for the induction of HO isoforms which increases cellular antioxidant defenses to counteract oxidative damage. The importance of the interaction between HO and COX in the regulation of physiologic brain functions, and its relevance to neuroprotective or neurodegenerative mechanisms are discussed.  相似文献   

9.
The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage.  相似文献   

10.
Dalbergia odorifera T. Chen (Leguminosae) grows in Central and South America, Africa, Madagascar, and Southern Asia. D. odorifera possesses many useful pharmacological properties, such as antioxidative and anti-inflammatory activities in various cell types. 4-Methoxydalbergione (MTD) and 4’-hydroxy-4-methoxydalbergione (HMTD) were isolated from the EtOH extract of D. odorifera by several chromatography methods. The chemical structures were elucidated by nuclear magnetic resonance (NMR) and mass spectrum (MS). Anti-inflammatory and cytoprotective effects were examined using BV2 microglial cells and murine hippocampus. MTD and HMTD were demonstrated to induce heme oxygenase (HO)-1 protein levels through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 microglial cells, while only MTD upregulated HO-1 in HT22 cells. MTD and HMTD induced HO-1 expression through JNK MAPK pathway in BV2 cells, whereas only MTD activated the ERK and p38 pathways in HT22 cells. MTD was also shown to activated MTD and HMTD suppressed lipopolysaccharide-stimulated nitric oxide (NO) and prostaglandin E2 production by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in a dose-dependent manner. Furthermore, MTD and HMTD attenuated pro-inflammatory cytokine productions. These anti-inflammatory effects were found to be mediated through the nuclear factor-kappa B (NF-κB) pathway. MTD exhibited neuroprotective effects on glutamate-induced neurotoxicity by promoting HO-1 in HT22 cells. The anti-inflammatory and cytoprotective effects of MTD and HMTD were partially reversed by an HO inhibitor tin protoporphyrin IX. In addition, MTD and HMTD inhibited pro-inflammatory cytokines and NF-κB pathway in primary rat microglia. These findings suggest that MTD and HMTD have therapeutic potential against neurodegenerative diseases accompanied by microglial activation and/or oxidative cellular injury.  相似文献   

11.
Heme oxygenase-1 (HO-1) catalyses the rate-limiting step of heme degradation to biliverdin, which is in turn reduced to bilirubin, CO and free iron. HO-1 can be induced by several harmful stimuli including oxidative stress, and it has a protective role against the cytotoxicity in different cells. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridinium (MPP+) is a neurotoxic substance that induces the degeneration of dopaminergic neurons. This study examined whether HO-1 can be induced by MPP+ and whether HO-1 has a protective role against the MPP+-induced cytotoxicity in PC-12 cells. MPP+ triggered a relatively rapid induction of HO-1. The MPP+-induced cytotoxicity and reactive oxygen species (ROS) production markedly increased by HO-1 inhibitor, zinc protoporphyrin-IX (ZnPP-IX). The increase of ROS production by ZnPP-IX was completely abrogated by either two products of HO (biliverdin or bilirubin) while the increase of cytotoxicity by ZnPP-IX was attenuated partially. These suggest that HO-1 expression might have some cytoprotective effect against MPP+-induced cytotoxicity.  相似文献   

12.
The prognosis of intracerebral hemorrhage (ICH) is unfavorable. Beyond immediate mass effect and tissue destruction, ICHs cause additional neuronal loss in a "perifocal reactive zone." Heme in ICH induces heme oxygenase-1 (HO-1), and the action of this enzyme on heme yields ferrous iron, biliverdin, and carbon monoxide. Iron is ultimately converted to ferritin and hemosiderin. Free iron is tissue-toxic, and inhibition of HO-1 should provide protection against additional damage. Experimental ICHs were made in adult rabbits by the stereotaxic injection of autologous blood, and the induction of HO-1 and increase in ferritin were followed by confocal immunofluorescence microscopy. Heme diffused rapidly through perivascular spaces, and HO-1 reaction product first occurred in perivascular cells and microglia. At this stage, HO-1 and ferritin showed extensive colocalization. As ICH resolution progressed, HO-1 immunoreactivity faded while ferritin and hemosiderin continued to accumulate. This process was accompanied by a gradient of destruction of neuronal cell bodies and dendrites in the perifocal reactive zone. In an effort to inhibit HO-1, repeated intravenous injections of tin-mesoporphyrin IX (SnMP) were given to ICH-bearing rabbits. The ICH disrupted the blood-brain barrier sufficiently to allow SnMP to enter the brain in pharmacological amounts, and the metalloporphyrin provided significant protection against neuronal loss.  相似文献   

