首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel tetrahydro-2H-isoindoles have been prepared and evaluated as inhibitors of the COX-2 isoenzyme. A 1,3-diaryl substitution on the central polycyclic ring system and absence of a sulfonyl moiety are the two structural features of this chemical series. A short and easy synthetic pathway produced several derivatives which were shown to be potent and selective COX-2 vs COX-1 inhibitors (IC(50) = 0. 6-100 nM for COX-2, 100->1000 nM for COX-1). Structural modifications established that a bicyclic ring appended to the pyrrole nucleus and 4,4'-difluoro substitution on the phenyl rings were optimal for high inhibitory potency. Activity was confirmed in the human whole blood assay and subsequently in the murine air-pouch model in which in vivo PGE2 inhibitory activity was evaluated with respect to gastric tolerance (ED(50) for inhibition of exudate PGE2 of 3 mg/kg and gastric PGE2 of 20 mg/kg). Gastric tolerance was further assessed after administration to mice of high doses (up to 400 mg/kg) of the inhibitors by measurement of gastric damage. This panel of studies allowed selection of a number of tetrahydro-2H-isoindoles which were compared in the adjuvant-induced arthritis model. Compounds 32 and 37 showed the most potent activity with ED(50) values for edema inhibition in the noninjected paw of 0. 35 and 0.15 mg/kg/day, respectively, after oral administration. In addition, this interesting antiinflammatory profile was accompanied by a protective effect against arthritis-induced osteopenia, the decrease being 50% with a dose of 0.25 mg/kg/day.  相似文献   

2.
Two isoforms of the cyclooxygenase (COX) enzyme have been identified: COX-1, which is expressed constitutively, and COX-2, which is induced in inflammation. Recently, it has been shown that selective COX-2 inhibitors have antiinflammatory activity and lack the GI side effects typically associated with NSAIDs. Initial mass screening and subsequent SAR studies have identified 6b (PD164387) as a potent, selective, and orally active COX-2 inhibitor. It had IC50 values of 0.14 and 100 microM against recombinant human COX-2 and purified ovine COX-1, respectively. It inhibited COX-2 activity in the J774A.1 cell line with an IC50 of 0.18 microM and inhibited COX-1 activity in platelets with an IC50 of 3.1 microM. The choline salt of compound 6b was also orally active in vivo with an ED40 of 7. 1 mg/kg in the carrageenan footpad edema (CFE) assay. In vivo studies in rats at a dose of 100 mg/kg showed that this compound inhibited gastric prostaglandin E2 (PGE2) production in gastric mucosa by 77% but caused minimal GI damage. SAR studies of this chemical series revealed that the potency and selectivity are very sensitive to minor structural changes.  相似文献   

3.
Selective cyclooxygenase-2 (COX-2) inhibitors have been shown to be potent antiinflammatory agents with fewer side effects than currently marketed nonsteroidal antiinflammatory drugs (NSAIDs). Initial mass screening and subsequent structure-activity relationship (SAR) studies have identified 4b (PD138387) as the most potent and selective COX-2 inhibitor within the thiazolone and oxazolone series of di-tert-butylphenols. Compound 4b has an IC50 of 1.7 microM against recombinant human COX-2 and inhibited COX-2 activity in the J774A.1 cell line with an IC50 of 0.17 microM. It was inactive against purified ovine COX-1 at 100 microM and did not inhibit COX-1 activity in platelets at 20 microM. Compound 4b was also orally active in vivo with an ED40 of 16 mg/kg in the carrageenan footpad edema (CFE) assay and caused no gastrointestinal (GI) damage in rats at the dose of 100 mg/kg but inhibited gastric prostaglandin E2 (PGE2) production in rats' gastric mucosa by 33% following a dose of 100 mg/kg. The SAR studies of this chemical series revealed that the potency and selectivity are very sensitive to minor structural changes. A simple isosteric replacement led to the reversal of selectivity.  相似文献   

