首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Skin lesion color is an important feature for diagnosing malignant melanoma. In previous research, skin lesion color was investigated for discriminating malignant melanoma lesions from benign lesions in clinical images. Colors characteristics of melanoma were determined using color histogram analysis over a training set of images. Percent melanoma color and color clustering ratio features were used to quantify the presence of melanoma-colored pixels within skin lesions for skin lesion discrimination. METHODS: In this research, the relative color histogram analysis technique is used to evaluate skin lesion discrimination based on color feature calculations in different regions of the skin lesion in dermoscopy images. The histogram analysis technique is examined for varying training set sizes from the set of 113 malignant melanomas and 113 benign dysplastic nevi images. RESULTS: Experimental results show improved discrimination capability for feature calculations focused in the interior lesion region. Recognition rates for malignant melanoma and dysplastic nevi as high as 87.7% and 74.9%, respectively, are observed for the color clustering ratio computed using the outer 75% uniformly distributed area with a 10% offset within the boundary. CONCLUSIONS: Experimental results appear to indicate that the melanoma color feature information is located in the interior of the lesion, excluding the 10% central-most region. The techniques presented here including the use of relative color and the determination of benign and malignant regions of the relative color histogram may be applicable to any set of images of benign and malignant lesions.  相似文献   

2.
Background: Skin lesion colour is an important feature for diagnosing malignant melanoma. Colour histogram analysis over a training set of images has been used to identify colours characteristic of melanoma, i.e., melanoma colours. A percent melanoma colour feature defined as the percentage of the lesion pixels that are melanoma colours has been used as a feature to discriminate melanomas from benign lesions.
Methods: In this research, the colour histogram analysis technique is extended to evaluate skin lesion discrimination based on colour feature calculations in different regions of the skin lesion. The colour features examined include percent melanoma colour and a novel colour clustering ratio. Experiments are performed using clinical images of 129 malignant melanomas and 129 benign lesions consisting of 40 seborrheic keratoses and 89 nevocellular nevi.
Results: Experimental results show improved discrimination capability for feature calculations focused in the lesion boundary region. Specifically, correct melanoma and benign recognition rates are observed as high as 89 and 83%, respectively, for the percent melanoma colour feature computed using only the outermost, uniformly distributed 10% of the lesion's area.
Conclusions: The experimental results show for the features investigated that the region closest to the skin lesion boundary contains the greatest colour discrimination information for lesion screening. Furthermore, the percent melanoma colour feature consistently outperformed the colour clustering ratio for the different skin lesion regions examined. The clinical application of this result is that clustered colours appear to be no more significant than colours of arbitrary distribution within a lesion.  相似文献   

3.
Background: Malignant melanoma, the most deadly form of skin cancer, has a good prognosis if treated in the curable early stages. Colour provides critical discriminating information for the diagnosis of malignant melanoma.
Methods: This research introduces a three-dimensional relative colour histogram analysis technique to identify colours characteristic of melanomas and then applies these 'melanoma colours' to differentiate benign skin lesions from melanomas. The relative colour of a skin lesion is determined based on subtracting a representative colour of the surrounding skin from each lesion pixel. A colour mapping for 'melanoma colours' is determined using a training set of images. A percent melanoma colour feature, defined as the percentage of the lesion pixels that are melanoma colours, is used for discriminating melanomas from benign lesions. The technique is evaluated using a clinical image data set of 129 malignant melanomas and 129 benign lesions consisting of 40 seborrheic keratoses and 89 nevocellular nevi.
Results: Using the percent melanoma colour feature for discrimination, experimental results yield correct melanoma and benign lesion discrimination rates of 84.3 and 83.0%, respectively.
Conclusions: The results presented in this work suggest that lesion colour in clinical images is strongly related to the presence of melanoma in that lesion. However, colour information should be combined with other information in order to further reduce the false negative and false positive rates.  相似文献   

4.
BACKGROUND: Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at x 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. METHODS: In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. RESULTS: Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. CONCLUSIONS: The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images.  相似文献   

