首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug-layered sugar spheres 15, 45, and 64% potent were made such that each had the same particle size distribution. The particles were coated to the same coat thickness with an ammonio polymethacrylate formulation, and drug release was measured in two media. The products exhibited a sigmoidal release pattern, where a lag time was followed by relatively rapid drug release. Lag time depended on the applied polymer amount, the media used, and the sugar content, where an increase in sugar content caused greater expansion before drug release. Lag times were related to expansion. Expansion of coated sugar spheres was measured.  相似文献   

2.
3.
In this article, biodegradable and low molecular weight poly(ethylene glycol)–poly(ε-caprolactone)–poly(ethylene glycol) (PEG–PCL–PEG, PECE) triblock copolymers were successfully synthesized. Aqueous solution of the obtained PECE copolymers underwent sol–gel–sol transition as temperature increased which was flowing sol at room temperature and then turned into nonflowing gel at body temperature. Sol–gel–sol phase transition behaviors of aqueous PECE solutions were studied using rheometry and test tube-inverting method, which were affected by many factors, including the heating/cooling procedure and different additives in copolymers aqueous solution. In vitro drug release behavior was studied using bovine serum albumin (BSA) and Vitamin B12 (VB12) as model drugs, and the PECE hydrogel could protect BSA from acidic degradation for 1 week at least. Therefore, PECE hydrogel is believed to be promising for injectable in situ gel-forming controlled drug delivery system due to their great thermosensitivity and biodegradability. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3707–3717, 2009  相似文献   

4.
Pharmaceutical Research - Drug-filled implants (DFIs) have emerged as an innovative approach to control the delivery of drugs. These devices contain the drug within the structure of the implant...  相似文献   

5.
Yu AM 《The AAPS journal》2008,10(2):242-253
Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug-drug interactions (DDIs). A stable, principal metabolite of an IAA drug of abuse could serve as a useful biomarker in assessing intoxication of the IAA substance. Studies on the metabolism of IAA drugs of abuse including lysergic acid amides, tryptamine derivatives and beta-carbolines are therefore emerging. An important role for polymorphic cytochrome P450 2D6 (CYP2D6) in the metabolism of IAA drugs of abuse has been revealed by recent studies, suggesting that variations in IAA metabolism, pharmaco- or toxicokinetics and dynamics can arise from distinct CYP2D6 status, and CYP2D6 polymorphism may represent an additional risk factor in the use of these IAA drugs. Furthermore, DDIs with IAA agents could occur additively at the pharmaco/toxicokinetic and dynamic levels, leading to severe or even fatal serotonin toxicity. In this review, the metabolism and potential DDIs of these therapeutic and abused IAA drugs are described.  相似文献   

6.
A systematic study on the degradation and drug release from l-lactic acid and ricinoleic-acid-based copolyesters is reported. These copolyesters were synthesized by ring opening polymerization (ROP), melt condensation (COND) and transesterification (TRANS) of high molecular weight poly(lactic acid) (PLA) with ricinoleic acid (PLA-RA), and repolymerization by condensation to yield random and block copolymers of weight average molecular weights (Mw) between 3000 and 13,000. All polymers showed an almost zero-order weight loss, with a 20–40% loss after 60 days of incubation. Lactic acid release to the degradation solution is proportional to weight loss of the polymer samples. The main decrease in molecular weight was observed during the first 20 days, followed by a slow degradation phase, which kept the number average molecular weight (Mn) at 4000–2000 for another 40 days. Water-soluble 5FU was released from ricinoleic-acid-based polymers faster than slightly water-soluble triamcinolone. Drug release into phosphate-buffered saline (pH 7.4, 0.1 M) at 37°C from P(LA-RA) 60:40 prepared by condensation of the acids was faster than from pasty P(PLA-RA) 60:40 synthesized by transesterification for both drugs.  相似文献   

7.

Purpose

Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane.

Methods

The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD.

Results

The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol.

