首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal activity is tightly coupled with brain energy metabolism. Numerous studies have suggested that lactate is equally important as an energy substrate for neurons as glucose. Lactate production is reportedly triggered by glutamate uptake, and independent of glutamate receptor activation. Here we show that climbing fibre stimulation of cerebellar Purkinje cells increased extracellular lactate by 30% within 30 s of stimulation, but not for briefer stimulation periods. To explore whether lactate production was controlled by pre- or postsynaptic events we silenced AMPA receptors with CNQX. This blocked all evoked rises in postsynaptic activity, blood flow, and glucose and oxygen consumption. CNQX also abolished rises in lactate concomitantly with marked reduction in postsynaptic currents. Rises in lactate were unaffected by inhibition of glycogen phosphorylase, suggesting that lactate production was independent of glycogen breakdown. Stimulated lactate production in cerebellum is derived directly from glucose uptake, and coupled to neuronal activity via AMPA receptor activation.  相似文献   

2.
Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret the neurophysiologic basis of blood oxygenation level dependent (BOLD) image-contrast at 7 T in glutamatergic neurons of rat cerebral cortex. Multi-modal MRI and MRS measurements of CMR(O2), CBF, CBV and BOLD signal (both gradient-echo and spin-echo) are used to interpret the neuroenergetic basis of BOLD image-contrast. Since each parameter that can influence the BOLD image-contrast is measured quantitatively and separately, multi-modal measurements of changes in CMR(O2), CBF, CBV, BOLD fMRI signal allow calibration and validation of the BOLD image-contrast. Good agreement between changes in CMR(O2) calculated from BOLD theory and measured by (13)C MRS, reveals that BOLD fMRI signal-changes at 7 T are closely linked with alterations in neuronal glucose oxidation, both for activation and deactivation paradigms. To determine the neurochemical basis of BOLD, pharmacological treatment with lamotrigine, which is a neuronal voltage-dependent Na(+) channel blocker and neurotransmitter glutamate release inhibitor, is used in a rat forepaw stimulation model. Attenuation of the functional changes in CBF and BOLD with lamotrigine reveals that the fMRI signal is associated with release of glutamate from neurons, which is consistent with a link between neurotransmitter cycling and energy metabolism. Comparisons of CMR(O2) and CBF over a wide dynamic range of neuronal activity provide insight into the regulation of energy metabolism and oxygen delivery in the cerebral cortex. The current results reveal the energetic and physiologic components of the BOLD fMRI signal and indicate the required steps towards mapping neuronal activity quantitatively by fMRI at steady-state. Consequences of these results from rat brain for similar calibrated BOLD fMRI studies in the human brain are discussed.  相似文献   

3.
Functional neuroimaging techniques map neuronal activation indirectly via local concomitant cortical vascular/metabolic changes. In a complementary approach, DC-magnetoencephalography measures neuronal activation dynamics directly, notably in a time range of the slow vascular/metabolic response. Here, using this technique neuronal activation dynamics and patterns for simple and complex finger movements are characterized intraindividually: in 6/6 right-handed subjects contralateral prolonged (30 s each) complex self-paced sequential finger movements revealed stronger field amplitudes over the pericentral sensorimotor cortex than simple movements. A consistent lateralization for contralateral versus ipsilateral finger movements was not found (4/6). A subsequent sensory paradigm focused on somatosensory afferences during the motor tasks and the reliability of the measuring technique. In all six subjects stable sustained neuronal activation during electrical median nerve stimulation was recorded. These neuronal quasi-tonic activation characteristics provide a new non-invasive neurophysiological measure to interpret signals mapped by functional neuroimaging techniques.  相似文献   