5.
BACKGROUND/PURPOSE: It is known that the standard features for lesion classification are ABCD features, that is, asymmetry, border irregularity, colour variegation and diameter of lesion. However, the observation that skin patterning tends to be disrupted by malignant but not by benign skin lesions suggests that measurements of skin pattern disruption on simply captured white light optical skin images could be a useful contribution to a diagnostic feature set. Previous work using both skin line direction and intensity for lesion classification was encouraging. But these features have not been combined with the ABCD features. This paper explores the possibility of combing features from skin pattern and ABCD analysis to enhance classification performance. METHODS: The skin line direction and intensity were extracted from a local tensor matrix of skin pattern. Meanwhile, ABCD analysis was conducted to generate six features. They were asymmetry, border irregularity, colour (red, green and blue) variegations and diameter of lesion. The eight features of each case were combined using a principal component analysis (PCA) to produce two dominant features for lesion classification. RESULTS: A larger set of images containing malignant melanoma (MM) and benign naevi were processed as above and the scatter plot in a two-dimensional dominant feature space showed excellent separation of benign and malignant lesions. An ROC (receiver operating characteristic) plot enclosed an area of 0.94. CONCLUSIONS: The classification results showed that the individual features have a limited discrimination capability and the combined features were promising to distinguish MM from benign lesion.  相似文献   

6.
BACKGROUND/PURPOSE: Clinically, it is difficult to differentiate the early stage of malignant melanoma and certain benign skin lesions due to similarity in appearance. Our research uses image analysis of clinical skin images and relative color-based pattern recognition techniques to enhance the images and improve differentiation of these lesions. METHODS: First, the relative color images were created from digitized photographic images. Then, they were segmented into objects and morphologically filtered. Next, the relative color features were extracted from the objects to form two different feature spaces; a lesion feature space and an object feature space. The two feature spaces serve as two data models to be analyzed to determine the best features. Finally, we used a statistical analysis model of relative color features, which better classifies the various types of skin lesions. RESULTS/CONCLUSIONS: The best features found for differentiation of melanoma and benign skin lesions from this study are area, mean in the red and blue bands, standard deviation in the red and green bands, skewness in the green band, and entropy in the red band. With the relative color feature algorithm developed, the best results were obtained with a multi-layer perceptron neural network model. This showed an overall classification success of 79%, with 70% of the benign lesions successfully classified, and 86% of malignant melanoma successfully classified.  相似文献   

7.
BACKGROUND: Numerous features are derived from the asymmetry, border irregularity, color variegation, and diameter of the skin lesion in dermatology for diagnosing malignant melanoma. Feature selection for the development of automated skin lesion discrimination systems is an important consideration. METHODS: In this research, a systematic heuristic approach is investigated for feature selection and lesion classification. The approach integrates statistical-, correlation-, histogram-, and expert system-based components. Using statistical and correlation measures, interrelationships among features are determined. Expert system analysis is performed to identify redundant features. The feature selection process is applied to 19 shape and color features for a clinical image data set containing 355 malignant melanomas, 125 basal cell carcinomas, 177 dysplastic nevi, 199 nevocellular nevi, 139 seborrheic keratoses, and 45 vascular lesions. RESULTS: Experimental results show reduced lesion classification error rates based on condensing the shape and color feature set from 19 features to 13 features using the feature selection process. Specifically, average test lesion classification error rates for discriminating malignant melanoma from non-melanoma lesions were reduced from 26.6% for 19 features to 23.2% for 13 features over five randomly generated training and test sets. CONCLUSIONS: The experimental results show that the systematic heuristic approach for feature reduction can be successfully applied to achieve improved lesion discrimination. The feature reduction technique facilitates the elimination of redundant information that may inhibit lesion classification performance. The clinical application of this result is that automated skin lesion classification algorithm development can be fostered with systematic feature selection techniques.  相似文献   

8.
Background/purpose: During the recent years, many diagnostic methods have been proposed aiming at early detection of malignant melanoma. The texture of skin lesions is an important feature to differentiate melanoma from other types of lesions, and different techniques have been designed to quantify this feature. In this paper, we discuss a new approach based on independent component analysis (ICA) for extraction of texture features of skin lesions in clinical images.
Methods: After preprocessing and segmentation of the images, features that describe the texture of lesions and show high discriminative characteristics are extracted using ICA, and then these features, along with the color features of the lesions, are used to construct a classification module based on support vector machines for the recognition of malignant melanoma vs. benign nevus.
Results: Experimental results showed that combining melanoma and nevus color features with proposed ICA-based texture features led to a classification accuracy of 88.7%.
Conclusion: ICA can be used as an effective tool for quantifying the texture of lesions.  相似文献   