4.
A series of heteroaryl modified 1,2-diarylimidazoles has been synthesized and found to be potent and highly selective (1000-9000-fold) inhibitors of the human COX-2. 3-Pyridyl derived COX-2 selective inhibitor (25) exhibited excellent activity in acute (carrageenan induced paw edema, ED(50) = 5.4 mg/kg) and chronic (adjuvant induced arthritis, ED(50) = 0.25 mg/kg) models of inflammation. The relatively long half-life of 25 in rat and dog prompted investigation of the pyridyl and other heteroaromatic systems containing potential metabolic functionalities. A number of substituted pyridyl and thiazole containing compounds (e.g., 44, 46, 54, 76, and 78) demonstrated excellent oral activity in every efficacy model evaluated. Several orally active diarylimidazoles exhibited desirable pharmacokinetics profiles and showed no GI toxicity in the rat up to 100 mg/kg in both acute and chronic models. The paper describes facile and practical syntheses of the targeted diarylimidazoles. The structure-activity relationships and antiinflammatory properties of a series of diarylimidazoles are discussed.  相似文献   

5.
A new class of selective cyclooxygenase-2 (COX-2) inhibitors has been identified by high throughput screening. Structurally distinct from previously described selective COX-2 inhibitors, these benzopyrans contain a carboxylic acid function and CF3 functionality. The compound SC-75,416 is a representative of this class. A range if in vitro and in vivo tests were employed to characterize its potency and selectivity. Using human recombinant enzymes, this compound displays a concentration that provides 50% inhibition (IC50) of 0.25 microM for COX-2 and 49.6 microM for COX-1. A mutation of the side pocket residues in COX-2 to COX-1 had little effect on potency suggesting that these inhibitors bind in a unique manner in COX-2 distinct from COX-2 inhibiting diaryl heterocycles. Using rheumatoid arthritic synovial cells stimulated with interleukin-1beta (IL-1beta) and washed platelets the compound displayed IC50 of 3 nM and 400 nM respectively. Potency and selectivity was maintained but predictably right shifted in whole blood with IC50 of 1.4 microM for lipopolysaccharide (LPS) stimulated induction of COX-2 and >200 microM for inhibition of platelet thromboxane production. SC-75,416 is 89% bioavailable and its in vivo half life is sufficient for once a day dosing. In the rat air pouch model of inflammation, the compound inhibited PGE2 production with an effective dose that provides 50% inhibition (ED50) of 0.4 mg/kg, while sparing gastric prostaglandin E2 (PGE2) production with an ED50 of 26.5 mg/kg. In a model of acute inflammation and pain caused by carrageenan injection into the rat paw, the compound reduced edema and hyperalgesia with ED50s of 2.7 and 4 mg/kg respectively. In a chronic model of arthritis the compound demonstrated an ED50 of 0.081 mg/kg and an ED(80) of 0.38 mg/kg. In a model of neuropathic pain, SC-75,416 had good efficacy. This compound's unique chemical structure and effect on COX enzyme binding and activity as well as its potency and selectivity may prove useful in treating pain and inflammation.  相似文献   

6.
4,5-Diphenyl-4-isoxazolines (13a-k) possessing a variety of substituents (H, F, MeS, MeSO2) at the para position of one of the phenyl rings were synthesized for evaluation as analgesic and selective cyclooxygenase-2 (COX-2) inhibitory antiinflammatory (AI) agents. Although the 4,5-phenyl-4-isoxazolines (13a-d,f), which do not have a C-3 Me substituent, exhibited potent analgesic and AI activities, those compounds evaluated (13a, 13b, 13h, and 13k) were not selective inhibitors of COX-2. In contrast, 2,3-dimethyl-5-(4-methylsulfonylphenyl)-4-phenyl-4-isoxazoline (13j) exhibited excellent analgesic and AI activities, and it was a potent and selective COX-2 inhibitor (COX-1, IC(50) = 258 microM; COX-2, IC(50) = 0.004 microM). A related compound 13k having a F substituent at the para position of the 4-phenyl ring was also a selective (SI = 3162) but less potent (IC(50) = 0.0316 microM) inhibitor of COX-2 than 13j. A molecular modeling (docking study) for 13j showed that the S atom of the MeSO2 substituent is positioned about 6.46 A inside the entrance to the COX-2 secondary pocket (Val(523)) and that a C-3 Me (13j, 13k) central isoxazoline ring substituent is crucial to selective inhibition of COX-2 for this class of compounds.  相似文献   

