首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A reciprocal connection is known to exist between the cuneate nucleus, which is a first-order somatosensory nucleus, and the cochlear nucleus, which is a first-order auditory nucleus. We continued this line of study by investigating the fiber endings of this projection in the cochlear nucleus of rats using the neuronal tracer Phaseolus vulgaris leucoagglutinin in combination with ultrastructural and immunocytochemical analyses. In the cochlear nucleus, mossy fiber terminals had been described and named for their morphologic similarity to those in the cerebellum, but their origins had not been discovered. In the present study, we determined that the axonal projections from the cuneate region gave rise to mossy fiber terminals in the granule cell regions of the ipsilateral cochlear nucleus. The cuneate mossy fibers appear to be excitatory in nature, because they are filled with round synaptic vesicles, they make asymmetric synapses with postsynaptic targets, and they are labeled with an antibody to glutamate. The postsynaptic targets of the mossy fibers include dendrites of granule cells. This projection onto the granule cell interneuron circuit of the cochlear nucleus indicates that somatosensory cues are intimately involved with information processing at this early stage of the auditory system. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The integration of information across sensory modalities enables sound to be processed in the context of position, movement, and object identity. Inputs to the granule cell domain (GCD) of the cochlear nucleus have been shown to arise from somatosensory brain stem structures, but the nature of the projection from the spinal trigeminal nucleus is unknown. In the present study, we labeled spinal trigeminal neurons projecting to the cochlear nucleus using the retrograde tracer, Fast Blue, and mapped their distribution. In a second set of experiments, we injected the anterograde tracer biotinylated dextran amine into the spinal trigeminal nucleus and studied the resulting anterograde projections with light and electron microscopy. Spinal trigeminal neurons were distributed primarily in pars caudalis and interpolaris and provided inputs to the cochlear nucleus. Their axons gave rise to small (1-3 microm in diameter) en passant swellings and terminal boutons in the GCD and deep layers of the dorsal cochlear nucleus. Less frequently, larger (3-15 microm in diameter) lobulated endings known as mossy fibers were distributed within the GCD. Ventrally placed injections had an additional projection into the anteroventral cochlear nucleus, whereas dorsally placed injections had an additional projection into the posteroventral cochlear nucleus. All endings were filled with round synaptic vesicles and formed asymmetric specializations with postsynaptic targets, implying that they are excitatory in nature. The postsynaptic targets of these terminals included dendrites of granule cells. These projections provide a structural substrate for somatosensory information to influence auditory processing at the earliest level of the central auditory pathways.  相似文献   

3.
Injections of WGA-HRP were made in the rat trigeminal ganglion and C1-3 dorsal root ganglia (DRGs) to study the central projection patterns and their relations to each other. Trigeminal ganglion injections resulted in heavy terminal labeling in all trigeminal sensory nuclei. Prominent labeling was also observed in the solitary tract nucleus and in the medial parts of the dorsal horn at C1-3 levels, but labeling could be followed caudally to the C7 segment. Contralateral trigeminal projections were found in the nucleus caudalis and in the dorsal horn at C1-3 levels. The C1 DRG was found to be inconstant in the rat. When it was present, small amounts of terminal labeling were found in the external cuneate nucleus (ECN) and the central cervical nucleus (CCN). No dorsal horn projections were seen from the C1 DRG. Injections in the C2 DRG resulted in heavy labeling in the ECN, nucleus X, CCN, and dorsal horn, where it was mainly located in lateral areas. Labeling could be followed caudally to the Th 7 segment. C2 DRG projections also appeared in the cuneate nucleus (Cun), in all the trigeminal sensory nuclei, and in the spinal, medial, and lateral vestibular nuclei. A small C2 DRG projection was observed in the ventral cochlear nucleus. C3 DRG injections resulted in heavy labeling in both medial middle and lateral parts of the dorsal horn, in the ECN, and in nucleus X, whereas the labeling in the CCN was somewhat weaker. Smaller projections were seen to trigeminal nuclei, Cun, and the column of Clarke. Comparisons of the central projection fields of trigeminal and upper cervical primary afferents indicated a somatotopic organization but with a certain degree of overlap.  相似文献   

4.