9.
BACKGROUND/PURPOSE: The observation that skin pattern tends to be disrupted by malignant but not by benign skin lesions suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work which generated a flow field of skin pattern using a measurement of local line direction and variation determined by the minimum eigenvalue and its corresponding eigenvector of the local tensor matrix to measure skin pattern disruption was computationally low cost and encouraging. This paper explores the possibility of extracting new features from the first and second differentiations of this flow field to enhance classification performance. METHODS: The skin pattern was extracted from WLC skin images by high-pass filtering. The skin line direction was estimated using a local image gradient matrix to produce a flow field of skin pattern. Divergence, curl, mean and Gaussian curvatures of this flow field were computed from the first and second differentiations of this flow field. The difference of these measures combined with skin line direction across the lesion image boundary was used as a lesion classifier. RESULTS: A set of images of malignant melanoma and benign naevi were analysed as above and the scatter plot in a two-dimensional dominant feature space using principal component analysis showed excellent separation of benign and malignant lesions. A receiver operating characteristic plot enclosed an area of 0.96. CONCLUSIONS: The experimental results show that the divergence, curl, mean and Gaussian curvatures of the flow field can increase lesion classifier accuracy. Combined with skin line direction they are promising features for distinguishing malignant melanoma from benign lesions and the methods used are computationally efficient which is important if their use is to be considered in clinical practice.  相似文献   

10.
Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption. Methods: The skin pattern was extracted from WLC skin images by high‐pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier. Results: A set of images of malignant melanoma and benign naevi was analysed. A one‐dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two‐dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three‐dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96. Conclusion: The experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.  相似文献   

11.
BACKGROUND: Dermoscopy, also known as dermatoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One prominent feature useful for melanoma detection in dermoscopy images is the asymmetric blotch (asymmetric structureless area). METHOD: Using both relative and absolute colors, blotches are detected in this research automatically by using thresholds in the red and green color planes. Several blotch indices are computed, including the scaled distance between the largest blotch centroid and the lesion centroid, ratio of total blotch areas to lesion area, ratio of largest blotch area to lesion area, total number of blotches, size of largest blotch, and irregularity of largest blotch. RESULTS: The effectiveness of the absolute and relative color blotch features was examined for melanoma/benign lesion discrimination over a dermoscopy image set containing 165 melanomas (151 invasive melanomas and 14 melanomas in situ) and 347 benign lesions (124 nevocellular nevi without dysplasia and 223 dysplastic nevi) using a leave-one-out neural network approach. Receiver operating characteristic curve results are shown, highlighting the sensitivity and specificity of melanoma detection. Statistical analysis of the blotch features are also presented. CONCLUSION: Neural network and statistical analysis showed that the blotch detection method was somewhat more effective using relative color than using absolute color. The relative-color blotch detection method gave a diagnostic accuracy of about 77%.  相似文献   

12.
Background/aims: The observation that skin line patterning tends to be disrupted by malignant but not non‐malignant skin lesions suggests that this could be used as an aid to lesion differentiation. Since recognised differentiating features can be obtained from the simply‐captured white light optical image, the possibility of using such images for skin pattern disruption detection is worth exploring. Methods: The skin pattern has been extracted from optical images by high‐pass filtering and profiles of local line strength variation with the angle estimated using a new consistent high‐value profiling technique. The resultant profile images have been analysed using a novel region‐based agglomerative clustering technique (mRAC) and also a local variance measurement. A measure based on the relationship between the classification results and an intensity‐based segmentation was calculated, and this represented the disruption of the skin line patterning. Results: A set of images containing a variety of histologically confirmed malignant and non‐malignant lesions was analysed. The computed textural disruption figure was compared to both the histological diagnosis and to a visual estimate of patterning disruption for each image. It was demonstrated that lesion separation could be achieved by both analysis methods, with a good correlation with visual estimate of disruption and with mRAC providing the best performance. Conclusions: It was concluded that the acquisition and modelling of skin line patterning from clinical images of skin lesions had been successfully achieved and that the analysis of the resulting data provided an assessment of pattern disruption that is both consistent with visual inspection and effective in presenting information useful for discrimination between melanoma and benign naevi lesion examples.  相似文献   

