首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fas ligand (FasL/CD95L) is a transmembrane protein belonging to the tumor necrosis factor superfamily that can trigger apoptotic cell death following ligation to its receptor, Fas (CD95/APO-1). Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of antitumor immune effector cells-the "Fas counterattack." However, the ability of FasL to mediate tumor immune privilege is controversial due to studies that indicate FasL has both pro- and anti-inflammatory activities. To resolve this controversy and functionally define the role of FasL in tumor immune evasion, we investigated if suppression of endogenously expressed FasL in colon tumor cells resulted in reduced tumor development and improved antitumor immune challenge in vivo. Specifically, FasL expression in CMT93 colon carcinoma cells was down-regulated following stable transfection with a plasmid encoding antisense FasL cDNA. Down-regulation of FasL expression had no effect on tumor growth in vitro but significantly reduced tumor development in syngeneic immunocompetent mice in vivo. Tumor size was also significantly decreased. Reduced FasL expression by tumor cells led to increased lymphocyte infiltration. The overall level of neutrophils present in all of the tumors examined was low, with no difference between the tumors, irrespective of FasL expression. Thus, down-regulation of FasL expression by colon tumor cells results in an improved antitumor immune challenge in vivo, providing functional evidence in favor of the "Fas counterattack" as a mechanism of tumor immune evasion.  相似文献   

2.
IFN-gamma-deficient (IFN-gamma-/-) mice induce potent in vitro immune responses such as anti-allo mixed lymphocyte reaction and CTL responses, whereas they often fail to exhibit in vivo immunity. Here, we investigated whether there exists a defect in tumor rejection responses and if so, which process of responses is impaired. IFN-gamma-/- and wild-type (WT) BALB/c mice were immunized with attenuated syngeneic CSA1M tumor cells. The capacity of T cells to mediate tumor protection was examined in Winn assays to assess the growth of tumor cells admixed with tumor-sensitized T cells. Splenic T cells from both groups of mice exhibited comparable levels of tumor-neutralizing activity. When portions of immunized mice were directly challenged with viable tumor cells, tumor rejection was induced only in WT mice. CD4(+) and CD8(+) T-cell infiltration were observed at the site of tumor challenge in WT mice, whereas such a T-cell infiltration did not occur in IFN-gamma-/- mice. Similarly, splenic T cells from interleukin 12-treated CSA1M-bearing IFN-gamma-/- and WT mice neutralized tumor cells at comparable efficacies in Winn assays. However, the migration of these T cells to tumor masses and the resultant interleukin 12-induced tumor regression took place in WT mice, but neither intratumoral T-cell infiltration nor tumor regression occurred in IFN-gamma-/- mice. These results indicate a critical requirement for IFN-gamma in the process of inducing T-cell migration to tumor sites rather than of generating antitumor protective T cells.  相似文献   

3.
4.
The CXC chemokine SDF-1 has been characterized as a T-cell chemoattractant both in vitro and in vivo. To determine whether SDF-1 expression within tumors can influence tumor growth, we transfected an expression vector pCI-SDF-1 for SDF-1 into J558 myeloma cells and tested their ability to form tumors in BALB/c. Production of biologically active SDF-1 (1.2 ng/mL) was detected in the culture supernatants of cells transfected with the expression vector pCI-SDF-1. J558 cells gave rise to a 100% tumor incidence, whereas SDF-1-expressing J558/SDF-1 tumors invariably regressed in BALB/c mice and became infiltrated with CD4(+) and CD8(+) T cells. Regression of the J558/SDF-1 tumors was dependent on both CD4(+) and CD8(+) T-cells. Our data also indicate that TIT cells containing both CD4(+) and CD8(+) T-cells within J558/SDF-1 tumors express the SDF-1 receptor CXCR4, and that SDF-1 specifically chemoattracts these cells in vitro. Furthermore, immunization of mice with engineered J558/SDF-1 cells elicited the most potent protective immunity against 0.5 x 10(6) cells J558 tumor challenge in vivo, compared to immunization with the J558 alone, and this antitumor immunity mediated by J558/SDF-1 tumor cell vaccination in vivo appeared to be dependent on CD8(+) CTL. Thus, SDF-1 has natural adjuvant activities that may augment antitumor responses through their effects on T-cells and thereby could be important in gene transfer immunotherapies for some cancers.  相似文献   