7.
Non-steroidal antiinflammatory drugs (NSAIDs) are standard treatment for the pain and inflammation associated with arthritis. Traditional NSAIDs and cyclooxygenase-2 (COX-2) selective inhibitors exhibit comparable efficacy, with different safety profiles. Traditional NSAIDs are associated with an increased risk of serious gastrointestinal (GI) adverse events versus COX-2 selective inhibitors, and chronic use frequently necessitates adjunctive therapy with gastroprotective agents. COX-2 selective inhibitors are often used in preference to avoid these GI adverse events. Recent studies have raised the concern that COX-2 selective inhibitors and traditional NSAIDs appear to be associated with a higher incidence of thrombotic cardiovascular events versus placebo. The key in prescribing these agents is for the physician to take a proactive approach to patient management and evaluation of GI and cardiovascular risk factors. This review examines the role of the newest COX-2 selective inhibitors, etoricoxib and lumiracoxib, in treating rheumatic disease.  相似文献   

8.
We report here the preclinical anti-inflammatory profile of CS-706 [2-(4-ethoxyphenyl)-4-methyl-1-(4-sulfamoylphenyl)-1H-pyrrole], a novel cyclooxygenase-2 (COX-2) selective inhibitor. CS-706 selectively inhibited COX-2 in a human whole blood assay with an IC(50) of 0.31 microM, compared with an IC(50) of 2.2 microM for COX-1. The selectivity ratio of CS-706 was higher than those of the conventional non-steroidal anti-inflammatory drugs naproxen, indomethacin, and Diclofenac-Na, whereas it was lower than those of rofecoxib, valdecoxib and etoricoxib. It was similar to that of celecoxib. The pharmacokinetic profile of CS-706 showed rapid absorption and dose-proportional exposure after oral administration to rats. CS-706 inhibited prostaglandin E(2) production in inflamed tissue induced by yeast-injection in rats with potency similar to that of indomethacin. However, it inhibited gastric mucosal prostaglandin E(2) production in normal rats weakly compared with indomethacin. CS-706 ameliorated both yeast-induced inflammatory acute pain (ED(50)=0.0090 mg/kg) and adjuvant-induced chronic arthritic pain (ED(50)=0.30 mg/kg) in rats. CS-706 showed more potent antinociceptive activity than celecoxib and rofecoxib in these models. In an adjuvant-induced arthritic model in rats, CS-706 suppressed foot swelling prophylactically with an ID(50) of 0.10 mg/kg/day, and decreased foot swelling in the established arthritis therapeutically in a dose range of 0.040 to 1.0 mg/kg/day. Single administration of up to 100 mg/kg of CS-706 induced no significant gastric lesions in rats. In conclusion, CS-706 is a COX-2-selective inhibitor with a potent antinociceptive and anti-inflammatory activity and a gastric safety profile.  相似文献   

9.
The synthesis of a series of novel pyrazoles containing a nitrate (ONO(2)) moiety as a nitric oxide (NO)-donor functionality is reported. Their COX-1 and COX-2 inhibitory activities in human whole blood are profiled. Our data demonstrate that pyrazole ring substituents play an important role in COX-2 selective inhibition, such that a cycloalkyl pyrazole (6b) was found to be a potent and selective COX-2 inhibitor. Other modifications at the 3 position of the central pyrazole ring (17b, 23b, 26b-I) enhanced COX-2 inhibitory potency. Among the pyrazoles synthesized, the oxime (23b) was identified as the most potent COX-2 selective inhibitor. Accordingly, 23b was profiled pharmacologically in the rat after oral administration and shown to possess potent antiinflammatory activity in the carrageenan-induced air-pouch model and less gastric toxicity than a standard COX-2 inhibitor when administered with background aspirin treatment. We suggest that the enhanced gastric tolerance of an NO-donor COX-2 selective inhibitor has the potential to augment the clinical profile of this drug class.  相似文献   

