首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most important findings revealing pathogenesis, molecular characteristics, genotyping and targeted therapy of gastrointestinal stromal tumors (GISTs) are activated oncogenic mutations in KIT and PDGFRA genes. Imatinib mesylate (IM), which inhibits both KIT and PDGFRA receptors, significantly improved treatment of advanced (metastatic, recurrent, and/or inoperable) GISTs. However, in a significant number of patients the treatment fails due to the primary or secondary resistance to targeted therapy. Most common cause of secondary resistance is a presence of secondary mutations. Approximately 15% of adult patients with GISTs are negative for mutations in KIT or PDGFRA genes. These so-called wild-type GISTs appear to be characterized by other oncogenetic drivers, including mutations in BRAF, RAS, NF1 genes, and subunits of succinate dehydrogenase (SDH) complex.In the present study we investigated 261 tumour specimens from 239 patients with GIST. Primary mutations were detected in 82 % tumor specimens. 66 of them were in KIT, and 16 % in PDGFRA genes. Remaining 18 % were KIT/PDGFRA wild-type. Secondary KIT mutations were detected in 10 from 133 (7 %) patients treated with IM. We examined secondary KIT mutations in exons 13 and 17 and secondary PDGFRA mutation in exon 18 in sixteen progressive tumors and/or metastasis (from overall 22 samples). We identified BRAF V600E point mutation in 4 % of KIT/PDGFRA wild-type GIST patients. Moreover, we analysed SDH complex mutations in 4 younger patients (15, 33, 37, and 45 years old) from 44 patients without KIT, PDGFRA, and BRAF mutations. Two patients (a 37-year old man, and a 33-year old woman) had defects of the SDH complex.Our findings of mutational status of the primary and secondary KIT/PDGFRA mutations in patients with GIST confirm mechanisms of primary and secondary resistance, and also intralesional and interlesional heterogeneity of secondary mutations within and between progressive lesions. Moreover, detection of V600E BRAF mutation and defects of SDH complex in KIT/PDGFRA wild-type GISTs confirm their activation and allow for a selection of targeted therapy.  相似文献   

2.
BRAF V600E mutations in GISTs are considered to be one of the mutational events in KIT/PDGFRA negative or positive GISTs, respectively. BRAF mutated GISTs usually do not respond to imatinib treatment, even more GISTs with imatinib sensitive KIT mutation. However, they are almost phenotypically and morphologically identical with KIT/PDGFRA positive GISTs. In general, due to the small number of BRAF mutations in GIST and because of the rarity of concomitant BRAF/KIT or BRAF/PDGFRA mutations, their frequency may be depreciated. The aim of this study was BRAF mutation detection in KIT/PDGFRA positive GISTs and their verification by other molecular methods. We applied the sensitive droplet digital PCR on 35 randomly selected KIT/PDGFRA positive GISTs to detect V600E mutations. We have established two criteria for the evaluation of samples: false positive rate (FPR) based on the negative controls; Limit of Detection (LoD) based on the serial dilution of positive control from RKO cell line harboring heterozygous V600E mutation in constant wild-type DNA background. Results from ddPCR were verified by other molecular methods: allele-specific PCR, dideoxysequencing, competitive allele-specific TaqMan PCR (castPCR). FPR was determined as 5 (∼4.4) positive droplets, and LoD was assessed to 3.4293 copies/μL what is the method sensitivity of 0.0162 %.We identified eight KIT/PDGFRA positive patients with concomitant V600E mutation. The five of them were in coexistence with KIT mutation and three with PDGFRA mutation. We also included the liver metastasis, but data from primary tumour were not available. We achieved the very high sensitivity of the ddPCR method for detecting BRAF mutation in GISTs to have importance from the point of view of therapy.  相似文献   