5.
Chemokine CCL5/RANTES is highly expressed in cancer where it contributes to inflammation and malignant progression. In this study, we show that CCL5 plays a critical role in immune escape in colorectal cancer. We found that higher levels of CCL5 expression in human and murine colon tumor cells correlated with higher levels of apoptosis of CD8+ T cells and infiltration of T-regulatory cells (T(reg)). In mouse cells, RNA interference (RNAi)-mediated knockdown of CCL5 delayed tumor growth in immunocompetent syngeneic hosts but had no effect on tumor growth in immunodeficient hosts. Reduced tumor growth was correlated with a reduction in T(reg) infiltration and CD8(+) T-cell apoptosis in tumors. Notably, we found that CCL5 enhanced the cytotoxicity of T(reg) against CD8(+) T cells. We also found tumor growth to be diminished in mice lacking CCR5, a CCL5 receptor, where a similar decrease in both T(reg) cell infiltration and CD8(+) T-cell apoptosis was noted. TGF-β signaling blockade diminished apoptosis of CD8(+) T cells, implicating TGF-β as an effector of CCL5 action. In support of this concept, CCL5 failed to enhance the production of TGF-β by CCR5-deficient T(reg) or to enhance their cytotoxic effects against CD8(+) T cells. CCR5 signaling blockade also diminished the in vivo suppressive capacity of T(reg) in inhibiting the antitumor responses of CD8(+) T cells, in the same way as CCL5 signaling blockade. Together, our findings establish that CCL5/CCR5 signaling recruits T(reg) to tumors and enhances their ability to kill antitumor CD8(+) T cells, thereby defining a novel mechanism of immune escape in colorectal cancer.  相似文献   

6.
Tumor cells engineered to express immunogenes have been used for cancer vaccines to induce the antitumor immunity and study the antitumor immune mechanisms derived from the immunogene expression. In the present study, we engineered a mouse myeloma cell line J558 with a cloned CD40 ligand (CD40L) gene. We demonstrated that (i) the engineered J558/CD40L tumor cells expressing the CD40 ligand molecule lost their tumorigenicity in syngeneic mice, and (ii) the inoculation of J558/CD40L tumor cells further lead to the protective immunity against wild-type J558 tumors. In animal studies using T-cell subset depleted mice, we further showed that the primary rejection of J558/CD40L tumors did not require T cells, but was mainly mediated by NK cells, whereas the effector phase of the protective immunity is mediated by CD8+ T cells. In addition, our data, for the first time, showed that the inoculation of engineered J558/CD40L tumor cells is able to stimulate stronger activation of dendritic cells with enhanced expression of B7-1 and ICAM-1 molecules than the wild-type J558 tumor cells Taken together, we demonstrated the antitumor effect of engineered J558/CD40L tumor cells that is mediated by the activation of the host dendritic cells in vivo. Our data indicate that the introduction of co-stimulatory CD40 ligand molecule will be useful as a new strategy of immunogene therapy against tumors.  相似文献   

7.
The role of CD95 ligand (FasL/Apo-1L)-expressing tumors in immunosuppression or immunopotentiation is controversial. CD95L-transfected tumors induce immunopotentiation after vigorous neutrophil infiltration. Thus, the induction of neutrophil infiltration by CD95L seems to play an important role in tumor rejection. The mechanism by which CD95L-expressing tumors cause neutrophil infiltration and antitumor immunity has not been well understood. CXC chemokine receptor 2 (CXCR2) knockout (KO) mice are a powerful tool for studying CXC chemokine-mediated neutrophil infiltration. We investigated the roles of CD95L and chemokines in CD95L-induced antitumor activity by using CXCR2 KO mice and CD95LcDNA-transfected MethA (MethA + CD95L) fibrosarcoma. MethA + CD95L cells were completely rejected in wild-type (WT) and even in KO mice. MethA + CD95L cells injected intraperitoneally (i.p.) induced the recruitment of both neutrophils and macrophages in WT but only macrophages in KO mice, although CXC and CC chemokines were released in both mice. Macrophages incubated with MethA + CD95L cells released CXC and CC chemokines. Macrophages derived from WT and KO but not neutrophils from WT mice induced the recruitment of neutrophils when adoptively i.p. transferred with MethA + CD95L cells into CD95L/CD95-deficient mice. The different recruitment of inflammatory cells between WT and KO mice was attributed to bone marrow (BM) cells by BM transfer experiment. Our results demonstrated that CXC chemokines are essential for neutrophil recruitment and that macrophages but not neutrophils play a critical role in the CD95L-induced infiltration of inflammatory cells and the eradication of CD95L-expressing tumor cells.  相似文献   