10.
A group of 1,3-diarylprop-2-yn-1-ones (13, 17, 23, 26 and 27) possessing a C-3 p-SO2Me COX-2 pharmacophore were designed, synthesized and evaluated as potential dual inhibitors of cyclooxygenase-1/2 (COX-1/2) and 5/15-lipoxygenases (5/15-LOX) that exhibit vivo antiinflammatory and analgesic activities. Among this class of compounds, 3-(4-methanesulfonylphenyl)-1-(4-fluorophenyl)prop-2-yn-1-one (13h) was identified as a potent and selective inhibitor of COX-2 (COX-2 IC50 = 0.1 microM; SI = 300), being 5-fold more potent than rofecoxib (COX-2 IC50 = 0.5 microM; SI > 200). In a rat carrageenan-induced paw edema assay 13h exhibited moderate antiinflammatory activity (26% inhibition of inflammation) at 3 h after administration of a 30 mg/kg oral dose. A related dual COX-1/2 and 5/15-LOX inhibitor 3-(4-methanesulfonylphenyl)-1-(4-cyanophenyl)prop-2-yn-1-one (13g, COX-1 IC50 = 31.5 microM; COX-2 IC50 = 1.0 microM; SI = 31.5; 5-LOX IC50 = 1.0 microM; 15-LOX IC50 = 3.2 microM) exhibited more potent antiinflammatory activity (ED50 = 90 mg/kg), being superior to the reference drug aspirin (ED50 = 129 mg/kg). Within this group of compounds 3-(4-methanesulfonylphenyl)-1-(4-isopropylphenyl)prop-2-yn-1-one (13e) emerged as having an optimal combination of in vitro COX-1/2 and 5/15-LOX inhibitory effects (COX-1 IC50 = 9.2 microM; COX-2 IC50 = 0.32 microM; SI = 28; 5-LOX IC50 = 0.32 microM; 15-LOX IC50 = 0.36 microM) in conjunction with a good antiinflammatory activity (ED50 = 35 mg/kg) compared to the reference drug celecoxib (ED50 = 10.8 mg/kg) when administered orally. A molecular modeling study where 13e was docked in the COX-2 binding site indicated the C-1 p-i-Pr group was positioned within a hydrophobic pocket (Phe205, Val344, Val349, Phe381 and Leu534), and that this positioning of the i-Pr group facilitated orientation of the C-3 p-SO2Me COX-2 pharmacophore such that it inserted into the COX-2 secondary pocket (His90, Arg513, Ile517 and Val523). A related docking study of 13e in the 15-LOX binding site indicates that the C-3 p-SO2Me COX-2 pharmacophore was positioned in a region closer to the catalytic iron site where it undergoes a hydrogen bonding interaction with His541 and His366, and that the C-1 p-i-Pr substituent is buried deep in a hydrophobic pocket (Ile414, Ile418, Met419 and Ile593) near the base of the 15-LOX binding site.  相似文献   

11.
Non-steroidal antiinflammatory drugs (NSAIDs) inhibit the cyclooxygenase (COX) enzyme and so they are effective analgesic, antiinflammatory and antipyretic drugs. The discovery of COX-2 led to the search for new NSAIDs with a selective action over this isoenzyme. The experiments performed to date have shown either more, less or no different efficacy of new COX-2 selective NSAIDs when compared to the non-selective inhibitors, probably because the comparison has not been performed under similar conditions. We have therefore compared the analgesic activity of six NSAIDs with different selectivity for the COX isoenzymes. The experiments were performed using the recording of spinal cord nociceptive reflexes in anaesthetised rats and in awake mice. The non-selective COX inhibitors, such as dexketoprofen trometamol, were effective in reducing nociceptive responses both in normal and monoarthritic rats (ED50s: 0.31 and 3.97 micromol/kg, respectively), and in mice with paw inflammation (12.5 micromol/kg, p < 0.01). The COX-1 selective inhibitor SC-58560 showed efficacy in normal rats (ED50: 0.8 micromol/kg) and in mice with paw inflammation (15 micromol/kg, p < 0.05), but not in monoarthritic rats. The COX-2 selective inhibitors celecoxib (105 micromol/kg) and rofecoxib (128 micromol/kg) however, were not effective in any of the groups studied. We conclude that inhibition of both COX isoenzymes is needed to achieve an effective analgesia in inflammation.  相似文献   