13.
Background/purpose: After the formulation of ABCD rules, many new feature extraction methods are emerging to describe the asymmetry, border irregularity, color variation and diameter of malignant melanoma. In this paper, a new research direction orthogonal to ABCD rules that characterizes 3D local disruption of skin surfaces to realize automatic recognition of melanoma is described.
Methods: This paper examines 3D differential forms of skin surfaces to characterize the local geometrical properties of melanoma. Firstly, 3D data of skin surfaces are obtained using a photometric stereo device. Then differential forms of lesion surfaces are determined to describe the geometrical texture patterns involved. Using only these geometrical features, a simple least-squared error-based linear classifier can be constructed to realize the classification of malignant melanomas and benign lesions.
Results: As with the 3D data of 35 melanoma and 66 benign lesion samples collected from local pigmented lesion clinics, the optimal sensitivity and specificity of the constructed linear classifier are 71.4% and 86.4%, respectively. The total area enclosed by the corresponding receiver operating characteristics curve is 0.823.
Conclusion: This study indicates that differential forms obtained from 3D data are very promising in characterizing melanoma. Combining these features with other skin features such as border irregularity and color variation might further improve the accuracy and reliability of the automatic diagnosis of melanoma.  相似文献   

14.
Background/purpose: It has been observed that skin patterning tends to be disrupted by malignant but not by benign skin lesions. This suggests that measurements of skin pattern disruption on simply captured white light optical skin images could be a useful contribution to a diagnostic feature set. Previous work using a measurement of line strength by a consistent high-value profiling technique followed by local variance measurement or a region agglomerative classifier to measure skin line pattern disruption was extremely promising but computationally intensive, suggesting that the idea of measuring skin pattern disruption was useful but a simpler method was required.
Methods: The skin pattern was extracted by high-pass filtration and enhanced by adaptive anisotropic (spatial variant) filtering which smoothes along skin lines but not across them. The skin line main direction and direction variance were estimated using a local image gradient matrix and the difference of these measures across the lesion image boundary was used as a lesion classifier.
Results: A set of images of malignant melanoma and benign naevi were processed as above and the scatter plot of results in a two-dimensional feature (line direction and line variation difference) space showed excellent separation of benign and malignant lesions. An ROC plot enclosed an area of 0.88.
Conclusions: The experimental results showed that the local line direction and the local line variation were promising features for distinguishing malignant melanoma from benign lesion and the methods used were effective and computationally low-cost.  相似文献   

15.
High-resolution ultrasound-reflex transmission imaging is a non-invasive method that can be performed in vivo. We have adapted and refined this technique for skin imaging. Scans can be analyzed to produce objective parameters. Previous work has highlighted sonographic differences between benign and malignant lesions. The aim of this study was to produce and test numerical parameters from ultrasound skin images that would quantify the acoustic differences between common pigmented lesions, which may aid their discrimination from melanoma. We report our findings for randomly selected patients referred from primary care with suspected melanoma. Those subsequently classified as malignant melanoma (MM), seborrheic keratosis (SK), and benign nevi by a consultant dermatologist (n=87) were imaged by high-resolution ultrasound-reflex transmission imaging. Using surrounding normal skin as a control, numerical sonographic parameters were derived for each lesion giving a relative measure of surface sound reflectance, intra-lesional sound reflection, total sound attenuation, and the relative uniformity of each parameter across the tumor. Significant quantitative differences existed between benign and malignant pigmented lesions studied. Sufficient discrimination was produced between MM (n=25), SKs (n=24) and other benign-pigmented lesions (n=38) to potentially reduce the referral of benign tumors by 65% without missing melanoma.  相似文献   