4.
The understanding of the information processing performed by complex neuronal networks in the central nervous system will require techniques permitting the simultaneous monitoring of the electrical activity of neuronal ensembles. Voltage sensitive dyes offer the potential for non-invasive optical monitoring of the activity in large populations of neurons. In this report we describe the use of voltage sensitive dyes and image processing techniques to monitor in vivo the activation of parallel fibers and associated neuronal events produced by stimulation of the cerebellar cortex in the rat. Despite the temporal limitations of video processing a relatively brief set of neuronal events was successfully imaged. Using this methodology we demonstrate that the detected fluorescent light changes were highly correlated with the evoked extracellular field potentials. Graded surface stimulation produced graded spatial patterns consistent with known parallel fiber anatomy and physiology. The optical signals were dependent on the presence of the voltage sensitive dyes and were abolished by topical application of a local anesthetic agent. In essence, activation of a parallel fiber beam and associated activity were imaged at relatively high resolution.  相似文献   

5.
We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning.  相似文献   

6.
We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning.  相似文献   

7.
This review focuses on the use of imaging techniques to record electrical signaling in the fine processes of neurons such as dendrites and axons. Voltage imaging began with the use and development of externally applied voltage-sensitive dyes. With the introduction of internally applied dyes and advances in detection technology, it is now possible to record supra-threshold action potential responses, as well as sub-threshold synaptic potentials, in fine neuronal processes including dendritic spines. The development of genetically coded sensors, as well as variants of laser scanning microscopy such as second harmonic generation, offers promise for further advances in this field. Through the use and further development of these methods, optical imaging of membrane potential will continue to be a valuable tool for investigators wishing to explore the electrical events underlying single neuronal computation.  相似文献   

8.
Normal aging of the nervous system is associated with some degree of decline in a number of cognitive functions. With the present day attempts to increase the life span, understanding the metabolic interactions and various mechanisms involved in normal neuronal aging continues to be a challenge. Loss of neurons is now recognized to be more modest than the initial estimates suggested and the loss only affected some of the specific neuroanatomical areas like hippocampus and prefrontal cortex. Individual neurons in addition show reduced size of dendritic and axonal arborization. Neurons have significant homeostatic control of the essential physiological functions like synaptic excitability, gene expression and metabolic regulation. Deviation in these normal events can have severe consequences as observed in aging and neurodegeneration. Based on experimental evidence, the evolution of aging is probably the result of altered metabolic triad: the mitochondria, reactive oxygen species and intracellular calcium homeostasis. Perturbations in the metabolic and functional state of this triad lead to a state of decreased homeostatic reserve, where the aged neurons still could maintain adequate function during normal activity. However, these neurons become vulnerable to the stress of excessive metabolic loads associated with spells of ischemia, trauma progressing to neuronal degeneration. Age-related neuronal dysfunction probably involves a host of subtle changes involving the synapses, receptors, neurotransmitters, cytological alterations, electrical transmission, leading to cognitive dysfunction. An exaggeration of it could be the clinical manifestation of dementia, with intraneuronal accumulation of protein aggregates deranging the metabolic state. This review deals with some of the structural, functional and metabolic features of aging nervous system and discusses briefly the functional consequences.  相似文献   

9.
Before the development of near-infrared spectroscopy (NIRS) for monitoring of hemoglobin and cytochromes in situ, the Jobsis laboratory designed a visible light reflectance spectrophotometer. The method was not as useful for cytochrome oxidase measurements, which stimulated the search for a better method that culminated in NIRS. Visible light reflectance spectrophotomery was, however, usefully applied in several experimental applications, such as the study of brain capillary hemoglobin saturation during changes in inspired gas mixtures in awake and anesthetized animals, and to record transient increases in total hemoglobin (blood volume) after local neuronal activation by direct cortical electrical stimulation, demonstrating a response that is fundamental to functional magnetic resonance imaging blood oxygen level-dependent methods. A third application of the instrumentation was for brain capillary red cell mean transit time analysis, estimated by recording the passage of a red cell-free bolus through the cerebral cortical optical monitoring field. Taken together with his previous application of fluorescence detection of nicotinamide adenine dinucleotide, the visible and near-infrared spectroscopy demonstrate that Frans Jobsis was a pioneer in the application of optical techniques to the study of intact organs in situ. These methods have been used to illuminate the basic function of the cerebrovascular and metabolic pathways in both physiological and pathological conditions.  相似文献   

