首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The autosomal recessive limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous muscle diseases characterised by progressive proximal limb muscle weakness. Six different loci have been mapped and pathogenetic mutations in the genes encoding the sarcoglycan complex components (alpha-, beta-, gamma-, and delta-sarcoglycan) have been documented. LGMD patients affected with primary "sarcoglycanopathies" are classified as LGMD2D, 2E, 2C, and 2F, respectively. METHODS: A geographical area in north east Italy (2,319,147 inhabitants) was selected for a genetic epidemiological study on primary sarcoglycanopathies. Within the period 1982 to 1996, all patients living in this region and diagnosed with muscular dystrophy were seen at our centre. Immunohistochemical and immunoblot screening for alpha-sarcoglycan protein deficiency was performed on all muscle biopsies from patients with a progressive muscular dystrophy of unknown aetiology and normal dystrophin. Sarcoglycan mutation analyses were conducted on all patient muscle biopsies shown to have complete or partial absence of alpha-sarcoglycan immunostaining or a decreased quantity of alpha-sarcoglycan protein on immunoblotting. RESULTS: Two hundred and four patient muscle biopsies were screened for alpha-sarcoglycan protein deficiency and 18 biopsies showed a deficiency. Pathogenetic mutations involving one gene for sarcoglycan complex components were identified in 13 patients: alpha-sarcoglycan in seven, beta-sarcoglycan in two, gamma-sarcoglycan in four, and none in the delta-sarcoglycan gene. The overall prevalence of primary sarcoglycanopathies, as of 31 December 1996, was estimated to be 5.6 x 10(-6) inhabitants. CONCLUSION: The prevalence rate estimated in this study is the first to be obtained after biochemical and molecular genetic screening for sarcoglycan defects.  相似文献   

2.
The sarcoglycan subcomplex (SGC) is a well-known system of interaction between extracellular matrix and sarcolemma-associated cytoskeleton in skeletal and cardiac muscle. The SGC is included in the DGC made up of sarcoplasmic subcomplex and a dystroglycan subcomplex. Recent developments in molecular genetics have demonstrated that the mutation of each single sarcoglycan gene, causes a series of recessive autosomal muscular dystrophies, dystrophin-positive, called sarcoglycanopathies or limb girdle muscular dystrophies. Our recent studies have demonstrated that costameres are a proteic machinery made up of DGC and vinculin-talin-integrin system, also revealing the colocalization of sarcoglycans and integrins in adult human skeletal muscle. These results may support the hypothesis of the existence of a bidirectional signalling between sarcoglycans and integrins in cultured L6 myocytes. The hypothesis of bidirectional signalling between sarcoglycans and integrins could be supported by the identification of a skeletal and cardiac muscle filamin2 as a gamma-sarcoglycan, delta-sarcoglycan and, hypothetically, beta1 integrin interacting protein. Our results, acquired with an immunofluorescence study on adult human skeletal muscle affected by LGMD type 2D and 2C, showed that in LGMD2D: a) alpha-sarcoglycan staining is severely reduced; b) the beta-gamma-delta-sarcoglycan subunit and all tested integrins staining are clearly detectable; c) filamin2 is normal and shows a costameric distribution. In LGMD2C: a) alpha-sarcoglycan staining is preserved; b) the beta-gamma-delta-sarcoglycan subunit staining is severely reduced; c) the alpha7B-integrin is slightly reduced and beta1D-integrin is severely reduced; d) filamin2 is severely reduced. Other tested proteins of the two systems show a normal staining pattern in both sarcoglycanopathies. Our study seems to confirm, for the first time on adult human skeletal muscle of subjects affected by LGMDs, the hypo-theses of: a) the existence, in mouse myotubes in culture, of two distinct subunits in sarcoglycans subcomplex; b) the presence of a bidirectional signalling between sarcoglycans and integrins, previously demonstrated on rat cultured L6 myocytes; c) the interaction of FLN2 with both sarcoglycans and integrins. These results may stimulate the search of yet unidentified common interactors of both fiber-extracellular matrix interaction systems.  相似文献   