16.
Purpose: To explore texture features in two-dimensional images to differentiate seborrheic keratosis from melanoma.
Methods: A systematic approach to consistent classification of skin tumors is described. Texture features, based on the second-order histogram, were used to identify the features or a combination of features that could consistently differentiate a malignant skin tumor (melanoma) from a benign one (seborrheic keratosis). Two hundred and seventy-one skin tumor images were separated into training and test sets for accuracy and consistency. Automatic induction was applied to generate classification rules. Data analysis and modeling tools were used to gain further insight into the feature space.
Result and Conclusions: In all, 85–90% of seborrheic keratosis images were correctly differentiated from the malignant skin tumors. The features correlation_average, correlation_range, texture_energy_average and texture_energy_range were found to be the most important features in differentiating seborrheic keratosis from melanoma. Over-all, the seborrheic keratosis images were better identified by the texture features than the melanoma images.  相似文献   

17.
BACKGROUND/PURPOSE: The Irregularity Index is a measure of border irregularity from pigmented skin lesion images. The measure attempts to quantify the degree of irregularity of the structural indentations and protrusions along a lesion border. A carefully designed study has shown that the parameters derived from the Irregularity Index were highly correlated with expert dermatologists' notion of border shape. This paper investigates the predictive power of these parameters on a set of data with known histological diagnosis. METHODS: A set of 188 pigmented skin lesions (30 malignant melanomas and 158 benign lesions) was selected for the study. Their images were segmented and their border shapes were analysed by the Irregularity Index, producing four border irregularity parameters. The predictive power of these four parameters was estimated by a series of statistical tests. RESULTS: The mean values of the four border irregularity parameters were significantly different between the melanoma group and the benign lesion group. When using the four parameters to predict its disease status, the leave-one-out classification rate was 82.4%, and the area under the receiver operating characteristic curve was 0.77. A malignant melanoma was 8.9 times more likely to have an irregular border than a benign lesion. CONCLUSION: This study confirmed that border irregularity is an important clinical feature for the diagnosis of malignant melanoma. It also indicates that the computer-derived measures based on the Irregularity Index capture to certain extent the kind of irregularity which is exhibited by melanomas.  相似文献   

18.
Background/aims: Epiluminescence microscopy (ELM), also known as dermoscopy or dermatoscopy, is a non‐invasive, in vivo technique, that permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such feature is the solid pigment, also called the blotchy pigment or dark structureless area. Our goal was to automatically detect this feature and determine whether its presence is useful in distinguishing benign from malignant pigmented lesions. Methods: Here, a texture‐based algorithm is developed for the detection of solid pigment. The factors d and a used in calculating neighboring gray level dependence matrix (NGLDM) numbers were chosen as optimum by experimentation. The algorithms are tested on a set of 37 images. A new index is presented for separation of benign and malignant lesions, based on the presence of solid pigment in the periphery. Results: The NGLDM large number emphasis N2 was satisfactory for the detection of the solid pigment. Nine lesions had solid pigment detected, and among our 37 lesions, no melanoma lacked solid pigment. The index for separation of benign and malignant lesions was applied to the nine lesions. We were able to separate the benign lesions with solid pigment from the malignant lesions with the exception of only one lesion, a Spitz nevus that mimicked a malignant melanoma. Conclusion: Texture methods may be useful in detecting important dermatoscopy features in digitized images and a new index may be useful in separating benign from malignant lesions. Testing on a larger set of lesions is needed before further conclusions can be made.  相似文献   

19.
20.
The importance of recognizing early melanoma is generally accepted. Because not all pigmented skin lesions can be diagnosed correctly by their clinical appearance, additional criteria are required for the clinical diagnosis of such lesions. In vivo epiluminescence microscopy provides for a more detailed inspection of the surface of pigmented skin lesions, and, by using the oil immersion technic, which renders the epidermis translucent, opens a new dimension of skin morphology by including the dermoepidermal junction into the macroscopic evaluation of a lesion. In an epiluminescence microscopy study of more than 3000 pigmented skin lesions we have defined morphologic criteria that are not readily apparent to the naked eye but that are detected easily by epiluminescence microscopy and represent relatively reliable markers of benign and malignant pigmented skin lesions. These features include specific patterns, colors, and intensities of pigmentation, as well as the configuration, regularity, and other characteristics of both the margin and the surface of pigmented skin lesions. Pattern analysis of these features permits a distinction between different types of pigmented skin lesions and, in particular, between benign and malignant growth patterns. Epiluminescence microscopy is thus a valuable addition to the diagnostic armamentarium of pigmented skin lesions at a clinical level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号