10.
Physiological brain aging is characterized by a loss of synaptic contacts and neuronal apoptosis that provokes age-dependant decline of sensory processing, motor performance, and cognitive function. Neural redundancy and plastic remodelling of brain networking, also secondary to mental and physical training, promotes maintenance of brain activity in healthy elderly for everyday life and fully productive affective and intellectual capabilities. However, age is the main risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) that impact on cognition. Oscillatory electromagnetic brain activity is a hallmark of neuronal network function in various brain regions. Modern neurophysiological techniques including electroencephalography (EEG), event-related potential (ERP), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) can accurately index normal and abnormal brain aging to facilitate non-invasive analysis of cortico–cortical connectivity and neuronal synchronization of firing and coherence of rhythmic oscillations at various frequencies. The present review provides a perspective of these issues by assaying different neurophysiological methods and integrating the results with functional brain imaging findings. It is concluded that discrimination between physiological and pathological brain aging clearly emerges at the group level, with applications at the individual level also suggested. Integrated approaches utilizing neurophysiological techniques together with biological markers and structural and functional imaging are promising for large-scale, low-cost and non-invasive evaluation of at-risk populations. Practical implications of the methods are emphasized.  相似文献   

11.
The profile of activity across rat somatosensory cortex on stimulation of a single whisker was examined using both intrinsic signal imaging and electrophysiological recording. In the same animals, under sodium pentobarbital anesthesia, the intrinsic signal response to a 5-Hz stimulation of whisker C2 was recorded through a thinned skull. Subsequently, the thinned skull was removed, and individual cortical neurons were recorded at multiple locations and in all cortical layers in response to the same whisker stimulation paradigm. The amplitude of the evoked response obtained with both techniques was quantified across the cortical surface with respect to distance (1.6 mm) from the optically determined peak of activity. Overall, this analysis shows a significant correlation between the two techniques in terms of the profile of evoked activity across the cortical surface. Furthermore, this data set affords a detailed and quantitative comparison between the two activity-dependent techniques-one measuring an intrinsic decrease in light reflectance based largely on metabolic changes and one measuring neuronal firing patterns. Studies such as this, comparing directly between imaging and detailed electrophysiology, may influence the interpretation of the extent of the activated area as assessed with in vivo functional imaging techniques.  相似文献   

12.
The nervous systems of invertebrates and vertebrates consist of neuronal networks of varying complexity, and the elucidation of the organization of these networks is essential if we are to understand neural function. Up until the mid- 19th Century gross dissection was the primary tool available to scientists to study the nervous system. The development of neurohistological techniques, electrical stimulation, and observation of neural function in humans and animals following injury added rapidly to our understanding of the nervous system during the following century. Over the last 3 decades investigators seeking to unravel the complexities of neural circuits have made use of analytical methods based upon the biological properties of neurons, including orthograde and retrograde axonal transport of tracer substances, the expression of particular genes and gene products that can be assessed with immunocytochemical or in situ methods, and the imaging of the utilization of oxygen or glucose by active populations of neurons. Advances in neuroscience have led to an enormous expansion in our knowledge of normal neural functioning and how that function is altered by injury or disease. Modern studies of neuronal organization have been at the center of our increased understanding of how the brain works. Anat. Rec. (New Anat.) 253:139–142, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Glial metabolism and their metabolic trafficking with neurons are essential parts of neuronal function, as they modulate, by this means, neuronal activity. Ex vivo and in vitro (13)C-NMR spectroscopy have been used to monitor neural cellular and tissue metabolism. Special emphasis has been given to the metabolic specialization of astrocytes and its enzymatic regulation. For this purpose primary cell cultures are useful tools to study neuronal-glial metabolic relationships as the extracellular fluid can be investigated and manipulated by various stimuli. In astrocytes, glucose is utilized predominantly anaerobically. Glycolysis is interrelated to the astrocytic TCA cycle via bi-directional signals and metabolic exchange processes between astrocytes and neurons. Besides glucose oxidation, neuronally released glutamate is metabolized through the glial TCA cycle. The flexibility of glutamate metabolism, depending on ammonia and energy homeostasis, and the discovered pyruvate recycling pathway in astrocytes, modulates the glutamine-glutamate cycle. (13)C-NMR studies have extended the concept of the "non-stoichiometric" glutamate-glutamine cycle between neurons and astrocytes. An alanine-lactate shuttle between neurons and astrocytes contributes to nitrogen transfer from neurons to astrocytes, recycles energy substrates for neurons, and in return promotes intercellular glutamine-glutamate cycling. The conversion of alanine to lactate in astrocytes is regulated by intracytosolic pyruvate compartmentation. In essence, the metabolic flexibility and compartmentalized enzymatic specialization of astrocytes buffers the brain tissue against metabolic impairments and excitotoxicity in response to extracellular stimuli, some of them being released by neurons. These in vitro studies using (13)C-NMR spectroscopy provide important knowledge regarding physiological and pathophysiological regulation of neural metabolism to improve our understanding of general brain function.  相似文献   