3.
Gastrointestinal stromal tumors (GISTs) generally harbor activating mutations in KIT or platelet‐derived growth facter receptor (PDGFRA). Mutations in these receptor tyrosine kinases lead to dysregulation of downstream signaling pathways that contribute to GIST pathogenesis. GISTs with KIT or PDGFRA mutations also undergo secondary cytogenetic alterations that may indicate the involvement of additional genes important in tumor progression. Approximately 10–15% of adult and 85% of pediatric GISTs do not have mutations in KIT or in PDGFRA. Most mutant adult GISTs display large‐scale genomic alterations, but little is known about the mutation‐negative tumors. Using genome‐wide DNA arrays, we investigated genomic imbalances in a set of 31 GISTs, including 10 KIT/PDGFRA mutation‐negative tumors from nine adults and one pediatric case and 21 mutant tumors. Although all 21 mutant GISTs exhibited multiple copy number aberrations, notably losses, eight of the 10 KIT/PDGFRA mutation‐negative GISTs exhibited few or no genomic alterations. One KIT/PDGFRA mutation‐negative tumor exhibiting numerous genomic changes was found to harbor an alternate activating mutation, in the serine‐threonine kinase BRAF. The only other mutation‐negative GIST with significant chromosomal imbalances was a recurrent metastatic tumor found to harbor a homozygous deletion in chromosome arm 9p. Similar findings in several KIT‐mutant GISTs identified a minimal overlapping region of deletion of ~0.28 Mbp in 9p21.3 that includes only the CDKN2A/2B genes, which encode inhibitors of cell‐cycle kinases. These results suggest that GISTs without activating kinase mutations, whether pediatric or adult, generally exhibit a much lower level of cytogenetic progression than that observed in mutant GISTs. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Studies on gastrointestinal stromal tumors (GISTs) in young patients are limited due to their rarity, and none have been conducted in Asian populations. GISTs from patients under the age of 30 were retrospectively reviewed and were analyzed for clinicopathologic features, immunohistochemistry for SDHB (succinate dehydrogenase subunit B), and mutations for exon 9, 11, 13, and 17 of KIT gene and exon 12, 14, and 18 of PDGFRA gene. We found two pediatric (<18 years old) and 20 young adult (18–30 years old) GIST cases. Pediatric GISTs occurred in two girls, both as solitary masses with epithelioid histology in the stomach. Both GISTs were wild type for KIT and PDGFRA genes, were negative for SDHB, and there was no recurrence during follow‐up. Of the 20 GISTs in young adults, 12 (60%) were from extra‐gastric locations (six duodenum, five jejunum, and one esophagus), and 16 (80%) showed a spindle cell morphology. Mutations of KIT or PDGFRA genes were identified in 14 (78%) of the 18 cases. One patient with multiple gastric GISTs with perigastric lymph node metastases at presentation developed multiple distant metastases and died of the disease 7.3 years after diagnosis. Of the 19 R0‐resected young adult patients, one patient with small intestinal GIST harboring KIT exon 11 deletion mutation developed recurrence and showed partial responses for imatinib. In summary, compared with pediatric GIST cases, young adult GISTs are heterogeneous and share the characteristics of both pediatric and adult GISTs. When a mesenchymal tumor is clinically suspected in the small intestine of young adults, a GIST should be included in the differential diagnoses. Further mutation studies and extensive treatments are recommended for these cases.  相似文献   

5.
Aims: Genotyping is a prerequisite for tyrosine kinase inhibitor therapy in high risk and malignant GIST. About 10% of GISTs are wild-type for KIT but carry PDGFRA mutations. Applying the traditional approach, mutation analysis of these cases is associated with higher costs if all hotspots regions in KIT (exon 9, 11, 13, 17) are performed at first. Our aim was to evaluate the predictive value of a combined histomorphological-immunohistochemical pattern analysis of PDGFRA-mutated GISTs to efficiently direct KIT and PDGFRA mutation analysis. Methods: The histomorphology and PDGFRA immunostaining pattern was studied in a test cohort of 26 PDGFRA mutants. This was then validated on a cohort of 94 surgically resected GISTs with mutations in KIT (n=72), PDGFRA (n=15) or with wild-type status (n=7) on a tissue microarray. The histological subtype (spindled, epithelioid, mixed), PDGFRA staining pattern (paranuclear dot-like/Golgi, cytoplasmic and/or membranous), and extent of staining were determined without knowledge of the genotype. The combination of histomorphology and immunophenotype were used to classify tumors either as PDGFRA- or non-PDGFRA phenotype. Results: PDGFRA-mutated GISTs were significantly more often epithelioid (p<0.001) and had a higher PDGFRA expression, compared to KIT-mutants (p<0.001). Paranuclear PDGFRA immunostaining was almost exclusively observed in PDGFRA mutants (p<0.001). The sensitivity and specificity of this combined histological-immunohistochemical approach to predict the PDGFRA-genotype was 100% and 99%, respectively (p=6x10-16). Conclusion: A combination of histomorphology and PDGFRA immunostaining is a reliable predictor of PDGFRA genotype in GIST. This approach allows direct selection of the “gene/exons of relevance” to be analyzed and may help to reduce costs and work load and shorten processing time of GIST genotyping by mutation analysis.  相似文献   