12.
Since the synthesis of aspirin in 1897, aspirin-like or nonsteroidal antiinflammatory drugs (NSAIDs) have been the mainstay of therapy for rheumatoid arthritis. Although of diverse chemical structure, these drugs not only exhibit the same antipyretic, analgesic and antiinflammatory therapeutic actions, but they also manifest identical toxic actions on the gastric mucosa and the kidney. This indicated that a single pharmacological effect was responsible for the properties of NSAIDs, a theory that was confirmed by the epochal discovery by Vane in 1971, that inhibition of the enzyme-producing prostanoids (cyclooxygenase [COX]) produced both the therapeutic and side effects of aspirin-like drugs. However, at equivalent antiinflammatory doses, different NSAIDs exhibited different degrees of toxicity. The reason for this was resolved by the discovery that prostaglandins at sites of tissue damage were synthesized by an inducible COX (COX-2) formed by a gene distinct from that producing the constitutive enzyme (COX-1), responsible for the formation of prostaglandins that serve an essential physiological function. Modification of the structure of drugs showing a moderately selective effect on COX-2, and the elucidation of the crystal structure of both enzymes, has paved the way for the synthesis of NSAIDs that are highly selective for the inducible enzyme and which are, therefore, antiinflammatory without the typical side effects of the classical NSAIDs. The focus on COX-2 has also expanded our knowledge of the pathophysiological significance of prostanoids and raised the possibility of new uses for selective COX-2 inhibitors, for example, in colon cancer, premature labor and possibly Alzheimer's disease. However, the clinical effects of chronic administration of potent, selective COX-2 inhibitors must await the results of ongoing clinical trials.  相似文献   

13.
Recent studies from our laboratory have shown that derivatization of the carboxylate moiety in substrate analogue inhibitors, such as 5,8,11,14-eicosatetraynoic acid, and in nonsteroidal antiinflammatory drugs (NSAIDs), such as indomethacin and meclofenamic acid, results in the generation of potent and selective cyclooxygenase-2 (COX-2) inhibitors (Kalgutkar et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 925-930). This paper summarizes details of the structure-activity studies involved in the transformation of the arylacetic acid NSAID, indomethacin, into a COX-2-selective inhibitor. Many of the structurally diverse indomethacin esters and amides inhibited purified human COX-2 with ICo5 values in the low-nanomolar range but did not inhibit ovine COX-1 activity at concentrations as high as 66 microM. Primary and secondary amide analogues of indomethacin were more potent as COX-2 inhibitors than the corresponding tertiary amides. Replacement of the 4-chlorobenzoyl group in indomethacin esters or amides with the 4-bromobenzyl functionality or hydrogen afforded inactive compounds. Likewise, exchanging the 2-methyl group on the indole ring in the ester and amide series with a hydrogen also generated inactive compounds. Inhibition kinetics revealed that indomethacin amides behave as slow, tight-binding inhibitors of COX-2 and that selectivity is a function of the time-dependent step. Conversion of indomethacin into ester and amide derivatives provides a facile strategy for generating highly selective COX-2 inhibitors and eliminating the gastrointestinal side effects of the parent compound.  相似文献   

14.
Adjuvant arthritic rats are known to be more susceptible to gastric damage induced by non-steroidal anti-inflammatory drugs (NSAIDs) than are normal rats. We compared the relative gastric safety profile of etodolac with those of meloxicam, diclofenac sodium and indometacin in adjuvant arthritic rats and normal rats or mice. As a measure of the safety profiles of NSAIDs, we used the safety index, the ratio of the dose that elicits gastric mucosal lesions to the effective dose as an anti-inflammatory or analgesic compound. The anti-inflammatory or analgesic effects of NSAIDs were assessed by paw swelling in adjuvant arthritic rats, and either carrageenin-induced paw edema or brewer's yeast-induced hyperalgesia, as well as acetic acid-induced writhing, in normal rats or mice. In addition, we also investigated the effects of these NSAIDs on human COX-1 and COX-2 activity. Etodolac and other NSAIDs inhibited paw swelling and caused gastric mucosal lesions in adjuvant arthritic rats in a dose-dependent manner. Etodolac showed the highest UD(50) value and safety index among these NSAIDs in arthritic rats. In normal rats, etodolac also showed the highest UD(50) value and safety index, except when its effects were assessed by acetic acid-induced writhing. Etodolac and meloxicam showed selectivity for human COX-2 over COX-1. In contrast, diclofenac sodium and indometacin were selective for COX-1. These results suggest that etodolac, a COX-2 selective NSAID, has anti-inflammatory effects with a better safety profile for the stomach than do non-selective NSAIDs, including diclofenac sodium and indometacin, in adjuvant arthritic as well as normal rats.  相似文献   