Previous work has demonstrated that layer V pyramidal cells of primary auditory cortex project directly to the cochlear nucleus. The postsynaptic targets of these centrifugal projections, however, are not known. For the present study, biotinylated dextran amine, an anterograde tracer, was injected into the auditory cortex of rats, and labeled terminals were examined with light and electron microscopy. Labeled corticobulbar axons and terminals in the cochlear nucleus are found almost exclusively in the granule cell domain, and the terminals appear as boutons (1–2 μm in diameter) or as small mossy fiber endings (2–5 μm in diameter). These cortical endings contain round synaptic vesicles and form asymmetric synapses on hairy dendritic profiles, from which thin (0.1 μm in diameter), nonsynaptic “hairs” protrude deep into the labeled endings. These postsynaptic dendrites, which are typical of granule cells, surround and receive synapses from large, unlabeled mossy fiber endings containing round synaptic vesicles and are also postsynaptic to unlabeled axon terminals containing pleomorphic synaptic vesicles. No labeled fibers were observed synapsing on profiles that did not fit the characteristics of granule cell dendrites. We describe a circuit in the auditory system by which ascending information in the cochlear nucleus can be modified directly by descending cortical influences. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The cochlear nuclear complex of the cat was immunostained with an antiserum to glutamate decarboxylase (GAD), the biosynthetic enzyme for the inhibitory neurotransmitter GABA, and studied with different procedures, including silver intensification, topical colchicine injections, semithin sections, and immunoelectron microscopy. Immunostaining was found in all portions of the nucleus. Relatively few immunostained cell bodies were observed: most of these were in the dorsal cochlear nucleus and included stellate cells, cartwheel cells, Golgi cells, and unidentified cells in the deep layers. An accumulation of immunoreactive cells was also found within the small cell cap and along the medial border of the ventral cochlear nucleus. Immunostained cells were sparse in magnocellular portions of the ventral nucleus. Most staining within the nucleus was of nerve terminals. These included small boutons that were prominent in the neuropil of the dorsal cochlear nucleus, the granule cell domain, in a region beneath the superficial granule cell layer within the small cell cap region, and along the medial border of the ventral nucleus. Octopus cells showed small, GAD-positive terminals distributed at moderate density on both cell bodies and dendrites. Larger, more distinctive terminals were identified on the large cells in the ventral nucleus, in particular on spherical cells and globular cells. There was a striking positive correlation of the size, location, and complexity of GAD-positive terminals with the size, location, and complexity of primary fiber endings on the same cells. This correlation did not hold in the dorsal nucleus, where pyramidal cells receive many large GAD-positive somatic terminals despite the paucity of primary endings on their cell bodies. The GAD-positive terminals contained pleomorphic synaptic vesicles and formed symmetric synaptic junctions that occupied a substantial portion of the appositional surface to cell bodies, dendrites, axon hillocks, and the beginning portion of the initial axon segments. Thus, the cells provided with large terminals can be subjected to considerable inhibition that may be activated indirectly through primary fibers and interneurons or by descending inputs from the auditory brainstem.  相似文献   

6.