3.
The sarcoglycans are transmembrane components of the dystrophin-glycoprotein complex, which links the cytoskeleton to the extracellular matrix in adult muscle fibers. Sarcoglycans seem to be functionally and pathologically as important as dystrophin. In the skeletal and cardiac muscle, the sarcoglycan subcomplex is a heterotetrameric unit composed of the transmembrane glycoproteins alpha-, beta-, gamma- and delta-sarcoglycan. A fifth sarcoglycan with significant homology to alpha-sarcoglycan, epsilon-sarcoglycan, has been identified; this sarcoglycan is expressed in both muscle and non-muscle cells. It is hypothesized that epsilon-sarcoglycan might replace alpha-sarcoglycan in smooth muscle, forming a novel sarcoglycan subcomplex consisting of epsilon-, beta-, gamma-, and delta-sarcoglycan. Recently, zeta-sarcoglycan, a novel sarcoglycan highly related to gamma-sarcoglycan and delta-sarcoglycan, has been identified. On this basis, growing evidence suggests that there are two types of sarcoglycan complex; one, in skeletal and cardiac muscle, consisting of alpha-, beta-, gamma- and delta-sarcoglycan; and the other, in smooth muscle, containing beta-, delta-, zeta- and epsilon-sarcoglycan. epsilon-sarcoglycan may be substituted for alpha-sarcoglycan in a subset of striated muscle complexes. Our results, obtained with immunofluorescence semi-quantitative analysis and molecular methods on smooth muscle biopsies of human adult gastroenteric tract, show for the first time that alpha-sarcoglycan fluorescence is also always detectable in smooth muscle, although its staining pattern is lower than epsilon-sarcoglycan. Normal alpha-sarcoglycan staining was detected at times, whereas there was reduced, but clearly detectable staining for epsilon-sarcoglycan. Moreover, gamma-sarcoglycan staining is always detectable in all analyzed biopsies. On the basis of our results, we would be able to hypothesize the existence of a pentameric or, considering zeta-sarcolgycan, a hexameric arrangement of the sarcoglycan subcomplex. The hexameric sarcoglycan subcomplex, in conformity with a larger or lower expression of single sarcoglycans, could characterize skeletal, cardiac or smooth muscle, or distinct parts of gastroenteric tract. It is intriguing to integrate these results with other vascular and urogenital smooth muscle, skeletal and cardiac muscle, while also analyzing zeta-sarcoglycan.  相似文献   

4.
delta-Sarcoglycan (delta-SG) is one of the first proteins of the sarcoglycan complex (SGC) to be expressed during muscle development, and it has been considered fundamental for the assembling and insertion of the SGC in the sarcolemma. Studies using heterologous cell systems and co-precipitation have demonstrated that SGC assembly was dependent on the simultaneous synthesis of all four sarcoglycan proteins. Mutations in any one of sarcoglycan genes, including the common disease causing mutation c.656delC in the delta-SG gene, block complex formation and its insertion in the plasma membrane. Failure in complex assembly in patients with this mutation would be therefore expected. In this study, we provide evidence for the possibility of preservation of part of the SG complex in the sarcolemma, even in the absence of delta-SG. This is based on the study of one mildly affected patient with limb-girdle muscular dystrophy type 2F (LGMD2F) due to the homozygous c.656delC mutation in the delta-SG gene. Protein analysis in his muscle biopsy presented a significant deficiency of only delta-SG with retention of the other three SG proteins in the sarcolemma. RNA expression analysis showed that zeta-SG, a functionally homologous to delta-SG, is not atypically upregulated in his muscle and would not replace the absent delta-SG, retaining the complex alpha-beta-gamma-zeta. The patient started clinical manifestation at age 25, with frequent falls, but he is currently able to walk unassisted at age 42. His clinical course is significantly milder when compared to several other affected patients carrying the same mutation associated with a total deficiency of the four SG proteins in the muscle studied by our group and confirmed in other patients. Therefore, our results add a new in vivo evidence that alpha-, beta-, and gamma-SG proteins can be maintained in the sarcolemma without delta-SG. Additionally, LGMD2F, with retention of the part of the SGC, might be associated to a milder clinical course, which has important implications for clinical prognosis and genetic counseling of the family.  相似文献   