8.
PURPOSE: In vitro studies suggest that ovarian cancer evades immune rejection by fostering an immunosuppressive environment within the peritoneum; however, the functional responses of ovarian cancer-specific T cells have not been directly investigated in vivo. Therefore, we developed a new murine model to enable tracking of tumor-specific CD8(+) T-cell responses to advanced ovarian tumors. EXPERIMENTAL DESIGN: The ovarian tumor cell line ID8 was transfected to stably express an epitope-tagged version of HER-2/neu (designated Neu(OT-I/OT-II)). After i.p. injection into C57BL/6 mice, ID8 cells expressing Neu(OT-I/OT-II) gave rise to disseminated serous adenocarcinomas with extensive ascites. CD8(+) T cells expressing a transgenic T-cell receptor specific for the OT-I epitope of Neu(OT-I/OT-II) were adoptively transferred into tumor-bearing mice, and functional responses were monitored. Cytokine signaling requirements were evaluated by comparing the responses of wild-type donor T cells with those with genetic deletion of the interleukin (IL)-2/IL-15 receptor beta subunit (CD122) or the IL-2 receptor alpha subunit (CD25). RESULTS: On adoptive transfer into tumor-bearing hosts, wild-type OT-I T cells underwent a striking proliferative response, reaching peak densities of approximately 40% and approximately 90% of CD8(+) T cells in peripheral blood and ascites, respectively. OT-I cells infiltrated and destroyed tumor tissue, and ascites completely resolved within 10 days. By contrast, CD122(-/-) OT-I cells and CD25(-/-) OT-I cells proliferated in blood but failed to accumulate in ascites or tumor tissue or induce tumor regression. CONCLUSIONS: Contrary to expectation, advanced ovarian cancers can support extraordinary CD8(+) T-cell proliferation and antitumor activity through an IL-2/IL-15-dependent mechanism.  相似文献   

9.
BACKGROUND: The costimulatory molecules B7-1, intercellular adhesion molecule-1 (ICAM-1), and leukocyte function-associated antigen-3 (LFA-3) play pivotal roles in the activation of T cells. We investigated whether in vivo vaccination with lymphoma cells infected with a recombinant, nonreplicating fowlpox (FP) virus encoding this triad of costimulatory molecules (TRICOM) could stimulate lymphoma-specific immunity. METHODS: TRICOM-infected A20 B lymphoma cells were analyzed for expression of B7-1, ICAM-1, and LFA-3. Mice (10 per group) were vaccinated with irradiated A20 cells infected with either the TRICOM vector or the wild-type FP virus (WT-FP), challenged with live A20 tumor cells, and followed for survival. Mice with established A20 tumors were also treated with irradiated TRICOM-infected A20 cells. Survival curves were compared with the log-rank statistic. The mechanism of the antitumor effect was studied by in vivo depletion of CD4(+) and CD8(+) T cells and in vitro cytotoxicity assays. All statistical tests were two-sided. RESULTS: A20 tumor cells infected with TRICOM expressed high levels of B7-1, ICAM-1, and LFA-3. Mice vaccinated with irradiated TRICOM-infected A20 cells had prolonged survival relative to mice vaccinated with WT-FP-infected cells (80% versus 20% survival at 110 days; P<.001). In mice with established tumors, tumor growth was slower in those treated with TRICOM-infected tumor cells than in those treated with WT-FP-infected cells, and this treatment provided a survival advantage (P<.001). Depletion of CD4(+) or CD8(+) T cells reduced the antitumor immunity provided by the tumor cell-TRICOM vaccine, and lymphocytes from vaccinated mice displayed in vitro cytotoxic activity toward A20 cells. CONCLUSIONS: Increasing expression of costimulatory molecules on B lymphoma cells by infection with a recombinant FP virus encoding B7-1, ICAM-1, and LFA-3 stimulates antitumor immune responses in vivo and may provide a novel strategy for treating patients with B-cell malignancies.  相似文献   