In order to identify cytochemical traits relevant to understanding excitatory neurotransmission in brainstem auditory nuclei, we have analyzed in the dorsal cochlear nucleus the synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc, three molecules probably involved in different steps of excitatory glutamatergic signaling. High levels of glutamate immunolabeling were found in three classes of synaptic endings in the dorsal cochlear nucleus, as determined by quantitation of immunogold labeling. The first type included auditory nerve endings, the second were granule cell endings in the molecular layer, and the third very large endings, better described as “mossy.” This finding points to a neurotransmitter role for glutamate in at least three synaptic populations in the dorsal cochlear nucleus. The same three types of endings enriched in glutamate immunoreactivity also contained histochemically detectable levels of aspartate aminotransferase activity, suggesting that this enzyme may be involved in the synaptic handling of glutamate in excitatory endings in the dorsal cochlear nucleus. There was also extrasynaptic localization of the enzyme. Zinc ions were localized exclusively in granule cell endings, as determined by a Danscher-selenite method, suggesting that this ion is involved in the operation of granule cell synapses in the dorsal cochlear nucleus. J. Comp. Neurol. 399:341–358, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The present study sought to locate putative glutamatergic or aspartatergic pathways in the auditory system of cats and guinea pigs. We injected 0.06 to 3 mM D-[3H] aspartate (D-Asp) in the cochlear nucleus before preparation for light microscopic autoradiography. At short survival times (15 and 40 min) there was heavy labeling of astrocytic somata. Labeling patterns typical of cochlear nerve endings decorated neurons in the cochlear nucleus, e.g., cell bodies and dendritic trunks of octopus cells. Labeling patterns consistent with retrograde axonal transport by the parallel fibers of granule cells appeared in the molecular layer of the dorsal cochlear nucleus and in the external granular layer. Retrograde labeling of the cochlear nerve root fibers also occurred. Consistent with these results are companion biochemical findings on the rapidly dissected cochlear nuclei of guinea pigs. The dorsal, anteroventral, and posteroventral cochlear nuclei, each, evinced uptake of D-Asp. Subsequently, electrical stimulation of each nucleus released a portion of the accumulated amino acid. Most of this release probably came from synaptic endings. Another group of experiments compared autoradiographic localization of 0.06 to 3 mM D-Asp to that of horseradish peroxidase (HRP) 6 hr to 2 d after injections in the cochlear nucleus. Astroglial cell bodies were no longer labeled by D-Asp, but spiral ganglion cell bodies in the cochlea and granule cell bodies in the cochlear nucleus were. Perikarya of the periolivary and ventral cochlear nuclei projecting to the dorsal cochlear nucleus were labeled by HRP and not by D-Asp. Thus, comparisons with the HRP findings indicate that D-Asp labeling resulted from a selective retrograde transport. There was no evidence for a selective anterograde axonal transport. The present observations support the hypothesis that cochlear nerve fibers and granule cells may use L-glutamate and/or L-aspartate as a transmitter in the cochlear nucleus.  相似文献   

8.
The projections to the inferior colliculus of the cat are shown in autoradiographs after injections of 3H-amino acids into the anteroventral cochlear nucleus and anterograde axonal transport. Labeled bands of axons are seen in the central nucleus of the inferior colliculus, parallel to the fibrodendritic laminae, and in layers 3 and 4 of the dorsal cortex. A bilateral projection to the lateral, low-frequency part of the inferior colliculus is observed. In contrast, the more ventromedial, mid- and high-frequency parts receive only a contralateral input. The projections from the cochlear nucleus to both the contralateral midbrain and bilaterally to the superior olivary complex appear to be tonotopically organized. After HRP injections in the inferior colliculus, small numbers of stellate neurons are labeled in the lateral and ventral low-frequency parts of the anteroventral cochlear nucleus on the ipsilateral side. EM autoradiographs show labeled axonal endings from both sides of the anteroventral cochlear nuclei are present in the same proportion in pars lateralis. Axonal endings from either cochlear nucleus have small, round synaptic vesicles and make asymmetric synaptic contacts on dendrites. Axons from the contralateral side also make axosomatic contacts on large disc-shaped or stellate cells. Neurons from the ipsilateral anteroventral cochlear nucleus apparently make more synaptic endings per cell as compared to neurons from the contralateral side. Together, bilateral inputs from the anteroventral cochlear nucleus can account for a third of the endings with round synaptic vesicles in pars lateralis of the central nucleus. Morphological similarities among the ascending inputs to the inferior colliculus are discussed. Both direct circuits from the cochlear nucleus to the inferior colliculus and indirect circuits via the superior olivary complex or lateral lemniscus may display banding patterns, nucleotopic organization, or differential synaptic organization. The direct inputs from the anteroventral cochlear nucleus to the colliculus may influence binaural interactions which occur in the superior olivary complex. In addition, direct inputs may create new binaural responses in the inferior colliculus that are independent of lower centers.  相似文献   

9.