5.
Recently, mutations in the genes encoding several of the dystrophin- associated proteins have been identified that produce phenotypes ranging from severe Duchenne-like autosomal recessive muscular dystrophy to the milder limb-girdle muscular dystrophies (LGMDs). LGMD type 2C is generally associated with a more severe clinical course and is prevalent in northern Africa. A previous study identified a single base pair deletion in the gene encoding the dystrophin-associated protein gamma-sarcoglycan in a number of Tunisian muscular dystrophy patients. To investigate whether gamma-sarcoglycan gene mutations cause autosomal recessive muscular dystrophy in other populations, we studied 50 muscular dystrophy patients from the United States and Italy. The muscle biopsies from these 50 patients showed no abnormality of dystrophin but did show diminished immunostaining for the dystrophin- associated protein alpha-sarcoglycan. Four patients with a severe muscular dystrophy phenotype were identified with homozygous, frameshifting mutations in gamma-sarcoglycan. Two of the four have microdeletions that disrupt the distal carboxyl-terminus of gamma- sarcoglycan yet result in a complete absence of gamma-and beta- sarcoglycan suggesting the importance of this region for stability of the sarcoglycan complex. This region of gamma-sarcoglycan, like beta- sarcoglycan, has a number of cysteine residues similar to those in epidermal growth factor cysteine-rich regions.   相似文献   

6.
Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein.  相似文献   

7.
The sarcoglycan complex is composed of four membrane-spanning dystrophin-associated proteins (DAPs) and is essential for skeletal muscle survival, since the absence or markedly reduced expression of this complex due to mutation of any one of the sarcoglycan genes causes a group of muscular dystrophies, collectively termed sarcoglycanopathy. Although one of the putative functions of the sarcoglycan complex is its participation in signaling processes, detailed studies have been scarce. Very recently, it was shown that gene knockout mice for a DAP, alpha-dystrobrevin, exhibit a dystrophic phenotype, possibly due to defects in muscle cell signaling. To clarify the putative function of the sarcoglycan complex, it is essential to determine whether or not there is a link between it and the intracellular signaling molecules. To elucidate this, we developed new methods for preparing various DAP complexes containing the sarcoglycan complex from the purified dystrophin-DAP complex. It was suggested from one of the complexes prepared that the sarco-glycan-sarcospan complex (the sarcoglycan complex associated with sarcospan) is associated with syntrophin and/or dystrobrevin. Further analysis of this complex revealed that the N-terminal half of dystrobrevin participates in this association. It is thus considered that the sarcoglycan-sarcospan complex is linked to the signaling protein neuronal nitric oxide synthase via alpha-syntrophin associated with dystrobrevin.  相似文献   

8.
Surface MHC class I molecules serve important immune functions as ligands for both T and NK cell receptors for the elimination of infected and malignant cells. In order to reach the cell surface, MHC class I molecules have to fold properly and form trimers consisting of a heavy chain (HC), a beta2-microglobulin light chain and an 8-10-mer peptide. A panel of ER chaperones facilitates the folding and assembly process. Incorrectly assembled or folded MHC class I HCs are detected by the ER quality-control system and transported to the cytosol for degradation by proteasomes. In human cytomegalovirus-infected cells, two viral proteins are synthesized, US2 and US11, which target MHC class I HCs for proteasomal degradation. It is unknown at which stage of MHC class I folding and complex formation US2 and US11 come into play. In addition, it is unclear if the disposal takes place via the same pathway through which proteins are removed that fail to pass ER quality control. In this study, we show with a beta2m-deficient cell line that US2 and US11 both target unassembled HCs for degradation. This suggests that US2 and US11 both act at an early stage of MHC class I complex formation. In addition, our data indicate that US11-mediated degradation involves mechanisms that are similar to those normally used to remove terminally misfolded HCs.  相似文献   