15.
A new series of 2-aryl, 3-benzyl-(1,3-oxazolidine or 1,3-thiazolidine)-4-ones, possessing a methylsulfonyl pharmacophore, were synthesized to evaluate their biological activities as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition studies were performed to acquire structure-activity relationship data with respect to the point that molecular modeling studies showed that designed compounds bind in the primary binding site such that the C-2 para-SO2Me substituent inserts into the 2° pocket present in COX-2 enzyme. COX-1 and COX-2 inhibition studies showed that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.21 to 0.34 μM range, and COX-2 selectivity indexes in the 222.3 to >476 range. 3-Benzyl-2-(4-methylsulfonylphenyl)-1,3-oxazolidine-4(5H)-one was identified as the most potent (IC50 = 0.21 μM) and selective (S.I. > 476) COX-2 inhibitor among the synthesized compounds. It also was a more selective COX-2 inhibitor than the parent reference compound celecoxib (S.I. > 403).  相似文献   

16.
A series of substituted 1,5-diarylpyrrole-3-alkoxyethyl ethers (6, 7, and 8) has been synthesized with the aim to assess if in the previously reported 1,5-diarylpyrrole derivatives (5) the replacement of the acetic ester moiety with an alkoxyethyl group still led to new, highly selective and potent COX-2 inhibitors. In the in vitro cell culture assay, all the compounds proved to be potent and selective COX-2 inhibitors. In the human whole blood (HWB) assay, compound 8a had a comparable COX-2 selectivity to valdecoxib, while it was more selective than celecoxib but less selective than rofecoxib. The potential anti-inflammatory and antinociceptive activities of compounds 7a, 8a, and 8d were evaluated in vivo, where they showed a very good activity against both carrageenan-induced hyperalgesia and edema in the rat paw test. In the abdominal constriction test compound 7a, 8a, and 8d were able to reduce the number of writhes in a statistically significant manner. Furthermore, the affinity data of these compounds have been rationalized through enzyme docking simulations in terms of interactions with a crystallographic model of the COX-2 binding site by means of the software package Autodock 3.0.5, GRID 21, and MacroModel 8.5 using the complex between COX-2 and SC-558 (1b), refined at a 3 A resolution (Brookhaven Protein Data Bank entry: 6cox ).  相似文献   

17.
The synthesis of a series of pentadienoic and hexadienoic acid derivatives is reported. These compounds were tested as inhibitors of 5-lipoxygenase (5 LO) and cyclooxygenase (CO) in vitro and as inhibitors of arachidonic acid (AA) induced ear edema in mice in vivo. Their potency is compared with that of the standard inhibitors nafazatrom, BW 755C, NDGA, KME4, quercetine, and L 652,243. The most potent compound in vivo, diethyl 2-hydroxy-5-(ethylthio)-2(Z),4(Z)-hexadienedioate (20) inhibited AA-induced ear edema when administered topically or orally, with an ED50 value of 0.01 mg/ear and 20 mg/kg, respectively. Among the standard compounds tested, L 652,243 was the most active compound in this test with an ED50 value of 0.01 mg/ear and 1 mg/kg po, but unlike this compound, 20 is a selective inhibitor of 5-LO (IC50 = 2 microM) without any significant activity against CO (IC50 greater than 50 microM). Most of the other compounds in this series are also selective 5-LO inhibitors.  相似文献   