10.
Thermal ablation to destroy tumor tissue may help activate tumor-specific T cells by elevating the presentation of tumor antigens to the immune system. However, the antitumor activity of these T cells may be restrained by their expression of the inhibitory T-cell coreceptor CTLA-4, the target of the recently U.S. Food and Drug Administration-approved antibody drug ipilumimab. By relieving this restraint, CTLA-4-blocking antibodies such as ipilumimab can promote tumor rejection, but the full scope of their most suitable applications has yet to be fully determined. In this study, we offer a preclinical proof-of-concept in the TRAMP C2 mouse model of prostate cancer that CTLA-4 blockade cooperates with cryoablation of a primary tumor to prevent the outgrowth of secondary tumors seeded by challenge at a distant site. Although growth of secondary tumors was unaffected by cryoablation alone, the combination treatment was sufficient to slow growth or trigger rejection. In addition, secondary tumors were highly infiltrated by CD4(+) T cells and CD8(+) T cells, and there was a significant increase in the ratio of intratumoral T effector cells to CD4(+)FoxP3(+) T regulatory cells, compared with monotherapy. These findings documented for the first time an effect of this immunotherapeutic intervention on the intratumoral accumulation and systemic expansion of CD8(+) T cells specific for the TRAMP C2-specific antigen SPAS-1. Although cryoablation is currently used to treat a targeted tumor nodule, our results suggest that combination therapy with CTLA-4 blockade will augment antitumor immunity and rejection of tumor metastases in this setting.  相似文献   

11.
In the present study, we investigated the mechanisms by which anti-endoglin (EDG; CD105) monoclonal antibodies (mAbs) suppress angiogenesis and tumor growth. Antihuman EDG mAb SN6j specifically bound to murine endothelial cells and was internalized into the cells in vitro. SN6j effectively suppressed angiogenesis in mice in the Matrigel plug assay. We found that SN6j is more effective for tumor suppression in immunocompetent mice than in SCID mice. We hypothesized that T cell immunity is important for effective antitumor efficacy of SN6j in vivo. To test this hypothesis, we investigated effects of CpG oligodeoxynucleotides (ODN) and depletion of CD4(+) T cells and/or CD8(+) T cells on antitumor efficacy of SN6j in mice. Systemic (i.v.) administration of a relatively small dose (0.6 mug/g body weight/dose) of SN6j suppressed growth of established s.c. tumors of colon-26 in BALB/c mice and improved survival of the tumor-bearing mice. Addition of CpG ODN to SN6j synergistically enhanced antitumor efficacy of SN6j. In contrast, such enhancing effects of CpG ODN were not detected in SCID mice. Antitumor efficacy of SN6j in BALB/c mice was abrogated when CD4(+) T cells and/or CD8(+) T cells were depleted; effect of CD8(+) T cell depletion was stronger. Interestingly, CD4-depletion decreased tumor growth while CD8-depletion enhanced tumor growth in the absence of SN6j. SN6j induced apoptosis in human umbilical vein endothelial cells in a dose-dependent manner which indicates an additional mechanism of antiangiogenesis by SN6j. (c) 2008 Wiley-Liss, Inc.  相似文献   