Conclusions

The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.
  相似文献   

8.
Lipid nanoparticles (LNPs) containing mRNA can deliver genetic material to cells for use as vaccines or protein replacement therapies. We characterized the effect of solution pH on cationic LNPs containing green fluorescent protein (EGFP) mRNA and their transfection efficiency. We compared the structural and colloidal properties of mRNA LNPs with LNPs not containing mRNA and mRNA free in solution. We used a combination of biophysical technique to build a picture of the structure of the lipids and mRNA across pH and temperature in the form of an empirical phase diagram (EPD). A combination of Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry was used to investigate lipid phase behavior.The mRNA–LNPs transition from an inverse hexagonal phase at pH values below the pKa of the cationic lipid to a lamellar phase above the pKa. At higher temperatures the mRNA–LNPs also transitioned from an inverse hexagonal phase to a lamellar phase indicating the inverse hexagonal phase is more thermodynamically favorable. Based on circular dichroism, the mRNA within the LNP has more A form structure at pH values below the lipid pKa than above it.Optical density, zeta potential and dynamic light scattering measurements were used to probe the colloidal stability of the mRNA–LNPs. The particles were larger and more prone to aggregation below the pKa. A stability study was performed to relate the biophysical characteristics to the storage of the particles in solution at 4 and 25 °C. mRNA–LNPs had the highest transfection efficiency and stability at pH values below the pKa. However, there was a trade-off between the stability and aggregation propensity since at very low pH the particles were most prone to aggregation. We performed kinetic experiments to show that the time scale of the pH-dependent phase behavior is slow (6 hour transition) and the transition from lamellar to inverse hexagonal phases is irreversible. This suggests that the lamellar phase is less stable and kinetically trapped. Our findings deepen our structural understanding of mRNA–LNPs and will aid the development of related formulations.  相似文献   

9.
The release of the opioid antagonist naltrexone from neutral poly(N‐isopropylacrylamide) (PNIPAAM) microgels and negatively charged PNIPAAM microgels containing acrylic acid groups (PNIPAAM‐co‐PAA) has been studied at various microgel and drug concentrations. The release curves were found to be well represented by the Weibull equation. The release rates were observed to be dependent on the microgel concentration. At most conditions, the release from the charged microgels was slower than for the neutral microgels. In addition, the charged microgels exhibited a release lag time, which was dependent on the microgel concentration. No significant lag time could be observed for the neutral microgels. Increasing the naltrexone concentration did not significantly affect the release rates from the neutral microgels, but the release from the charged microgels became faster. The microgels did not exhibit any significant cytotoxic effect on HeLa cells at the tested concentrations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:227–234, 2014  相似文献   

10.
11.
《Substance use & misuse》2013,48(10):1495-1508
This paper examines trends in rural American rates of marijuana use and drug-related orientations over an 8-year period. The younger rural youths (13-year-olds) in our three surveys (1975, 1979, and 1982) reported significant declines in rates of use and expressed a general trend toward conservatism. The attitudes and orientations of older youths (16-year-olds) changed also, and in the same directions, but those changes were not statistically significant. Use rates for 16-year-olds, on the other hand, increased, but again the changes were not statistically significant. In at least one cohort we studied, attitudes changed prior to shifts in behavior. We also observed that the predictive ability of the selected attitudes and orientations increased considerably from 1975 to 1982. In the midst of a movement toward conservatism on drug issues, liberalness was even more closely linked to marijuana use than in the previous decade. Lastly, we evaluate the implications of these findings for drug prevention policy and future research.  相似文献   

12.
Insulin suffers from poor oral bioavailability, but lipid-based drug delivery systems (DDS) may constitute promising tools for improving this. Loading of protein drugs into lipid matrices may, however, be challenging, and different formulation approaches must be taken to achieve sufficient loading and preservation of native structure. The aim of the present study was to characterize insulin after complexation with biocompatible surfactants to improve loading into lipid-based DDS. Insulin–surfactant complexes were prepared by freeze-drying with distearyldimethylammonium bromide or soybean phospholipid as complexing surfactant and dimethyl sulfoxide (DMSO) as solvent. Significant change in secondary structure of insulin freeze dried from DMSO was observed using Fourier transform infrared spectroscopy. Changes were quantitatively smaller in the presence of surfactants, demonstrating both a stabilizing effect of surfactants, but also a nonnative secondary structure in the solid state. Finally, circular dichroism analysis of rehydrated complexes showed that the processing did not irreversibly alter the secondary structure of insulin. In short, the present study demonstrates changes in the secondary structure of insulin after freeze-drying from DMSO, constituting a potential generic issue with this technique for protein processing. In the specific case of insulin, the changes were found to be reversible, explaining the success of this strategy in previous studies.  相似文献   

13.

Purpose

The aim of this study was to investigate the effect of commonly used penetration enhancers on the viscoelastic properties and in vitro drug release from topical gel formulations.

Methods

Three penetration enhancers, diethylene glycol monoethyl ether (Transcutol®-P, TC), propylene glycol (PG), and 70 % ethanol were selected in this study. The non-steroidal anti-inflammatory drug diclofenac sodium (DNa) was used as a model drug. DNa gels were prepared using the gelling agent Carbopol® 971P with or without different concentrations of the three penetration enhancers. Each gel formulation was characterized in terms of its viscoelastic properties (elastic or storage modulus G′ and viscous or loss modulus G″) using a controlled stress rheometer (CSR) and in vitro release using Franz diffusion cells.