14.
《Progress in neurobiology》2008,84(6):375-400
Physiological brain aging is characterized by a loss of synaptic contacts and neuronal apoptosis that provokes age-dependant decline of sensory processing, motor performance, and cognitive function. Neural redundancy and plastic remodelling of brain networking, also secondary to mental and physical training, promotes maintenance of brain activity in healthy elderly for everyday life and fully productive affective and intellectual capabilities. However, age is the main risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) that impact on cognition. Oscillatory electromagnetic brain activity is a hallmark of neuronal network function in various brain regions. Modern neurophysiological techniques including electroencephalography (EEG), event-related potential (ERP), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) can accurately index normal and abnormal brain aging to facilitate non-invasive analysis of cortico–cortical connectivity and neuronal synchronization of firing and coherence of rhythmic oscillations at various frequencies. The present review provides a perspective of these issues by assaying different neurophysiological methods and integrating the results with functional brain imaging findings. It is concluded that discrimination between physiological and pathological brain aging clearly emerges at the group level, with applications at the individual level also suggested. Integrated approaches utilizing neurophysiological techniques together with biological markers and structural and functional imaging are promising for large-scale, low-cost and non-invasive evaluation of at-risk populations. Practical implications of the methods are emphasized.  相似文献   

15.
近年来,随着颅内压(ICP)检测精度的提高,其在临床上的应用也越来越多.多种检测技术被运用于临床,可分为侵入式硬脑膜外导管法、蛛网膜下腔螺栓法、脑室导管法、光纤探头检测、微型芯片和非侵入式诱发耳声刺激法、经眼检测法、经颅多普勒法、影像学方法及磁感应检测法.就ICP检测生理基础,常见ICP检测技术,特别对非侵入式ICP检测方法进行了综述,评价了ICP检测方法的优缺点,并展望了非侵入式ICP检测技术的发展.  相似文献   

16.
Camacho A  Montiel T  Massieu L 《Neuroscience》2007,145(3):873-886
The concentration of glutamate is regulated to ensure neurotransmission with a high temporal and local resolution. It is removed from the extracellular medium by high-affinity transporters, dependent on the maintenance of the Na(+) gradient through the activity of Na(+),K(+)-ATPases. Failure of glutamate clearance can lead to neuronal damage, named excitotoxic damage, due to the prolonged activation of glutamate receptors. Severe impairment of glycolytic metabolism during ischemia and hypoglycemia, leads to glutamate transport dysfunction inducing the elevation of extracellular glutamate and aspartate, and neuronal damage. Altered glucose metabolism has also been associated with some neurodegenerative diseases such as Alzheimer's and Huntington's, and a role of excitotoxicity in the neuropathology of these disorders has been raised. Alterations in glutamate transporters and N-methyl-D-aspartate (NMDA) receptors have been observed in these patients, suggesting altered glutamatergic neurotransmission. We hypothesize that inhibition of glucose metabolism might induce changes in glutamatergic neurotransmission rendering neurons more vulnerable to excitotoxicity. We have previously reported that sustained glycolysis impairment in vivo induced by inhibition of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), facilitates glutamate-mediated neuronal damage. We have now investigated whether this facilitating effect involves altered glutamate uptake, and/or NMDA receptors in the rat hippocampus in vivo. Results indicate that metabolic inhibition leads to the progressive elevation of extracellular glutamate and aspartate levels in the hippocampus, which correlates with decreased content of the GLT-1 glutamate transporter and diminished glutamate uptake. In addition, we observed increased Tyr(1472) phosphorylation and protein content of the NR2B subunit of the NMDA receptor. Results suggest that moderate sustained glycolysis inhibition alters glutamatergic neurotransmission.  相似文献   