9.
The dystrophin glycoprotein complex (DGC) is found at the plasma membrane of muscle cells, where it provides a link between the cytoskeleton and the extracellular matrix. A subcomplex within the DGC, the sarcoglycan complex, associates with dystrophin and mediates muscle membrane stability. Mutations in sarcoglycan genes lead to muscular dystrophy and cardiomyopathy in both humans and mice. In invertebrates, there are three sarcoglycan genes, while in mammals there are additional sarcoglycan genes that probably arose from gene duplication events. We identified a novel mammalian sarcoglycan, zeta-sarcoglycan, that is highly related to gamma-sarcoglycan and delta-sarcoglycan. We generated a zeta-sarcoglycan-specific antibody and found that zeta-sarcoglycan associated with other members of the sarcoglycan complex at the plasma membrane. Additionally, zeta-sarcoglycan was reduced at the membrane in muscular dystrophy, consistent with a role in mediating membrane stability. zeta-Sarcoglycan was also found as a component of the vascular smooth muscle sarcoglycan complex. Together, these data demonstrate that zeta-sarcoglycan is an integral component of the sarcoglycan complex and, as such, is important in the pathogenesis of muscular dystrophy.  相似文献   

10.
The T cell receptor for antigen (TCR) is responsible for the recognition of antigen associated with the major histocompatibility complex (MHC). The TCR expressed on the surface of T cells is associated with an invariant structure, CD3. CD3 is assumed to be responsible for intracellular signaling following occupancy of the TCR by ligand. The TCR/CD3 complex consists of six different polypeptides, and represents a uniquely complex multisubunit assembly problem for the cell. The cell copes with this problem by regulating the intracellular assembly of the complex. Within the endoplasmic reticulum, the newly-synthesised chains assemble into the complete structure prior to transport to the cell surface. There are a series of different isoforms of the receptor involving differential use of the TCR heterodimer (alpha-beta or gamma-delta), zeta-family member, and CD3 gamma or delta chains. These are presumably linked to different TCR functions. Assembly of the TCR/CD3 complex competes with specific degradation of unassembled polypeptides. The fate of the receptor depends on the presence of subtle signals on individual chains which determine pairing and assembly or degradation. The T cell is thus able to select a completely assembled fully functional series of distinct TCR/CD3 complexes for expression at the cell surface.  相似文献   

11.
Limb girdle muscular dystrophy type 2D (LGMD2D, OMIM600119) is a genetic progressive myopathy that is caused by mutations in the human alpha-sarcoglycan gene (SGCA). Here, we have introduced in mice the most prevalent LGMD2D mutation, R77C. It should be noted that the natural murine residue at this position is a histidine. The model is, therefore, referred as Sgca(H77C/H77C). Unexpectedly, we observed an absence of LGMD2D-like phenotype at histological or physiological level. Using a heterologous cellular model of the sarcoglycan complex formation, we showed that the R77C allele encodes a protein that fails to be delivered to its proper cellular localization in the plasma membrane, and consequently to the disappearance of a positively charged residue. Subsequently, we transferred an AAV vector coding for the human R77C protein in the muscle of Sgca-null mice and were able to pharmacologically rescue the R77C protein from endoplasmic reticulum-retention using proteasome or mannosidase I inhibitors. This suggests a therapeutic approach for LGMD2D patients carrying mutations that impair alpha-sarcoglycan trafficking.  相似文献   

12.
Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin “pedestals” is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment.  相似文献   