Results

DNa gels containing TC, PG, and ethanol demonstrated a significant decrease in the viscoelastic properties compared to gels containing no penetration enhancers, and an enhancement in drug release. Gels containing TC at the highest tested concentration (40 %) exhibited the lowest viscoelastic properties and showed the highest enhancement in drug release. Both TC and ethanol showed a concentration-dependent effect in promoting steady-state flux values for DNa, unlike PG. DNa release kinetics from all gels followed super case II transport as fitted by the Korsmeyer–Peppas model.

Conclusions

Our results provide valuable insights into the mechanisms by which different penetration enhancers can modulate drug release from topical gels by altering the rheological properties of the gelling agent.
  相似文献   

14.
Recently, the US Food and Drug Administration and European Medicines Agency have issued new guidance for industry on drug interaction studies, which outline comprehensive recommendations on a broad range of in vitro and in vivo studies to evaluate drug–drug interaction (DDI) potential. This paper aims to provide an overview of these new recommendations and an in-depth scientifically based perspective on issues surrounding some of the recommended approaches in emerging areas, particularly, transporters and complex DDIs. We present a number of theoretical considerations and several case examples to demonstrate complexities in applying (1) the proposed transporter decision trees and associated criteria for studying a broad spectrum of transporters to derive actionable information and (2) the recommended model-based approaches at an early stage of drug development to prospectively predict DDIs involving time-dependent inhibition and mixed inhibition/induction of drug metabolizing enzymes. We hope to convey the need for conducting DDI studies on a case-by-case basis using a holistic scientifically based interrogative approach and to communicate the need for additional research to fill in knowledge gaps in these areas where the science is rapidly evolving to better ensure the safety and efficacy of new therapeutic agents.  相似文献   

15.
ABSTRACT

Formulation and preparation parameters of drug/ion-exchange particles microencapsulated in cross-linked chitosan were evaluated for controlled release of the water-soluble drug chlorpheniramine maleate (CPM) in a suspension. An emulsion solvent evaporation method was used to produce CPM-resinates embedded in glutaraldehyde (GTA) crosslinked chitosan microspheres (MCSs). Crosslinking extent in the chitosan was monitored by swelling measurements. Controlled release was evaluated by dissolution tests in simulated gastric fluid without enzyme (SGF) and in simulated intestinal fluid without enzyme (SIF). CPM-resinates contained 62% (w/w) of drug. MCSs were spherical, ranging from 82 to 420 μm in diameter, and contained multiple resinates. The sizes of MCSs prepared with safflower oil and Span 80 were controlled by surfactant concentration, stirring speed, and duration of stirring. Maximum crosslinking was produced with 240 mg GTA per 250 mg of chitosan. Maximum drug release from free CPM-resinates was about 60% by 1 hr in SGF, and was about 100% by 3 hr in SIF. CPM release was slower from MCSs crosslinked with 120 mg of GTA compared to 5 mg GTA in both media. By 8.3 hr, the more crosslinked MCSs released about 30% CPM in SGF, and about 60% in SIF. Because of the apparent ceiling on release in SGF, the final experiments were conducted in SIF. Increasing the weight ratio of the chitosan coating to CPM-resinate ratio from 1:1 to 4:1 moderately decreased release profiles carried out to 33 hr. Increasing MCS diameters from 82 to 163 μm moderately decreased release profiles. Microencapsulation of CPM-resinates with crosslinked chitosan demonstrated controlled release of CPM in SGF and SIF without enzymes. The retardation effect increased when the crosslinking extent and chitosan to resin ratio increased.  相似文献   

16.
Crystalline polymorphism occurs frequently in the solid state of active pharmaceutical ingredients, and this is problematic for the development of a suitable dose form. Rimonabant, an active pharmaceutical ingredient developed by Sanofi and discontinued because of side effects, exhibits dimorphism; both solid forms have nearly the same melting temperatures, melting enthalpies, and specific volumes. Although the problem may well be academic from an industrial point of view, the present case demonstrates the usefulness of constructing pressure–temperature phase diagrams by direct measurement as well as by topological approach. The system is overall monotropic and form II is the more stable solid form. Interestingly, the more stable form does not possess any hydrogen bonds, whereas the less stable one does. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2311–2321, 2013  相似文献   