12.
As they should enhance tumor-specific antigen presentation by dendritic cells, tumor cell lines genetically modified to express CD154 molecules have been used in an attempt to induce protective antitumor immunity. Two murine models were used: the major histocompatibility complex (MHC) class I negative melanoma B16F10 and the MHC class I positive mammary adenocarcinoma TS/A. CD154 or mock-transfected B16F10 or TS/A cells were injected subcutaneously into H-2-compatible B6D2 mice. CD154 expression by tumor cells induced a complete rejection (in the TS/A model) or a striking reduction (in the B16F10 model) of modified tumors growth, but also a significant protection against the growth of mock tumor cells injected simultaneously, either mixed with the CD154-expressing tumor cells, or in the other flank of mice. Thirty days after CD154-expressing tumor rejection, splenic lymphocytes from surviving tumor-free mice were able to inhibit tumor proliferation in vitro and significant amounts of IFN-gamma were detected in the sera of these mice. Growth kinetics of mock and CD154-expressing tumors in immunocompetent versus nude mice suggest that T lymphocytes and natural killer cells responses are implicated in this antitumor immunity. The injection of CD154-expressing tumor cell induced an antitumor protective response, both locally and distant from the injection site. The effect was most pronounced in MHC class I expressing TS/A tumor model.  相似文献   

13.
To achieve in situ tumor antigen uptake and presentation, intratumoral administration of ex vivo-generated, gene-modified murine bone marrow-derived dendritic cells (DC) was used in a murine lung cancer model. To attract mature host DC and activated T cells at the tumor site, the DC were transduced with an adenoviral vector expressing secondary lymphoid tissue chemokine (CCL21/SLC). Sixty percent of the mice treated with 10(6) DC-AdCCL21 intratumorally (7-10 ng/ml/10(6) cells/24 h of CCL21) at weekly intervals for 3 weeks showed complete tumor eradication, whereas only 25% of mice had complete resolution of tumors when mice were treated with fibroblasts expressing CCL21. In contrast only 12% of the mice treated with unmodified or control vector modified DC (DC-AdCV) showed complete tumor eradication. DC-AdCCL21 administration led to increases in the CD4(+), CD8(+), and CD3(+)CXCR3(+) T cells, as well as DC expressing CD11c(+) DEC205(+). CD4(+)CD25(+) T-regulatory cells infiltrating the tumors were markedly reduced after DC-AdCCL21 therapy. The tumor site cellular infiltrates were accompanied by the enhanced elaboration of granulocyte macrophage colony-stimulating factor, IFN-gamma, MIG/CXCL9, IP-10/CXCL10, and interleukin 12, but decreases in the immunosuppressive mediators transforming growth factor beta and prostaglandin E(2). DC-AdCCL21-treated tumor-bearing mice showed enhanced frequency of tumor-specific T lymphocytes secreting IFN-gamma, and tumor protective immunity was induced after DC-AdCCL21 therapy. In vivo depletion of IP-10/CXCL10, MIG/CXCL9, or IFN-gamma significantly reduced the antitumor efficacy of DC-AdCCL21. These findings provide a strong rationale for the evaluation of DC-AdCCL21 in cancer immunotherapy.  相似文献   

14.
Prophylactic tumor vaccination against subsequent tumor challenge depends on effective cross-priming in vivo. Professional APCs process tumor antigens from whole tumor cells and present them to CD4(+) and CD8(+) T cells. Data suggest that dendritic cells process antigens more efficiently from necrotic cells than from apoptotic cells in vitro. We compared the effect of apoptosis vs. necrosis in vivo using different tumor models (CT26, RENCA, B16 and CT26-HA). Apoptosis was induced by gamma-irradiation prior to injection and verified in vivo. Apoptotic CT26-HA, CT26-wt or RENCA prevented tumor outgrowth in 100%, 75% and 100%, respectively, of mice for more than 30 days after challenge. In contrast, injection of necrotic tumor cells led to protection of no more than 0-30%. Prolonged tumor-free survival was also observed in mice after vaccination with irradiated B16 cells. In vivo protection experiments correlated very well with in vitro cytotoxicity assays. Immunohistochemical analysis of the vaccine site showed a strong CD4(+) and CD8(+) T-cell response after injection of apoptotic cells, which was accompanied by the presence of dendritic cells. In contrast, necrotic cell vaccines attracted a strong local macrophage response. Our data clearly demonstrate that only apoptotic tumor cell vaccines induce a potent antitumor immune response.  相似文献   

