首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in human hepatoma cells. This study examined whether carvedilol altered [Ca2+]i and caused cell death in HA59T cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Carvedilol at concentrations ≥1 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 20 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence, implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, econazole, nifedipine, and SKF96365. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), carvedilol-induced [Ca2+]i rises were abolished; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change carvedilol-induced [Ca2+]i rises. At concentrations between 1 and 50 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 1 μM (but not 30 μM) carvedilol was fully reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Apoptosis was induced by 30 (but not 1) μM carvedilol. Collectively, in HA59T hepatoma cells, carvedilol induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase-C-independent manner and Ca2+ influx via store-operated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+ and apoptosis in a concentration-dependent manner.  相似文献   

2.
Diallyl disulfide (DADS), one of the major organosulfur compounds of garlic, is recognized as a group of potential chemopreventive compounds. In this study, we examines the early signaling effects of DADS on human colorectal cancer cells SW480 loaded with Ca2+-sensitive dye fura-2. It was found that DADS caused an immediate and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50 = 232 μM). DADS also induced a [Ca2+]i elevation when extracellular Ca2+ was removed, but the magnitude was reduced by 45%. Depletion of intracellular Ca2+ stores with 2 μM carbonylcyanide m-chlorophenylhydrazone, a mitochondrial uncoupler, didn’t affect DADS’s effect. In Ca2+-free medium, the DADS-induced [Ca2+]i rise was abolished by depleting stored Ca2+ with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). DADS-caused [Ca2+]i rise in Ca2+-containing medium was not affected by modulation of protein kinase C activity. The DADS-induced Ca2+ influx was blocked by nicardipine (10 μM). U73122, an inhibitor of phospholipase C, abolished ATP (but not DADS)-induced [Ca2+]i rise. These findings suggest that DADS induced a significant rise in [Ca2+]i in SW480 colon cancer cells by stimulating both extracellular Ca2+ influx and thapsigargin-sensitive intracellular Ca2+ release via as yet unidentified mechanisms.  相似文献   

3.
The effect of the environmental contaminant, bisphenol A, on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells is unclear. This study explored whether bisphenol A changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Bisphenol A, at concentrations between 50 and 300 µM, increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced, partly, by removing extracellular Ca2+. Bisphenol A induced Mn2+ influx, leading to quenching of fura-2 fluorescence, suggesting Ca2+ influx. This Ca2+ influx was inhibited by phospholipase A2 inhibitor aristolochic acid, store-operated Ca2+ channel blockers nifedipine and SK&F96365, and protein kinase C inhibitor GF109203X. In Ca2+-free medium, pretreatment with the mitochondrial uncoupler, carbonylcyanide m-chlorophenylhydrazone (CCCP), and the endoplasmic reticulum Ca2+ pump inhibitors, thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ), inhibited bisphenol A–induced Ca2+ release. Conversely, pretreatment with bisphenol A abolished thapsigargin (or BHQ)- and CCCP-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished bisphenol-induced [Ca2+]i rise. Bisphenol A caused a concentration-dependent decrease in cell viability via apoptosis in a Ca2+-independent manner. Collectively, in MDCK cells, bisphenol A induced [Ca2+]i rises by causing phospholipase C–dependent Ca2+ release from the endoplasmic reticulum and mitochondria and Ca2+ influx via phospholipase A2–, protein kinase C–sensitive, store-operated Ca2+ channels.  相似文献   

4.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations ≥5 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 μM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 μM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

5.
In Madin-Darby canine kidney (MDCK) cells, the effect of maprotiline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured using fura-2. Maprotiline (>2.5 µM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner (EC50 200 µM). Maprotiline-induced [Ca2+]i rise was reduced by removal of extracellular Ca2+ or by addition of La3+, but was not altered by voltage-gated Ca2+-channel blockers. Maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was nearly abolished; also, pretreatment with maprotiline reduced a portion of thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, abolished [Ca2+]i rise induced by ATP (but not by maprotiline). Overnight incubation with 1–10 µM maprotiline enhanced cell viability, but 20–50 µM maprotiline decreased it. These findings suggest that maprotiline rapidly increases [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and may modulate cell proliferation in a concentration-dependent manner.  相似文献   