17.
In the unstimulated brain energy is primarily supplied by the oxidation of glucose. However the oxygen-to-glucose index (OGI), which is the ratio of metabolic rates of oxygen to glucose, CMR(O2)/CMR(glc), diverges from the theoretical value of 6 as activity is increased. In vivo measurements of brain lactate show its concentration to increase with stimulation. The decreasing OGI with stimulation had led to the suggestion that activation, unlike resting activity, is supported by anaerobic glycolysis. To date a unifying concept that accommodates glucose oxidation at rest with lactate generation and OGI decrease during stimulation of brain is lacking. Furthermore, energetics that change with increasing activity are not consistent with a neuroenergetic model that has been proposed from 1-(13)C-glucose MRS experiments. That model, based upon in vivo MRS measurements and cellular studies by Pellerin and Magistretti, showed that glutamate neurotransmitter cycling was coupled to glucose oxidation over a wide range of brain activities from rest down to deep anesthesia. Here we reconcile these paradoxical observations by suggesting that anaerobic glucose consumption (which can provide energy rapidly) increases with activation to meet the power requirements of millisecond neuronal firing. It is proposed, in accord with our neuroenergetic model, that the extra glucose mobilized rapidly for glial clearance of glutamate, is not needed for the oxidative processes that are responsible for neuronal firing and glutamate release, and consequently it is effluxed as lactate. A stoichiometric relation between OGI and lactate concentration is derived from the neuroenergetic model, showing that the enhanced glucose uptake during activation is consistent with neuronal activity being energetically supported by glucose oxidation.  相似文献   

18.
19.
Over recent years, activation studies that have been undertaken using brain imaging techniques, such as functional magnetic resonance imaging, positron emission tomography or near infrared spectroscopy, have greatly improved our knowledge of the functional anatomy of the brain. Nevertheless, activation studies do not directly quantify the variations of synaptic transmission (neuronal activity) but detect it indirectly either through the visualisation of changes in cerebral blood flow, oxidative or glycolytic metabolism (for positron emission tomography), or through the measurement of a global index that is dependent on both cerebral blood flow and oxidative metabolism (for functional magnetic resonance imaging and near infrared spectroscopy). Such approaches are based on the concept of a tight parallelism — termed coupling — between variations in neuronal activity, metabolism and cerebral blood flow. However, several “uncoupled” situations between these parameters have been reported over the last decade through experimental, pharmacological and pathophysiological studies. The aim of this review is to focus on these data that have to be taken into account for the interpretation of the results obtained in activation paradigms.  相似文献   

20.
Macrophages are a functionally heterogeneous cell population that is mainly shaped by a variety of microenvironmental stimuli. Interferon γ (IFN-γ), interleukin-1β (IL-1β), and lipopolysaccharide (LPS) induce a classical activation of macrophages (M1), whereas IL-4 and IL-13 induce an alternative activation program in macrophages (M2). Reprogramming of intracellular metabolisms is required for the proper polarization and functions of activated macrophages. Similar to the Warburg effect observed in tumor cells, M1 macrophages increase glucose consumption and lactate release and decreased oxygen consumption rate. In comparison, M2 macrophages mainly employ oxidative glucose metabolism pathways. In addition, fatty acids, vitamins, and iron metabolisms are also related to macrophage polarization. However, detailed metabolic pathways involved in macrophages have remained elusive. Understanding the bidirectional interactions between cellular metabolism and macrophage functions in physiological and pathological situations and the regulatory pathways involved may offer novel therapies for macrophage-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号