13.
14.
Kim YH  Chang SH  Kwon JH  Rhee SS 《Virology》1999,257(1):208-219
Human immunodeficiency virus type 1 (HIV-1) Nef down-regulates CD4 by triggering rapid endocytosis of cell surface CD4. To better understand how Nef induces CD4 down-regulation, we generated a series of Nef mutants with small in-frame deletions in the coding region. Three classes of mutants were obtained. The first class produces neither CD4 down-regulation nor dissociation of the CD4-p56(lck) complex. The second class induces CD4 down-regulation in cells lacking p56(lck) expression, but not in cells with p56(lck);these mutants fail to dissociate CD4 from p56lck. These results show that Nef-mediated CD4 dissociation from p56(lck) is important for CD4 down-regulation. The third class of mutants is able to dissociate the CD4-p56(lck) complex but fails to down-regulate surface CD4; internalized CD4 molecules are recycled back to the cell surface. This result suggests that Nef diverts the CD4 recycling pathway to a degradative pathway. We also demonstrate that Nef associates with phosphatidylinositol-3-kinase (PI3K) activity, which is known to be involved in several aspects of membrane trafficking. However, Nef mutants that cause internalized CD4 to be recycled do not associate with PI3K activity; thus Nef-associated PI3K activity might be involved in the latter process of targeting CD4 to a degradative pathway. We conclude that HIV-1 Nef plays a critical role in multiple processes in CD4 down-regulation: (i) disrupting the CD4-p56(lck) complex on the cell surface to allow CD4 internalization and (ii) diverting the internalized CD4 to a lysosomal pathway for its degradation, likely through a PI3K activity.  相似文献   

15.
beta-Sarcoglycan, one of the subunits of the sarcoglycan complex, is a transmembranous glycoprotein which associates with dystrophin and is the molecule responsible for beta-sarcoglycanopathy, a Duchenne-like autosomal recessive muscular dystrophy. To develop an animal model of beta-sarcoglycanopathy and to clarify the role of beta-sarcoglycan in the pathogenesis of the muscle degeneration in vivo, we developed beta-sarcoglycan-deficient mice using a gene targeting technique. beta-Sarcoglycan-deficient mice (BSG(-)(/-)mice) exhibited progressive muscular dystrophy with extensive degeneration and regeneration. The BSG(-)(/-)mice also exhibited muscular hypertrophy characteristic of beta-sarcoglycanopathy. Immunohistochemical and immunoblot analyses of BSG(-)(/-)mice demonstrated that deficiency of beta-sarcoglycan also caused loss of all of the other sarcoglycans as well as of sarcospan in the sarcolemma. On the other hand, laminin-alpha2, alpha- and beta-dystroglycan and dystrophin were still present in the sarcolemma. However, the dystrophin-dystroglycan complex in BSG(-)(/-)mice was unstable compared with that in the wild-type mice. Our data suggest that loss of the sarcoglycan complex and sarcospan alone is sufficient to cause muscular dystrophy, that beta-sarcoglycan is an important protein for formation of the sarcoglycan complex associated with sarcospan and that the role of the sarcoglycan complex and sarcospan may be to strengthen the dystrophin axis connecting the basement membrane with the cytoskeleton.  相似文献   

16.
Among the heterogeneous group of autosomal recessive limb-girdle muscular dystrophies (AR LGMDs), the sarcoglycanopathies (LGMD2C-2F) represent a subgroup characterised by defects in the gamma, alpha, beta, and delta sarcoglycan genes, respectively. Genotype-phenotype correlations in these forms of AR LGMD are important to enhance our understanding of protein function. Regarding LGMD2F, only two homozygous frameshift mutations have been reported to date in patients with a severe phenotype. In the present report, through screening 23 unrelated AR LGMD patients, we identified three subjects with LGMD2F, two with a previously reported frameshift mutation and the other homozygous for a new missense mutation in the delta sarcoglycan gene. Interestingly, this new mutation is also associated with a severe clinical course. In addition, our results suggest that this form of severe AR LGMD is not very rare in our population.  相似文献   