6.
Celecoxib has been shown to have an antitumor effect in previous studies, but the mechanisms are unclear. Ca2+ is a key second messenger in most cells. The effect of celecoxib on cytosolic free Ca2+ concentrations ([Ca2+]i) in human suspended PC3 prostate cancer cells was explored by using fura-2 as a fluorescent dye. Celecoxib at concentrations between 5 and 30 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Celecoxib-induced Ca2+ influx was not blocked by L-type Ca2+ entry inhibitors or protein kinase C/A modulators [phorbol 12-myristate 13-acetate (PMA), GF109203X, H-89], but was inhibited by the phospholipase A2 inhibitor, aristolochic acid. In Ca2+-free medium, 30 μM of celecoxib failed to induce a [Ca2+]i rise after pretreatment with thapsigargin (an endoplasmic reticulum [ER] Ca2+ pump inhibitor). Conversely, pretreatment with celecoxib inhibited thapsigargin-induced Ca2+ release. Inhibition of phospholipase C with U73122 did not change celecoxib-induced [Ca2+]i rises. Celecoxib induced slight cell death in a concentration-dependent manner, which was enhanced by chelating cytosolic Ca2+ with BAPTA. Collectively, in PC3 cells, celecoxib induced [Ca2+]i rises by causing phospholipase C–independent Ca2+ release from the ER and Ca2+ influx via non-L-type, phospholipase A2-regulated Ca2+ channels. These data may contribute to the understanding of the effect of celecoxib on prostate cancer cells.  相似文献   

7.
The effect of diallyl disulfide (DADS) on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca2+]i in PC3 cells by using fura-2. DADS at 50-1000 μM increased [Ca2+]i in a concentration-dependent manner. The signal was reduced by removing Ca2+. DADS-induced Ca2+ influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca2+]i rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca2+]i rise. At 500-1000 μM, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 μM) induced apoptosis in a Ca2+-independent manner. Annexin V/PI staining further shows that 10 μM and 500 μM DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca2+]i rise probably by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive channels. DADS induced Ca2+-dependent cell death, ROS production, and Ca2+-independent apoptosis.  相似文献   

8.
Intracellular calcium ion concentrations ([Ca2+]i) in rat cerebral cortical synaptosomes were measured, using the calcium chelating fluorescence dye fura-2. The synaptosomes were depolarized by elevation of the extracellular K+ concentration or by addition of veratridine, which opens voltage-dependent Na+-channels and prevents their inactivation. Both enhancement of the concentration of extracellular K+ (up to 60 mM) and veratridine (1–100 μM) increased the [Ca2+]i in a concentration-dependent manner. In the absence of extracellular Ca2+, the K+- and veratridine-induced increases in [Ca2+]i were abolished, indicating that the increase in [Ca2+]i was due to an influx of extracellular Ca2+. Tetrodotoxin (TTX), a blocker of the voltage-dependent Na+ channel, inhibited the veratridine-induced (10 μM) Ca2+ influx by more than 80%, while the K+-evoked (30 mM) increase of [Ca2+]i was TTX-resistant. Both the K+- and the veratridine-induced Ca2+ influx were not reduced by nifedipine (1 μM), a blocker of L-type Ca2+ channels. Blockade of the voltage dependent N-type Ca2+ channels with ω-conotoxin GVIA (ω-CTx GVIA; 0.1 μM) and of the voltage-dependent P/Q-type channels with ω-agatoxin IVA (ω-AgaTx IVA; 0.2 μM) inhibited the K+-induced increase in [Ca2+]i by about 30 and 55%, respectively; these effects were additive. ω-Conotoxin MVIIC (ω-CTx MVIIC) at a concentration of 0.2 μM, which may be assumed to block predominantly the Q-type Ca2+ channel, inhibited the K+-induced increase in [Ca2+]i by 50%. The veratridine-induced increase in [Ca2+]i was reduced by about 25% by ω-CTx GVIA (0.1 μM), but was resistant to ω-AgaTx IVA (0.2 μM) and ω-CTx MVIIC (0.2 μM). Mibefradil (former designation Ro 40-5967), a Ca2+ antagonist which blocks all types of voltage-dependent Ca2+ channels including the T and R channels, led to a concentration-dependent inhibition of the K+- and veratridine-induced increase in [Ca2+]i (abolition at 10 μM mibefradil). Ifenprodil, another non-specific blocker of voltage-dependent Ca2+ channels, also inhibited the K+- and veratridine-induced increase in [Ca2+]i in concentration-dependent manner and abolished it at 320 μM ifenprodil. In contrast, KB-R 7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate; 1 and 3 μM), a highly potent and selective inhibitor of the Na+/Ca2+ exchanger (NCX1), failed to inhibit the K+- and veratridine-induced increase in [Ca2+]i. It is concluded that the K+-induced increase in free cytosolic Ca2+ results from Ca2+ influx through voltage-dependent N- and, above all, Q-type Ca2+ channels. N-type Ca2+ channels also play a minor role in the veratridine-induced increase in [Ca2+]i, but P/Q-type channels do not appear to be involved at all. The inhibition of the veratridine-induced, ω-CTx GVIA- and ω-AgaTx IVA-resistant increase in [Ca2+]i by mibefradil and the failure of KB-R 7943 to inhibit this response are compatible with the suggestion that in rat cerebral cortical synaptosomes, Ca2+ influx via the R-type Ca2+ channel and/or another so far uncharacterized Ca2+ channel may substantially contribute to the veratridine-induced increase in [Ca2+]i. Received: 7 March 1997 / Accepted: 9 September 1997  相似文献   