15.
The immune system is potentially qualified to detect and eliminate tumor cells, but various mechanisms developed by tumor cells allow tumor escape. Strategies selected to promote antitumor responses have included genetic modifications of tumor cells to induce expression of costimulatory molecules. Moreover, alloantigens can also act as strong enhancers of the immune response. In this work, we have associated the expression of two costimulatory members of the TNF superfamily, CD40L and CD70 along with an allogenic MHC Class I (H-2K(d)) molecule expression on melanoma cells (B16F10, H-2(b)) to favor the antitumor immune response. B16F10 tumor growth slows significantly when CD40L and CD70 are coexpressed by tumor cells and the association with the allogenic molecule (H-2K(d)) enhances this effect. Growth kinetics of mock and CD40L-CD70-H-2K(d)-expressing B16F10 tumors in immunocompetent versus nu/nu and beige mice suggested that CD8(+) T lymphocytes and NK cells were involved in this antitumor immunity. A delay in mock tumor growth was observed when CD40L-CD70-H-2K(d)-expressing B16F10 cells and mock tumor cells were injected simultaneously and contralaterally. It was also shown that in vivo immunization of immunocompetent mice with CD40L-CD70-H-2K(d) B16F10 tumor cells improved the generation of cytotoxic lymphocytes against the wild-type melanoma cells expressing the syngenic MHC Class I molecule H-2K(b) (B16K1). These observations lay a path for new immunotherapeutic trials using semiallogenic fibroblasts expressing costimulatory molecules and tumor-associated antigens.  相似文献   

16.
Ahmadi M  Emery DC  Morgan DJ 《Cancer research》2008,68(18):7520-7529
Defects in antitumor immune responses have been associated with increased release of prostaglandin E(2) (PGE(2)) as a result of overexpression of cyclooxygenase (COX)-2 by tumors. In this report, we examine the effects of PGE(2) on antitumor CD8(+) T-cell responses generated both by cross-presenting dendritic cells and by direct priming by tumor cells. Our data show that PGE(2) inhibits dendritic cell maturation, resulting in the abortive activation of naive CD8(+) T cells, and is dependent on interleukin-10 production by dendritic cells. Interaction of tumor cells with na?ve CD8(+) T cells in the presence of PGE(2) in vitro results in the induction of CD8(+) CD28(-) T cells, which fail to proliferate or exhibit effector function. In vivo, overexpression of COX-2 by tumor cells results in a decrease in number of tumor-infiltrating dendritic cells and confers the ability of tumor cells to metastasize to the tumor draining lymph nodes.  相似文献   

17.
The amino boronic dipeptide, PT-100 (Val-boro-Pro), a dipeptidyl peptidase (DPP) inhibitor, has been shown to up-regulate gene expression of certain cytokines in hematopoietic tissue via a high-affinity interaction, which appears to involve fibroblast activation protein. Because fibroblast activation protein is also expressed in stroma of lymphoid tissue and tumors, the effect of PT-100 on tumor growth was studied in mice in vivo. PT-100 has no direct cytotoxic effect on tumors in vitro. Oral administration of PT-100 to mice slowed growth of syngeneic tumors derived from fibrosarcoma, lymphoma, melanoma, and mastocytoma cell lines. In WEHI 164 fibrosarcoma and EL4 and A20/2J lymphoma models, PT-100 caused regression and rejection of tumors. The antitumor effect appeared to involve tumor-specific CTL and protective immunological memory. PT-100 treatment of WEHI 164-inoculated mice increased mRNA expression of cytokines and chemokines known to promote T-cell priming and chemoattraction of T cells and innate effector cells. The role of innate activity was further implicated by observation of significant, although reduced, inhibition of WEHI 164 and A20/2J tumors in immunodeficient mice. PT-100 also demonstrated ability to augment antitumor activity of rituximab and trastuzumab in xenograft models of human CD20(+) B-cell lymphoma and HER-2(+) colon carcinoma where antibody-dependent cytotoxicity can be mediated by innate effector cells responsive to the cytokines and chemokines up-regulated by PT-100. Although CD26/DPP-IV is a potential target for PT-100 in the immune system, it appeared not to be involved because antitumor activity and stimulation of cytokine and chemokine production was undiminished in CD26(-/-) mice.  相似文献   