6.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. They have represented a paradigm of molecular-targeted therapies for solid tumors since the discovery of KIT mutations and KIT expression in GIST in 1998, which opened the way to the use of imatinib, a tyrosine kinase inhibitor able to inhibit the growth of cells expressing KIT-mutant isoforms. Since then, accumulating evidence revealed the rather heterogeneous nature of GIST, implying possible different diagnostic and therapeutic approaches for each specific case, leading to the development of drugs alternative to imatinib. In this brief commentary, we graphically represent the historical growing of genotype and phenotype evidence on GIST since 1998 in its increasing complexity by building up a graph, which we have called “GISTogram”, that visually conveys most of GIST-characterizing features and the probability for each of them, either alone or in combination, to be observed in a single GIST case.  相似文献   

7.

Background

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder resulting in the growth of a variety of tumours, and is inherited in an autosomal dominant pattern. Gastrointestinal stromal tumours (GISTs) are mesenchymal tumours that commonly harbour oncogenic mutations in KIT or PDGFRA and are thought to arise from the interstitial cells of Cajal (ICC; the pacemaker cells of the gut).

Aim

To characterise two patients with NF1 and GISTs.

Methods

Two patients were genotyped for germline mutations in NF1. GISTs from both patients were genotyped for somatic mutations in KIT and PDGFRA. Loss of heterozygosity (LOH) of NF1 in one GIST was assessed by genotyping seven microsatellite markers spanning 2.39 Mb of the NF1 locus in the tumour and in genomic DNA. The known germline mutation in NF1 was confirmed in GIST DNA by sequencing. The copy number of the mutated NF1 allele was determined by multiplex ligand‐dependent probe amplification.

Results

GISTs from both patients were of wild type for mutations in KIT and PDGFRA. In the GIST with adequate DNA, all seven markers were informative and showed LOH at the NF1 locus; sequencing of NF1 from that GIST showed no wild‐type sequence, suggesting that it was lost in the tumour. Multiplex ligand‐dependent probe amplification analysis showed that two copies of all NF1 exons were present.

Conclusions

This is the first evidence of mitotic recombination resulting in a reduction to homozygosity of a germline NF1 mutation in an NF1‐associated GIST. We hypothesise that the LOH of NF1 and lack of KIT and PDGFRA mutations are evidence of an alternative pathogenesis in NF1‐associated GISTs.  相似文献   