9.
Diallyl sulfide (DAS), one of the major organosulfur compounds (OSCs) of garlic, is recognized as a group of potential chemoproventive compounds. In this study, we examines the early signaling effects of DAS on renal cells loaded with Ca2+-sensitive dye fura-2. It was found that DAS caused an immediate and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50 = 2.32 mM). DAS also induced a [Ca2+]i elevation when extracellular Ca2+ was removed, but the magnitude was reduced by 45%. Depletion of intracellular Ca2+ stores with CCCP, a mitochondrial uncoupler, did not affect DAS’s effect. In Ca2+-free medium, the DAS-induced [Ca2+]i rise was abolished by depleting stored Ca2+ with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). DAS-caused [Ca2+]i rise in Ca2+-containing medium was not affected by modulation of protein kinase C activity. The DAS-induced Ca2+ influx was blocked by nicardipine. U73122, an inhibitor of phospholipase C, abolished ATP (but not DAS)-induced [Ca2+]i rise. Additionally, pretreatment with DAS for 24 h decreased cell viability in a concentration-dependent manner. Furthermore, DAS-induced cell death involved apoptotic events. These findings suggest that diallyl sulfide induced a significant rise in [Ca2+]i in MDCK renal tubular cells by stimulating both extracellular Ca2+ influx and thapsigargin-sensitive intracellular Ca2+ release via as yet unidentified mechanisms.  相似文献   

10.
Timolol is a medication used widely to treat glaucoma. Regarding Ca2+ signaling, timolol was shown to modulate Ca2+-related physiology in various cell types, however, the effect of timolol on Ca2+ homeostasis and cell viability has not been explored in human prostate cancer cells. The aim of this study was to explore the effect of timolol on intracellular Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells. Timolol at concentrations of 100–1000?μM induced [Ca2+]i rises. The Ca2+ signal in Ca2+-containing medium was reduced by removal of extracellular Ca2+ by approximately 75%. Timolol (1000?μM) induced Mn2+ influx suggesting of Ca2+ entry. Timolol-induced Ca2+ entry was partially inhibited by three inhibitors of store-operated Ca2+ channels: nifedipine, econoazole and SKF96365, and by a protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate [PMA]) or an inhibitor (GF109203X). In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished timolol-evoked [Ca2+]i rises. Conversely, treatment with timolol abolished thapsigargin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished timolol-induced [Ca2+]i rises. Timolol at concentrations between 200 and 600?μM killed cells in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not reverse cytotoxicity of timolol. Together, in PC3 cells, timolol induced [Ca2+]i rises by evoking Ca2+release from the endoplasmic reticulum in a PLC-dependent manner, and Ca2+ influx via PKC-regulated store-operated Ca2+ entry. Timolol also caused cell death that was not linked to preceding [Ca2+]i rises.  相似文献   