17.
The feasibility of using succinic acid-treated ispaghula husk in matrix-based tablets of diltiazem–HCl was investigated. The sample prepared using 4:1 weight ratio of ispaghula husk to succinic acid showed improved swelling and gelling. A 32 factorial design was employed to investigate the effect of amount of succinic acid-treated ispaghula husk and dicalcium phosphate (DCP) on the percentage of the drug dissolved in 60, 300, and 480 min from the compressed tablets. The results of multiple linear regression analysis revealed that the significance of the amount of succinic acid-treated ispaghula husk was greater in magnitude than that of the amount of DCP in controlling the drug release. Acceptable batches were identified from a contour plot with constraints on the percentage drug released at the three sampling times. A mathematical model was also evolved to describe the entire dissolution profile. The results of F-test revealed that the Higuchi model fits well to the in vitro dissolution data. The tablets showed considerable radial and axial swelling in distilled water. Succinic acid-treated ispaghula husk can be used as an economical hydrophilic matrixing agent.  相似文献   

18.
Drug–drug cocrystals, which can regulate physicochemical properties of individual drugs and might produce synergistic therapeutic effects, have drawn growing interest in the pharmaceutical industry. In this study, a novel drug-drug (1:1) cocrystal hydrate of slightly water-soluble dihydromyricetin (DMY) and highly water-soluble pentoxifylline (PTX), DMY-PTX?H2O (1), was prepared by a slurry method. The single-crystal X-ray diffraction results reveal that the cocrystal is formed through hydrogen-bonding interactions between hydroxyl groups of DMY and four acceptors of PTX. The dynamic vapour sorption results indicate that the cocrystal displays reduced hydrophilicity compared with DMY. It is found that cocrystal formation narrows the solubility difference between two parent drugs. The equilibrium solubility of PTX decreases greatly, while that of DMY increases slightly. As a result, DMY and PTX are synchronously and sustainedly released from the cocrystal. Further, a synergistic anti-cancer effect of the cocrystal DMY-PTX?H2O (1) on HepG2 cells in vitro at a drug concentration of 100 μM was discovered. This study brings evidence of cocrystallization as a successful approach for synchronous sustained-release of two drugs with substantially different aqueous solubility.  相似文献   

19.
This Article reports on a comparative study on the ability of various polymers, containing hydrophilic and/or hydrophobic groups, to interact with a biomembrane model using the differential scanning calorimetry (DSC) technique. Multilamellar vesicles of mixed dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidic acid (DMPA) were chosen as a model of cell membranes. The investigated samples were a water soluble polymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) and its derivatives partially functionalized with polyethylene glycol (PEG2000) to obtain PHEA-PEG2000, with hexadecylamine (C16) to obtain PHEA-C16, and with both compounds to obtain PHEA-PEG2000-C16. These polymers are potential candidates to prepare drug delivery systems. In particular, some samples give rise to polymeric micelles able to entrap hydrophobic drugs in an aqueous medium. The migration of drug molecules from these micelles to DMPC/DMPA vesicles also has been evaluated by DSC analysis, by using ketoprofen as a model drug.  相似文献   

20.
Purpose To assess the consequences of multiple inhibitors and differential inhibition mechanisms on the prediction of 12 gemfibrozil drug–drug interactions (DDIs). In addition, qualitative zoning of transporter-related gemfibrozil and cyclosporine DDIs was investigated. Methods The effect of gemfibrozil and its acyl-glucuronide on different enzymes was incorporated into a metabolic prediction model. The impact of CYP2C8 time-dependent inhibition by gemfibrozil acyl-glucuronide was assessed using repaglinide, cerivastatin, loperamide, rosiglitazone and pioglitazone DDIs. Gemfibrozil and cyclosporine inhibition data obtained in human embryonic kidney cells expressing OATP1B1 and hepatic input concentration ([I]in) were used for qualitative zoning of 14 transporter-mediated DDIs. Results Incorporation of time-dependent inhibition by gemfibrozil glucuronide showed no significant improvement in the prediction, as CYP2C8 contributed <65% to the overall elimination of the victim drugs investigated. Qualitative zoning of OATP1B1 DDIs resulted in no false negative predictions; yet the magnitude of observed interactions was significantly over-predicted. Conclusions Time-dependent inhibition by gemfibrozil glucuronide is only important for victim drugs eliminated predominantly (>80%) via CYP2C8. Qualitative zoning of OATP1B1 inhibitors based on [I]in/K i is valid in drug screening to avoid false negatives. Refinement of the transporter model by incorporating the fraction of drug transported by a particular transporter is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号