18.
Selective type 2 cyclooxygenase (COX-2) inhibitors are often used in preclinical studies without potency and selectivity data in the experimental species. To address this issue, we assessed a selective COX-2 inhibitor MF-tricyclic in four commonly used species, namely mice, rats, guinea pigs and rabbits, in the present study. In both the guinea pig and rabbit whole blood assay, the compound inhibited lipopolysaccharide (LPS)-induced PGE2 production with an IC50 (COX-2) of 0.6 and 2.8 μM, respectively. By comparison, the compound displayed a much weaker activity on clot-induced formation of thromboxane with an IC50 (COX-1) of > 10 μM (guinea pigs) and 23 μM (rabbits). In keeping with the in vitro potency data, the compound significantly inhibited interleukin-1 beta (IL-1β) -induced PGE2 formation in the rabbit synovium at plasma concentrations near the whole blood assay IC50 for COX-2 but much lower than that for COX-1. MF-tricyclic was also potent and selective toward COX-2 in mice, inhibiting carrageenan-induced PGE2 accumulation in the air pouch dose-dependently (ED50 = 0.5 mg/kg) without affecting stomach PGE2 levels. In rats, MF-tricyclic was found to be effective in three standard in vivo assays utilized for assessing COX-2 inhibitors, namely, LPS-induced pyresis, carrageenan-induced paw edema and adjuvant-induced arthritis at the doses that did not inhibit stomach PGE2 levels. Similar to that in rats, the compound displayed pharmacological efficacy in mice, guinea pigs and rabbits when tested in the LPS pyresis model. Our data reveal that MF-tricyclic has the desired biochemical and pharmacological properties for selective COX-2 inhibition in all four test species.  相似文献   

19.
COX-2 selective inhibitors were developed in order to provide similar efficacy to traditional nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) but with improved upper gastrointestinal safety. This paper presents an overview of randomized clinical trials demonstrating the efficacy of COX-2 selective inhibitors for the treatment of patients with arthritis, particularly osteoarthritis and rheumatoid arthritis. In osteoarthritis and rheumatoid arthritis, COX-2 selective inhibitors have been shown to be more effective than placebo and similarly effective as standard doses of nonselective NSAIDs. There are currently few randomized clinical trials comparing the efficacy of the 2 first-generation COX-2 selective inhibitors, celecoxib and rofecoxib, in osteoarthritis. Of 4 head-to-head studies comparing the 2 agents, 3 indicated similar efficacy, while the other demonstrated superiority of rofecoxib at a dose of 25 mg qd compared with celecoxib at a dose of 200 mg qd. There are no clinical trials comparing the efficacy of different agents for treatment of patients with rheumatoid arthritis. Some studies have also demonstrated efficacy for COX-2 selective inhibitors in patients with ankylosing spondylitis and gout. In aggregate, these data show that COX-2 selective inhibitors provide effective relief of pain in patients with osteoarthritis and rheumatoid arthritis, with efficacy that is similar to traditional NSAIDs. Cost-effectiveness and cost-utility studies suggest, however, that their use should be limited to patients at high risk of serious upper gastrointestinal side effects, including complicated ulcers.  相似文献   

20.
The anti-inflammatory and ulcerogenic effects of FR188582, 3-chloro-5-[4-(methylsulfonyl) phenyl]-1-phenyl-1H-pyrazole, were investigated. In a recombinant human cyclooxygenase (COX) enzyme activity, FR188582 inhibited COX-2 with an IC50 value of 0.017 microM, and the inhibition of prostaglandin (PG) E2 formation by FR188582 was over 6000 times more selective for COX-2 than COX-1. Oral administration of FR188582 dose-dependently inhibited adjuvant arthritis. This effect was threefold more potent than that of indomethacin. FR188582 and indomethacin dose-dependently suppressed the formation of immunoreactive PGE2, but not immunoreactive leukotriene (LT) B4, in arthritic paw. Unlike indomethacin, FR188582 did not induce visible gastric lesions in rats at doses up to 32 mg/kg, p.o. Furthermore, FR188582 did not inhibit the level of immunoreactive PGE2 and immunoreactive 6-keto PGF1alpha in rat gastric mucosa. These results suggest that FR188582, a highly selective COX-2 inhibitor, has a potent anti-inflammatory effect mediated by inhibition of PGE2 in inflamed tissues. The safety profile of FR188582 appears to be improved over the safety profile of indomethacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号