8.
Among gastrointestinal stromal tumors (GISTs) of 10–15% are negative for KIT and PDGFRA, and most of these cases are SDH deficient. Recent studies have provided data on additional molecular alterations such as KRAS in KIT mutant GISTs. We aimed to assess the frequency and spectrum of somatic mutations in common oncogenes as well as copy number variations in GISTs negative for KIT and PDGFRA mutations. GISTs with wild type KIT/PDGFRA were tested via next generation sequencing for somatic mutations in 341 genes. SDHB immunohistochemistry to evaluate for SDH deficiency was also performed. Of 267 GISTs tested for KIT and PDGFRA mutations, 15 were wild type, of which eight cases had material available for further testing. All eight cases had loss of SDHB expression and had various molecular alterations involving ARID1A, TP53, and other genes. One case had a KRAS G12V (c.35G>T) mutation in both the primary gastric tumor and a post‐imatinib recurrence. This tumor had anaplastic features and was resistant to multiple tyrosine kinase inhibitors, ultimately resulting in cancer‐related mortality within 2 years of diagnosis. In conclusion, KRAS mutations occur in rare GISTs with wild type KIT and PDGFRA. These tumors may display immunohistochemical positivity for KIT and primary resistance to tyrosine kinase inhibitors. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Gastrointestinal stromal tumours (GISTs) are rare mesenchymal tumours of the digestive tract and are commonly driven by oncogenic mutations in KIT and PDGFRA genes. Tumour size, location, mitotic index and KIT/PDGFRA mutations are the most important prognostic parameters in GISTs. However, additional studies screening for new molecular prognostic markers in GISTs are missing. Raf kinase inhibitor protein (RKIP) has been considered as a suppressor of metastasis and a prognostic marker in several neoplasms. In the present study we aimed to examine whether RKIP expression is associated with GIST clinical–pathological features. Using immunohistochemistry, we determined RKIP expression levels in a well-characterised series of 70 GISTs. We found that RKIP is expressed in the great majority of cases, and absent in approximately 9% of GISTs. Additionally, we found that loss of RKIP expression was not due to the promoter methylation as assessed by methylation-specific PCR. Loss of RKIP expression was associated with poor disease-specific survival and with tumour necrosis in GISTs. Furthermore, a statistical tendency was observed between the positive RKIP expression and absence of metastasis. So far, this is the first study assessing RKIP expression levels in GISTs. We conclude that loss of RKIP expression could have an important role as prognostic marker in GISTs.  相似文献   

10.
GISTs originating multifocally at different GI sites, in patients lacking familial syndromes, could be interpreted as recurrent/metastatic disease. MiR-221/222 have recently been identified as regulators of KIT expression in GISTs. We report the first case of synchronous GISTs in the stomach and duodenum concomitant with an ampullary adenocarcinoma. Different CD117 expression patterns could be related to different KIT mutational status in the two lesions: gastric GIST showed a dot-like pattern and lacked KIT mutations; duodenal GIST had a strong membranous expression pattern, likely due to KIT exon 9 duplication, which is associated with lower response to imatinib. MiR-221/222 were downregulated in GISTs as compared with normal tissue (p < 0.05) and expressed increased levels in the gastric GIST as compared with duodenal one (p < 0.05). Our data support an independent origin of the two GISTs. Determining whether these tumors are multiple primaries or recurrencies is helpful to predict their malignancy and to select proper treatment.  相似文献   

11.
Gastrointestinal stromal tumor (GIST) is a mesenchymal tumor of the gastrointestinal tract. Mutation of KIT and PDGFRA genes is implicated in the tumorigenesis. Approximately 10% of GISTs do not harbor mutation of these genes, and they are designated as “wild type” GIST. They are classified into succinate dehydrogenase (SDH)‐deficient and non‐SDH‐deficient groups. SDH‐deficient group includes Carney triad and Carney Stratakis syndrome. The patients are young women. Tumors occur in the antrum of the stomach, and tumor cells are epithelioid. Lymph node metastasis is frequent. The non‐SDH‐deficient group includes neurofibromatosis (NF) type 1 and GISTs with mutations of BRAF, KRAS, and PIK3CA and with the ETV6‐NTRK3 fusion gene. GIST in NF occurs in the small intestine, and tumor cells are spindle shaped. GIST with BRAF mutation arises in the small intestine. Attention to the age, gender, family history and other neoplasms may raise the prediction of syndromic disease. Location of the tumor, morphology, and pleomorphism of the tumor cells are further informative. Lymphovascular invasion should be carefully evaluated. The determination of KIT expression is essential for the diagnosis. When wild type GIST is suspected, intensive genetic analysis is required. Further, a careful and long‐time observation is recommended.  相似文献   