17.
Synapsis and chiasma formation were studied in pollen mother cells of four meiotic mutants of tomato. The four mutants displayed defects in the assembly of the synaptonemal complex (SC) covering the whole range from almost complete absence of synapsis to complete synapsis at pachytene. In three mutants, we found a good correlation between the number of bivalents connected by at least one tripartite SC segment at pachytene and the number of chiasmatic bivalents at metaphase I. We suggest that in tomato functional chiasmata are only formed in the context of the tripartite SC.  相似文献   

18.
Enterotoxigenic Escherichia coli (ETEC) produces a variety of colonization factors necessary for attachment to the host cell, among which CS6 is one of the most prevalent in ETEC isolates from developing countries. The CS6 operon is composed of 4 genes, cssA, cssB, cssC, and cssD. The molecular mechanism of CS6 assembly and cell surface presentation, and the contribution of each protein to the attachment of the bacterium to intestinal cells remain unclear. In the present study, a series of css gene-deletion mutants of the CS6 operon were constructed in the ETEC genetic background, and their effect on adhesion to host cells and CS6 assembly was studied. Each subunit deletion resulted in a reduction in the adhesion to intestinal cells to the same level of laboratory E. coli strains, and this effect was restored by complementary plasmids, suggesting that the 4 proteins are necessary for CS6 expression. Bacterial cell fractionation and western blotting of the mutant strains suggested that the formation of a CssA-CssB-CssC complex is necessary for recognition by CssD and transport of CssA-CssB to the outer membrane as a colonization factor.  相似文献   

19.
Role of gene 8 product in morphogenesis of bacteriophage T3   总被引:1,自引:0,他引:1  
S Nakasu  H Fujisawa  T Minagawa 《Virology》1983,127(1):124-133
The product of gene 8 (gp8) of T3 phage is one of the minor head proteins located at the phage head-tail junction. To determine the role of gp8, an amber (8-) and four temperature-sensitive mutants (ts8) were characterized by sedimentation analysis, polyacrylamide gel electrophoresis, and extract complementation. Neither DNA-containing particles nor empty particles were formed in cells infected with 8-. In addition, prohead assembly was greatly reduced. Prohead assembly was also blocked in cells infected with all ts8 mutants at 42 degrees and with some ts8 even at 37 degrees. Proheads containing gpts8 were converted to empty heads when cell lysates were treated with chloroform. The protein compositions of proheads showed that the minor head proteins, gp8, gp15, and gp16, were lost from proheads formed in cells infected with ts8, but these minor proteins were present in proheads formed in cells infected with double mutants of ts8 and 5- or 19-, which are defective in DNA synthesis or DNA maturation, respectively. In vitro complementation experiments suggested that a ts mutation in gene 8 affected not only DNA packaging but also subsequent assembly steps. From these results, it is concluded that gp8 plays multiple roles in T3 phage morphogenesis, including prohead assembly, prohead stabilization, DNA packaging, and subsequent events.  相似文献   

20.
Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacterial pathogens. Upon cell contact, they inject effector proteins directly into eukaryotic cells through a needle protruding from the bacterial surface. Host cell sensing occurs through a distal needle "tip complex," but how this occurs is not understood. The tip complex of quiescent needles is composed of IpaD, which is topped by IpaB. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which other virulence effector proteins may be translocated. IpaB is required for regulation of secretion and may be the host cell sensor. It binds needles via its extreme C-terminal coiled coil, thereby likely positioning a large domain containing its hydrophobic regions at the distal tips of needles. In this study, we used short deletion mutants within this domain to search for regions of IpaB involved in secretion regulation. This identified two regions, amino acids 227 to 236 and 297 to 306, the presence of which are required for maintenance of IpaB at the needle tip, secretion regulation, and normal pore formation but not invasion. We therefore propose that removal of either of these regions leads to an inability to block secretion prior to reception of the activation signal and/or a defect in host cell sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号