13.
The enzyme heme oxygenase-1 (HO-1) is reducing heme to the gaseous mediator carbon monoxide, to iron and the antioxidant biliverdin. The inducible expression of HO-1 is considered a protective cellular mechanism against reactive oxygen intermediates. Further, carbon monoxide (CO) is a regulator of cGMP synthesis, of NO-synthetases and cyclooxygenases, thereby indirectly modulating reactive processes. Here we report expression of HO-1 in rat experimental autoimmune encephalomyelitis (EAE) and neuritis (EAN). With both models, similar results were obtained: HO-1 was localized predominantly to infiltrating, monocytic, but only rarely to ramified microglial cells or astrocytes surrounding the inflammatory lesions. Prominent expression by monocytic cells was seen from day 11 after immunization correlating with the development of neurologic disease. Further, local expression is persistent for long after cessation of neurologic signs. Thus, HO-1 could be considered a factor in the formation and resolution of inflammatory autoimmune lesions of the nervous system.  相似文献   

14.
目的 探讨血红素氧合酶-2基因缺失对血红素诱导氧化应激性脑损伤的保护作用.方法 分别将6 μl (8 μmol/L)灭菌氯高铁血红素定向注入野生型小鼠和基因(HO-2)敲除小鼠的纹状体内,72 h后分别检测纹状体细胞生存率,蛋白和脂类的氧化作用.用蛋白质印迹法检测血红素氧合酶-1,2(HO-1)的表达.结果 与野生型相比,基因(HO-2)敲除小鼠纹状体内蛋白和脂类的氧化作用显著降低,而纹状体细胞的存活率显著增加;HO-1的表达在两种小鼠注射前后没有明显差异.结论 结果提示,血红素氧合酶-2基因缺失对血红素诱导的氧化应激性脑损伤具有保护作用;选择性抑制神经元血红素氧合酶-2基因的表达可减轻氧化应激性脑损伤.  相似文献   

15.
Cellular mechanisms involved in multiple neurodegenerative diseases converge on mitochondria to induce overproduction of reactive oxygen species, damage to mitochondria, and subsequent cytochrome c release. Little is currently known regarding the contribution mitochondrial dynamics play in cytochrome c release following oxidative stress in neurodegenerative disease. Here we induced oxidative stress in the HT22 cell line with glutamate and investigated key mediators of mitochondrial dynamics to determine the role this process may play in oxidative stress induced neuronal death. We report that glutamate treatment in HT22 cells induces increase in reactive oxygen species (ROS), release of the mitochondrial fusion protein Opa1 into the cytosol, with concomitant release of cytochrome c. Furthermore, following the glutamate treatment alterations in cell signaling coincide with mitochondrial fragmentation which culminates in significant cell death in HT22 cells. Finally, we report that treatment with the antioxidant tocopherol attenuates glutamate induced-ROS increase, release of mitochondrial Opa1 and cytochrome c, and prevents cell death.  相似文献   

16.
Heme oxygenase (HO) is a microsomal enzyme that catalyzes the degradation of heme into biliverdin, which is subsequently reduced to bilirubin, free iron and carbon monoxide (CO), and induction of heme oxygenase-1 (HO-1) is potentially associated with cellular protection, especially against oxidative insults. Using transgenic mice that overexpress HO-1 (HO-1 Tg) specifically in vascular smooth muscle cells, we investigated the organ-protective effects of HO-1 against angiotensin II (Ang II). Following administration of Ang II and a high- salt diet for 14 days, marked intimal hyperplasia as well as inflammatory changes were observed in coronary arteries of Ang II/salt-treated wild type (Wt) mice. In Wt mice, Ang II/salt loading increased urinary excretion of 8- hydroxydeoxyguanosine (8-OHdG) and 8-lso-Prostaglandin F2 alpha. Cardiac levels of MDA and 4-HAE, markers of lipid peroxidation, and GSSG/GSH were also increased in Wt. mice after Ang II/salt loading, but not in HO-1 Tg mice. Consistently, immunostaining for both 8-0HdG, a marker of oxidative DNA damage, and 3-nitrotyrosine, the metabolites of reactive oxygen species, were apparently increased in the Ang II/salt-treated heart of Wt. mice; however, no significant changes in these responses were detected in HO-1 Tg mice after Ang II/salt loading. These data suggest that increased oxidative stress might be involved in the coronary artery changes induced by Ang II/salt loading. The evidence presented in the current study indicates that vascular HO-1 exerts its protective effect against cardiovascular damage, possibly through the inhibition of oxidative stress.  相似文献   