11.
Glyburide is an agent commonly used to treat type 2 diabetes and also affects various physiological responses in different models. However, the effect of glyburide on Ca2+ movement and its related cytotoxicity in prostate cancer cells is unclear. This study examined whether glyburide altered Ca2+ signalling and viability in PC3 human prostate cancer cells and investigated those underlying mechanisms. Intracellular Ca2+ concentrations ([Ca2+]i) in suspended cells were measured by using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by WST-1 assay. Glyburide at concentrations of 100–1000 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 60%. In Ca2+-containing medium, glyburide-induced Ca2+ entry was inhibited by 60% by protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate, PMA) and inhibitor (GF109203X), and modulators of store-operated Ca2+ channels (nifedipine, econazole and SKF96365). Furthermore, glyburide induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+-free medium, inhibition of phospholipase C (PLC) with U73122 significantly inhibited glyburide-induced [Ca2+]i rises. Treatment with the endoplasmic reticulum (ER) Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished glyburide-evoked [Ca2+]i rises. Conversely, treatment with glyburide abolished BHQ-evoked [Ca2+]i rises. Glyburide at 100–500 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in PC3 cells, glyburide induced [Ca2+]i rises by Ca2+ entry via PKC-sensitive store-operated Ca2+ channels and Ca2+ release from the ER in a PLC-dependent manner. Glyburide also caused Ca2+-independent cell death. This study suggests that glyburide could serve as a potential agent for treatment of prostate cancer.  相似文献   

12.
The effect of the carcinogen safrole on intracellular Ca2+ movement and cell proliferation has not been explored previously. The present study examined whether safrole could alter Ca2+ handling and growth in human oral cancer OC2 cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at a concentration of 325 M started to increase [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 40% by removing extracellular Ca2+, and was decreased by 39% by nifedipine but not by verapamil or diltiazem. In Ca2+-free medium, after pretreatment with 650 M safrole, 1 M thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) barely induced a [Ca2+]i rise; in contrast, addition of safrole after thapsigargin treatment induced a small [Ca2+]i rise. Neither inhibition of phospholipase C with 2 M U73122 nor modulation of protein kinase C activity affected safrole-induced Ca2+ release. Overnight incubation with 1 M safrole did not alter cell proliferation, but incubation with 10–1000 M safrole increased cell proliferation by 60±10%. This increase was not reversed by pre-chelating Ca2+ with 10 M of the Ca2+ chelator BAPTA. Collectively, the data suggest that in human oral cancer cells, safrole induced a [Ca2+]i rise by causing release of stored Ca2+ from the endoplasmic reticulum in a phospholipase C- and protein kinase C-independent fashion and by inducing Ca2+ influx via nifedipine-sensitive Ca2+ entry. Furthermore, safrole can enhance cell growth in a Ca2+-independent manner.  相似文献   

13.
The effect of BayK 8644, a chemical widely used to activate L‐type Ca2+ channels, on cytosolic free Ca2+ concentrations ([Ca2+]i) in human oral cancer cells (OC2) has not been explored to date. The present study examined whether BayK 8644 altered basal [Ca2+]i levels in suspended OC2 cells by using fura‐2. BayK 8644 (10 pM–10 µM) increased [Ca2+]i in a concentration‐dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. BayK 8644‐induced Ca2+ influx was blocked by nifedipine, but was not altered by the store‐operated Ca2+ entry inhibitors, econazole and SKF96365; protein kinase C modulators phorbol 12‐myristate 13‐acetate (PMA) and GF109203X; the protein kinase A inhibitor H89; and the phospholipase A2 inhibitor, aristolochic acid. In Ca2+‐free medium, after pretreatment with 1 µM BayK 8644, 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; and conversely, thapsigargin pretreatment abolished BayK 8644‐induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change BayK 8644‐induced [Ca2+]i rises. Collectively, in OC2 cells, BayK 8644 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum; and Ca2+ influx via L‐type Ca2+ channels. Drug Dev Res 69: 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Tricyclic antidepressants (TCA) have been clinically prescribed in the auxiliary treatment of cancer patients. Although protriptyline, a type of TCA, was used primarily in the clinical treatment of mood disorders in cancer patients, the effect of protriptyline on physiology in human osteosarcoma is unknown. This study examined the effect of protriptyline on cytosolic free Ca2+?concentrations ([Ca2+]i) and viability in MG63 human osteosarcoma cells. Protriptyline between 50 and 250?μM evoked [Ca2+]i rises concentration-dependently. Protriptyline induced influx of Mn2+, indirectly implicating Ca2+?influx. Protriptyline-evoked Ca2+?entry was inhibited by nifedipine by 20% but was not altered by econazole, SKF96365, GF109203X, and phorbol-12-myristate-13-acetate (PMA). In Ca2+-free medium, treatment with protriptyline inhibited the endoplasmic reticulum Ca2+?pump inhibitor thapsigargin-evoked [Ca2+]i rises. Conversely, treatment with thapsigargin inhibited 45% of protriptyline-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 failed to alter protriptyline-evoked [Ca2+]i rises. Protriptyline at 50–250?μM decreased cell viability, which was not reversed by pretreatment with the Ca2+?chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, our data suggest that in MG63 cells, protriptyline induced [Ca2+]i rises by evoking Ca2+?release from the endoplasmic reticulum and other stores in a PLC-independent manner, and Ca2+?entry via a nifedipine-sensitive Ca2+?pathway. Protriptyline also caused Ca2+-independent cell death.  相似文献   