12.
13.
Approximately 15% of gastrointestinal stromal tumors (GIST) do not express KIT mutations and of these about 5 to 7% harbor mutations in PDGFRA. DOG1 was specifically expressed in GISTs. These cases require special attention for PDGFRA and DOG1 mutational status. Hundred cases of GIST were diagnosed between August 2007 and October 2012 at the First Affiliated Hospital of Guangxi Medical University. DNA from tumor tissues and normal adjacent tissues was isolated and amplified for the 22 exons of PDGFRA and 26 exons of DOG1. Each PCR product was sequenced. Amino acid sequences were inferred from DNA and aligned to GenBank reference sequences to determine the position and type of mutations. Overall, 16.0% of the samples had a mutation in PDGFRA, and GISTs with mutations in the DOG1 gene were not found. Of the mutations detected, they were in PDGFRA exon 18 (8 cases, 8%), PDGFRA exon 12 (5 cases, 5%), PDGFRA exon 14 (1 cases, 1.0%), PDGFRA exon 11 (1 cases, 1.0%), and PDGFRA exon 8 (1 cases, 1.0%). Of these, Y392S, L521P and T632K mutant occurred in PDGFRA exon 8, exon 11 and exon 14, respectively. The mutation of PDGFRA has been considered as another causative genetic event as PDGFRA mutations were found in most GISTs lacking a KIT mutation. PDGFRA mutations occurred preferentially in exon 18 and exon 12. Mutations occurring in PDGFRA exon 8 (Y392S), exon 11 (L521P) and exon 14 (T632K) also were first identified. The over-expression of DOG1 was not related to DOG1 gene mutation.  相似文献   

14.
GISTs are the most common mesenchymal neoplasms of the digestive tract and are thought to originate from or differentiate toward the interstitial cell of Cajal lineage. Almost all GISTs express KIT protein and the majority show activating mutations in either KIT or PDGFRA proto-oncogenes. Ultrastructurally, these tumors have been shown to have either a smooth muscle, neuronal, dual, or null phenotype. The objective of this study was to investigate the relationship between ultrastructural features and genotype in a large series of 125 histologically confirmed and CD117 positive GISTs. PCR analysis for the presence of KIT exon 9, 11, 13, and 17 and PDGFRA exon 12 and 18 mutations was performed. There were 62 (50%) tumors located in the stomach and 45 (36%) in the small bowel. Overall, KIT mutations were detected in 93 (75%) patients: 86 (69%) in exon 11, and 7 (6%) in exon 9. A PDGFRA mutation was detected in 7 (6%) cases and 25 (19%) cases had no mutation. Ultrastructurally, skeinoid fibers were seen in 55 (44%) cases and were more common in small bowel than stomach GISTs, and occurred in only in 1 of 16 patients with an ITD (KIT) exon 11 or PDGFRA mutation. Focal actin microfilaments were identified in 82 (65%) cases and did not correlate with location or mutation type. Rare neurosecretory-type granules (NS-G) were seen in 34 (27%) of cases, but were seen in most of the cells in only 5 (4%) cases. GISTs showing both NS-G and microtubules were associated with KIT exon 11 genotype and spindle cell morphology. PDGFRA mutated cases were associated with gastric location, predominantly epithelioid morphology and lacked NS-G.  相似文献   

15.
Most gastric gastrointestinal stromal tumors (GISTs) display spindle cell morphology and coexpress CD117 (KIT), DOG-1, and CD34. Secondary loss of DOG-1 has not been reported. We present two gastric GISTs which showed loss of DOG-1 in the epithelioid component but retained its expression in the minor spindle cell component. Patients were a 67-year-old man and an 80-year-old woman with 4.8-cm and 3.5-cm gastric GISTs harboring mutations in KIT exon 11 (c.1729_1758dup30; p.P577_R586dup) and platelet-derived growth factor receptor α (PDGFRA) exon 18 (c.2527_2538del12; p.I843_D846del), respectively. Both were predominantly epithelioid with a minor microscopic spindle cell component (3-12 mm). The spindle cell component was CD117+CD34+DOG-1+ in both cases. The epithelioid component in case 1 was CD117+CD34+DOG-1?. In case 2, the epithelioid component strongly expressed PDGFRA (dot-like) but lost CD117, CD34, and DOG-1. These cases confirm the immunophenotypic heterogeneity as secondary events in GIST. Loss of DOG-1 in KIT-negative PDGFRA mutants should not preclude diagnosis.  相似文献   