17.
Extracellular heme derived from hemoglobin following hemorrhage or released from dying cells induces the expression of heme oxygenase-1 (HO-1, HSP-32) which metabolizes heme to the gaseous mediator carbon monoxide (CO), iron (Fe) and biliverdin. Biliverdin and its product bilirubin are powerful antioxidants. Thus, expression of HO-1 is considered to be a protective mechanism against oxidative stress and has been described in microglia, astrocytes and neurons following distinct experimental models of pathological alterations to the brain such as subarachnoidal hemorrhage, ischemia and traumatic brain injury (TBI) and in human neurodegenerative diseases. We have now analyzed the expression of HO-1 in human brains following TBI (n = 28; survival times: few minutes up to 6 months) and focal cerebral infarctions (FCI; n = 17; survival time: < 1 day up to months) by immunohistochemistry. Follwing TBI, accumulation of HO-1+ microglia/macrophages at the hemorrhagic lesion was detected as early as 6 h post trauma and was still pronounced after 6 months. In contrast, after FCI HO-1+ microglia/macrophages accumulated within focal hemorrhages only and were absent in non-hemorrhagic regions. Further, HO-1 was weakly expressed in astrocytes in the perifocal penumbra. In contrast to experimental data derived from rat focal ischemia, these results indicate a prolonged HO-1 expression in humans after brain injury.  相似文献   

18.
19.
Thiamine deficiency (TD) is a model of chronic impairment of oxidative metabolism and selective neuronal loss. TD leads to region-specific neuronal death and elevation of inducible nitric oxide synthase (iNOS) in macrophages/microglia in mouse brain. Identification of the initial site of neuronal death in the submedial thalamic nucleus allowed us to test the role of iNOS and oxidative stress in TD-induced neuronal death. The pattern of neuronal loss, which begins after 9 days of TD, overlapped with induction of the oxidative stress marker heme oxygenase-1 (HO-1) in microglia. Neuronal death and microglial HO-1 induction spread to engulf the whole thalamus after 11 days of TD. As in past studies, reactive iron and ferritin accumulated in microglia beginning on day 10. The lipid peroxidation product, 4-hydroxynonenal (HNE) accumulated in the remaining thalamic neurons only after 11 days of TD. These responses were not likely mediated by iNOS because HO-1 induction and HNE accumulation were comparable in iNOS knockout mice and wild-type controls. These results show that region and cell specific oxidative stress is associated with selective neurodegeneration during TD. Thus, TD is a useful model to help elucidate neuron-microglial interaction in neurodegenerative diseases associated with oxidative stress.  相似文献   

20.
Sustained induction of heme oxygenase-1 in the traumatized spinal cord   总被引:1,自引:0,他引:1  
Oxidative stress contributes to secondary injury after spinal cord trauma. Among the consequences of oxidative stress is the induction of heme oxygenase-1 (HO-1), an inducible isozyme that metabolizes heme to iron, biliverdin, and carbon monoxide. Here we examine the induction of HO-1 in the hemisected spinal cord, a model that results in reproducible degeneration in the ipsilateral white matter. HO-1 was induced in microglia and macrophages from 24 h to at least 42 days after injury. Within the first week after injury, HO-1 was induced in both the gray and the white matter. Thereafter, HO-1 expression was limited to degenerating fiber tracts. HSP70, a heat shock protein induced mainly by the presence of denatured proteins, was consistently colocalized with HO-1 in the microglia and macrophages. This study to demonstrates long-term induction of HO-1 and HSP70 in microglia and macrophages after traumatic injury and an association between induction of HO-1 and Wallerian degeneration. White matter degeneration is characterized by phagocytosis of cellular debris and remodeling of surviving tissue. This results in the metabolism, synthesis, and turnover of heme and heme proteins. Thus, sustained induction of HO-1 and HSP70 in microglia and macrophages suggests that tissue degeneration is an ongoing process, lasting 6 weeks and perhaps even longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号