15.
The effect of the natural essential oil thymol on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in human glioblastoma cells was examined. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Thymol at concentrations of 400–1000 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Thymol-induced Ca2+ signal was not altered by nifedipine, econazole, SK&F96365, and protein kinase C activator phorbol myristate acetate (PMA), but was inhibited by the protein kinase C inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished thymol-induced [Ca2+]i rise. Incubation with thymol also abolished thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished thymol-induced [Ca2+]i rise. At concentrations of 200–800 μM, thymol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that thymol (200, 400 and 600 μM) induced apoptosis in a concentration-dependent manner. Collectively, in human glioblastoma cells, thymol induced a [Ca2+]i rise by inducing phospholipase C- and protein kinase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via non store-operated Ca2+ channels. Thymol induced cell death that may involve apoptosis.  相似文献   

16.
Abstract: 3‐[1‐(p‐chlorobenzyl)‐5‐(isopropyl)‐3‐tert‐butylthioindol‐2‐yl]‐2, 2‐dimethylpropanoic acid (MK‐886) is widely used for inhibition of leucotriene synthesis in in vitro studies, however, many of its other effects have been reported. The present study investigated the effect of MK‐886 on cytosolic‐free Ca2+ concentrations ([Ca2+]i) and viability in human PC3 prostate cancer cells. [Ca2+]i in suspended cells was measured by using fura‐2. MK‐886 at concentrations of 1 µM and above increased [Ca2+]i in a concentration‐dependent manner with an EC50 value of 20 µM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. MK‐886 evoked Mn2+ quenching of fura‐2 fluorescence, implicating Ca2+ entry. MK‐886‐induced Ca2+ influx was inhibited by store‐operated Ca2+ entry inhibitors nifedipine, econazole and SKF96365. In Ca2+‐free medium, after pre‐treatment with 10 µM MK‐886, 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; and conversely, thapsigargin pre‐treatment abolished MK‐886‐induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter MK‐886‐induced [Ca2+]i rises. MK‐886 at concentrations of 1–100 µM concentration‐dependently decreased cell viability with an IC50 value of 60 µM. The cytotoxic effect of MK‐886 was not inhibited by pre‐chelating cytosolic Ca2+ with BAPTA/AM. Together, in PC3 cells, MK‐886 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum; and Ca2+ influx via store‐operated Ca2+ channels. Independently, MK‐886 was cytotoxic to cells in a Ca2+‐independent manner.  相似文献   

17.
Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca2+ levels ([Ca2+]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca2+]i rises which were reduced by removing extracellular Ca2+. Eugenol-induced [Ca2+]i rises were not altered by store-operated Ca2+ channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca2+]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca2+]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca2+]i rises by inducing PLC-dependent release of Ca2+ from the endoplasmic reticulum and caused Ca2+ influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway.  相似文献   