16.
We report a case of an extremely rare type of duodenal gastrointestinal stromal tumor (GIST) that included neuronal components. Although gastrointestinal autonomic nerve tumors (GANTs), a subtype of GISTs, exhibit ultrastructural features of the nerve plexus, neuronal cells have not been observed within GANTs or GISTs. GISTs originate from interstitial cells of Cajal (ICCs), which are markedly different from the progenitor cells of neural elements and neural‐crest‐derived stem cells. This may explain why GISTs typically lack neuronal elements. It remains unclear that the neuronal components of this tumor are neoplastic or hyperplastic, but proliferation and survival of ICCs have recently been reported to be closely related to neurons. Although we could not find the KIT, PDGFR, and BRAF mutation as far as we examined, it may have had a rare mutation in NF1, a fusion of EVT6‐NTRK3, or an as‐yet‐unknown KIT mutation that affected neurogenesis. Further investigation of related genetic mutations and accumulation of data from other similar cases is needed.  相似文献   

17.

Background

Oncogenic point mutations in KIT or PDGFRA are recognized as the primary events responsible for the pathogenesis of most gastrointestinal stromal tumors (GIST), but additional genomic alterations are frequent and presumably required for tumor progression. The relative contribution of such alterations for the biology and clinical behavior of GIST, however, remains elusive.

Methods

In the present study, somatic mutations in KIT and PDGFRA were evaluated by direct sequencing analysis in a consecutive series of 80 GIST patients. For a subset of 29 tumors, comparative genomic hybridization was additionally used to screen for chromosome copy number aberrations. Genotype and genomic findings were cross-tabulated and compared with available clinical and follow-up data.

Results

We report an overall mutation frequency of 87.5%, with 76.25% of the tumors showing alterations in KIT and 11.25% in PDGFRA. Secondary KIT mutations were additionally found in two of four samples obtained after imatinib treatment. Chromosomal imbalances were detected in 25 out of 29 tumors (86%), namely losses at 14q (88% of abnormal cases), 22q (44%), 1p (44%), and 15q (36%), and gains at 1q (16%) and 12q (20%). In addition to clinico-pathological high-risk groups, patients with KIT mutations, genomic complexity, genomic gains and deletions at either 1p or 22q showed a significantly shorter disease-free survival. Furthermore, genomic complexity was the best predictor of disease progression in multivariate analysis.

Conclusions

In addition to KIT/PDGFRA mutational status, our findings indicate that secondary chromosomal changes contribute significantly to tumor development and progression of GIST and that genomic complexity carries independent prognostic value that complements clinico-pathological and genotype information.  相似文献   