18.
Briones J  Timmerman J  Levy R 《Cancer research》2002,62(11):3195-3199
CD40-CD40 ligand (CD40L) interactions play a critical role in the activationof cellular immunity. CD40L enhances the antigen presentation function of CD40-expressing B cells. We have used a murine B-cell lymphoma model (A20) to study the in vivo antitumor effect of the administration of tumor cells transduced with a recombinant adenovirus encoding CD40L (AdvCD40L). After infection with AdvCD40L, A20 tumor cells up-regulate several T-cell costimulatory molecules (CD80, CD86, ICAM-1, and LFA-3) and Fas expression. Animals vaccinated with irradiated tumor cells transduced with AdvCD40L are protected against a lethal dose of parental A20 tumor cells. Animals with pre-existing tumors treated with AdvCD40L-transduced tumor cells display inhibition of the tumor growth, and this treatment confers a survival advantage. In vivo depletion studies demonstrate that both CD4(+) and CD8(+) T cells mediate the antitumor immunity provided by AdvCD40L-transduced tumor cells. These results show that genetic modification of tumor B cells with CD40L can be a useful strategy to promote systemic immunity against B-cell malignancies and provide an in vivo system to allow for additional evaluation and refinement of this approach.  相似文献   

19.
Human T cells engineered to express a chimeric antigen receptor (CAR) specific for folate receptor-α (FRα) have shown robust antitumor activity against epithelial cancers in vitro but not in the clinic because of their inability to persist and home to tumor in vivo. In this study, CARs were constructed containing a FRα-specific scFv (MOv19) coupled to the T-cell receptor CD3ζ chain signaling module alone (MOv19-ζ) or in combination with the CD137 (4-1BB) costimulatory motif in tandem (MOv19-BBζ). Primary human T cells transduced to express conventional MOv19-ζ or costimulated MOv19-BBζ CARs secreted various proinflammatory cytokines, and exerted cytotoxic function when cocultured with FRα(+) tumor cells in vitro. However, only transfer of human T cells expressing the costimulated MOv19-BBζ CAR mediated tumor regression in immunodeficient mice bearing large, established FRα(+) human cancer. MOv19-BBζ CAR T-cell infusion mediated tumor regression in models of metastatic intraperitoneal, subcutaneous, and lung-involved human ovarian cancer. Importantly, tumor response was associated with the selective survival and tumor localization of human T cells in vivo and was only observed in mice receiving costimulated MOv19-BBζ CAR T cells. T-cell persistence and antitumor activity were primarily antigen-driven; however, antigen-independent CD137 signaling by CAR improved T-cell persistence but not antitumor activity in vivo. Our results show that anti-FRα CAR outfitted with CD137 costimulatory signaling in tandem overcome issues of T-cell persistence and tumor localization that limit the conventional FRα T-cell targeting strategy to provide potent antitumor activity in vivo.  相似文献   

20.
Cancerous tissue protection from tumor-recognizing CD8(+) and CD4(+) T cells (antitumor T cells) limits the therapeutic potential of immunotherapies. We propose that tumor protection is to a large extent due to (a) inhibition of antitumor T cells by hypoxia-driven accumulation of extracellular adenosine in local tumor microenvironment and due to (b) T regulatory cell-produced extracellular adenosine. The adenosine triggers the immunosuppressive signaling via intracellular cyclic AMP-elevating A2A adenosine receptors (A2AR) on antitumor T cells. In addition, the activated antitumor T cells in hypoxic tumor microenvironment could be inhibited by elevated levels of immunosuppressive hypoxia-inducible factor-1alpha. Complete rejection or tumor growth retardation was observed when A2AR has been genetically eliminated or antagonized with synthetic drug or with natural A2AR antagonist 1,3,7-trimethylxanthine (caffeine). The promising strategy may be in combining the anti-hypoxia-adenosinergic treatment that prevents inhibition of antitumor T cells by tumor-produced and T regulatory cell-produced adenosine with targeting of other negative regulators, such as CTL antigen-4 blockade. Observations of tumor rejection in mice and massive prospective epidemiologic studies support the feasibility of anti-hypoxia-adenosinergic combined immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号