18.
The effect of diindolylmethane, a natural compound derived from indole-3-carbinol in cruciferous vegetables, on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in HA59T human hepatoma cells is unclear. This study explored whether diindolylmethane changed [Ca2+]i in HA59T cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Diindolylmethane at concentrations of 1?C50???M evoked a [Ca2+]i rise in a concentration-dependent manner. The signal was reduced by removing Ca2+. Diindolylmethane-induced Ca2+ influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators but was inhibited by aristolochic acid. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca2+]i rise. Incubation with diindolylmethane inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca2+]i rise. At concentrations of 10?C75???M, diindolylmethane killed cells in a concentration-dependent manner. The cytotoxic effect of diindolylmethane was not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N??,N??-tetraacetic acid. Propidium iodide staining data suggest that diindolylmethane (25?C50???M) induced apoptosis in a concentration-dependent manner. Collectively, in HA59T cells, diindolylmethane induced a [Ca2+]i rise by causing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive channels. Diindolylmethane induced cell death that may involve apoptosis.  相似文献   

19.
The phenolic compound 2,5-dimethylphenol is a natural product. 2,5-Dimethylphenol has been shown to affect rat hepatic and pulmonary microsomal metabolism. However, the effect of 2,5-dimethylphenol on Ca2+?signaling and cyotoxicity has never been explored in any culture cells. This study explored the effect of 2,5-dimethylphenol on cytosolic free Ca2+?levels ([Ca2+]i) and cell viability in PC3 human prostate cancer cells. 2,5-Dimethylphenol at concentrations between 500?μM and 1000?μM evoked [Ca2+]i rises in a concentration-dependent manner. This Ca2+?signal was inhibited by approximately half by the removal of extracellular Ca2+. 2,5-Dimethylphenol-induced Ca2+?influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. Pretreatment with the protein kinase C (PKC) inhibitor GF109203X, nifedipine or the store-operated Ca2+?entry inhibitors (econazole or SKF96365) inhibited 2,5-dimethylphenol-induced Ca2+?signal in Ca2+-containing medium by ~30%. Treatment with the endoplasmic reticulum Ca2+?pump inhibitor thapsigargin in Ca2+-free medium abolished 2,5-dimethylphenol-induced [Ca2+]i rises. Conversely, treatment with 2,5-dimethylphenol abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 reduced 2,5-dimethylphenol-evoked [Ca2+]i rises by ~80%. 2,5-Dimethylphenol killed cells at concentrations of 350–1000?μM in a concentration-dependent fashion. Chelation of cytosolic Ca2+?with 1,2-bis(2-aminophenoxy)ethane-N, N, N′, N′-tetraacetic acid/AM (BAPTA/AM) did not prevent 2,5-dimethylphenol’s cytotoxicity. Together, in PC3 cells, 2,5-dimethylphenol induced [Ca2+]i rises that involved Ca2+?entry through PKC-regulated store-operated Ca2+?channels and PLC-dependent Ca2+?release from the endoplasmic reticulum. 2,5-Dimethylphenol induced cytotoxicity in a Ca2+-independent manner.  相似文献   

20.
The effect of MK‐886 (3‐[1‐(p‐chlorobenzyl)‐5‐(isopropyl)‐3‐tert‐butylthioindol‐2‐yl]‐2, 2‐dimethylpropanoic acid), a compound widely used to inhibit leukotriene synthesis, on cytosolic free Ca2+ concentrations ([Ca2+]i) in osteosarcoma cells has not been explored. This study examined whether MK‐886 altered [Ca2+]i levels in suspended MG63 human osteosarcoma cells using fura‐2. MK‐886 at 0.1 μM and above increased [Ca2+]i in a concentration‐dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. MK‐886 induced Mn2+ quenching of fura‐2 fluorescence, implicating Ca2+ entry. MK‐886‐induced Ca2+ influx was inhibited by store‐operated Ca2+ entry inhibitors, nifedipine, econazole, and SKF96365; and by the protein kinase C modulators, phorbol 12‐myristate 13‐acetate (PMA) and GF109203X. In Ca2+‐free medium, after pretreatment with 5 μM MK‐886, 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished MK‐886‐induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change MK‐886‐induced [Ca2+]i rises. Collectively, in MG63 osteosarcoma cells, MK‐886 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via protein kinase C‐regulated store‐operated Ca2+ entry. Drug Dev Res 69: 49–57, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号