18.
Zusammenfassung Neuere morphologische und molekulare Befunde haben unser Verständnis über gastrointestinale Stromatumoren (GIST) beträchtlich erweitert. Gastrointestinale Stromatumoren werden gegenwärtig über ihre Überexpression von CD117 (KIT), dem Rezeptor des Stammzellfaktors, definiert und so gegenüber glattmuskulären Tumoren abgegrenzt. Zytogenetisch sind GIST bereits in frühen Stadien durch häufige komplette oder partielle Verluste der Chromosomen 14 und 22 und terminale Deletionen des Chromosomenarms 1p charakterisiert. Im Verlauf der Tumorprogression wird eine Akkumulation von zusätzlichen chromosomalen Anomalien beobachtet. Basierend auf der Erstbeschreibung von aktivierenden KIT-Mutationen in GIST haben sich zahlreiche Studien mit der Rolle von wildtypischem und mutiertem KIT in GIST beschäftigt. Inzwischen wurden in der überwiegenden Mehrheit der GIST KIT-Mutationen identifiziert und selbst in KIT-Mutation-negativen GIST eine konstitutive Phosphorylierung der KIT-Rezeptor-Tyrosinkinase nachgewiesen. Diese Befunde lassen darauf schließen, dass KIT eine zentrale Rolle bei der Pathogenese von GIST spielt. Imatinib (STI571/Glivec®) inhibiert selektiv die BCR/ABL-, die PDGFR- und die KIT-Rezeptor-Tyrosinkinasen. Erste therapeutische Anwendungen von Imatinib bei Patienten mit progredienten GIST haben in dieser chemo- und radiotherapieresistenten Tumorentität beachtliche Ergebnisse erzielt. In dieser Übersicht werden die morphologischen Befunde und molekularen Grundlagen von GIST dargestellt, die eine neue therapeutische Perspektive eröffnet haben. Summary Recent morphological and molecular genetic findings have greatly expanded our understanding of gastrointestinal stromal tumors (GISTs). GISTs are now defined by their overexpression of CD117 (KIT), the receptor for the stem cell factor, and can thus be discriminated from smooth muscle tumors. Cytogenetically, GISTs are characterized even in early lesions by frequent entire or partial loss of the chromosomes 14 and 22 and terminal deletions of the chromosomal arm 1p. During tumor progression further chromosomal imbalances accumulate. Following the first report on activating KIT mutations in GISTs, several studies have addressed the role of wild-type and mutant KIT in GISTs and demonstrated activating KIT mutations in the majority of cases. Moreover, KIT tyrosine phosphorylation is even present in KIT mutation-negative GISTs, implicating KIT activation as a central event in the pathogenesis of GISTs. Imatinib (STI571/Glivec®) is a selective inhibitor of BCR/ABL, PDGFR and KIT receptor-tyrosine kinases. First therapeutic applications of imatinib in patients with progressive GISTs have yielded promising results. This review focusses on the morphological and molecular findings in GISTs which have opened up a new therapeutic perspective.  相似文献   

19.
Gastrointestinal stromal tumors (GISTs) are the most important and common mesenchymal tumors of the gastrointestinal tract, especially in the stomach. GISTs are usually driven by activating mutations in either KIT or PDGFRA genes. It is known that activating gene mutations predicts, to a certain extent, not only the morphology of the tumor cells but also a response to treatment with tyrosine kinase inhibitors. Here, we present a case of an epithelioid variant of GIST harboring PDGFRA and MLH1 gene alterations in the stomach of a 55‐year‐old Japanese woman. The tumor of 98 mm with multiple cysts showed exophytic growth from the gastric fundus. Histopathologically, it consisted of scattered medium‐sized epithelioid tumor cells in a loose myxoid background. Based on c‐kit and DOG‐1 immunoreactivity and a PDGFRA mutation (p.Trp559_Arg560del), the tumor was diagnosed as an epithelioid variant GIST. Interestingly, it had a gene alteration (p.Met524Ile) in the MLH1 gene of unknown pathogenicity. It was assigned to Group 3a (low risk for malignant behavior). After surgery, the patient has been on imatinib therapy and disease‐free for 10 months.  相似文献   

20.
Activating mutations of platelet-derived growth factor receptor α (PDGFRA) are detected in a significant proportion of gastrointestinal stromal tumors (GISTs), in addition to the more frequent mutation in c-kit. GISTs with PDGFRA mutations have been found to have several characteristic morphological features, sometimes allowing to discriminate them from GISTs with c-kit mutations. Among these, epithelioid morphology in tumor cells and tumor-infiltrating mast cells are powerful predictors of PDGFRA mutations. Although myxoid stroma by itself is not so much a reliable predictor of PDGFRA mutation, myxoid stroma in conjunction with epithelioid morphology in tumor cells is a powerful predictor of mutations in this gene. GISTs showing either weak or negative immunoreactivity for c-kit and epithelioid cells with myxoid stroma are called myxoid epithelioid GISTs, which typically show PDGFRA mutation. Herein, we presented a case of a 59-year-old woman with myxoid epithelioid GIST of the stomach. A unique finding in this case was eosinophil infiltration, probably more numerous than mast cells; mast cell infiltration is known to be usually found in myxoid epithelioid GIST. The existence of a similar mechanism in eosinophil and mast cell recruitment via tumor-producing stem cell factor is speculated. Mutational analyses revealed a PDGFRA exon 18 mutation: D842_H845del, D846N. Combined deletion and substitution mutation has been reported in rare instances, but to the best of our knowledge, D846N has not been documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号