The principal projection neurons of the cochlear nucleus receive the bulk of their input from the auditory nerve. These projection neurons reside in the core of the nucleus and are surrounded by an external shell, which is called the granule cell domain. Interneurons of the cochlear granule cell domain are the target for nonprimary auditory inputs, including projections from the superior olivary complex, inferior colliculus, and auditory cortex. The granule cell domain also receives projections from the cuneate and trigeminal nuclei, which are first-order nuclei of the somatosensory system. The cellular targets of the nonprimary projections are mostly unknown due to a lack of information regarding postsynaptic profiles in the granule cell areas. In the present paper, we examined the synaptic relationships between a heterogeneous class of large synaptic terminals called mossy fibers and their targets within subdivisions of the granule cell domain known as the lamina and superficial layer. By using light and electron microscopic methods in these subdivisions, we provide evidence for three different neuron classes that receive input from the mossy fibers: granule cells, unipolar brush cells, and a previously undescribed class called chestnut cells. The distinct synaptic relations between mossy fibers and members of each neuron class further imply fundamentally separate roles for processing acoustic signals. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Projections of glutamatergic somatosensory and auditory fibers to the cochlear nucleus (CN) are mostly nonoverlapping: projections from the spinal trigeminal nucleus (Sp5) terminate primarily in the granule cell domains (GCD) of CN, whereas type I auditory nerve fibers (ANFs) project to the magnocellular areas of the VCN (VCNm) and deep layers of Dorsal CN (DCN). Vesicular glutamate transporters (VGLUTs), which selectively package glutamate into synaptic vesicles, have different isoforms associated with distinct subtypes of excitatory glutamatergic neurons. Here we examined the distributions of VGLUT1 and VGLU2 expression in the CN and their colocalization with Sp5 and ANF terminals following injections of anterograde tracers into Sp5 and the cochlea in the guinea pig. The CN regions that showed the most intense expression of VGLUT1 and VGLUT2 were largely nonoverlapping and were consistent with ANF and Sp5 projections, respectively: VGLUT1 was highly expressed in VCNm and the molecular layer of the DCN, whereas VGLUT2 was expressed predominantly in the GCD. Half (47% +/- 3%) of the Sp5 mossy fiber endings colabeled with VGLUT2, but few (2.5% +/- 1%) colabeled with VGLUT1. In contrast, ANFs colabeled predominantly with VGLUT1. The pathway-specific expression of VGLUT isoforms in the CN may be associated with the intrinsic synaptic properties that are unique to each sensory pathway.  相似文献   

11.
Organization of spinal inputs to the perihypoglossal complex in the cat   总被引:1,自引:0,他引:1  
First- and second-order spinal afferents to the perihypoglossal complex were sought by using axonal transport of WGA-HRP. Injections in C1, 2, and 3 dorsal root ganglia resulted in axonal labeling in the nucleus intercalatus and the external cuneate nucleus, with a number of retrogradely labeled cells seen as well in the latter. A similar pattern of axonal labeling in the nucleus intercalatus as well as several retrogradely labeled cells were found after spinal cord injections at levels C1, 2, and 3. A prominent field of labeled axons was also present in the rostral main cuneate nucleus. No labeling was seen in the perihypoglossal nuclei after injections in the spinal cord or dorsal root ganglia at levels caudal to C3. After injections of HRP into the perihypoglossal nucleus we were able to identify labeled neurons within Rexed's laminae V-VIII and the central cervical nucleus. Anterograde labeling in the main cuneate nucleus was observed after C1 to C5 ganglion and C1 to C6 cord injections. The pattern and extent of labeling in the perihypoglossal nuclei and adjacent structures seen after cerebellar injections into lobules V and VI were comparable to those previously reported and permitted evaluation of the relay from dorsal root ganglia through the intercalatus to the vermis. Topography of the cervical projections to the nucleus intercalatus is considered with respect to that of the perihypoglossal-collicular projection. A discussion is offered of the apparent importance of nucleus intercalatus as a relay of cervical and vestibular afferent information to premotor structures involved in neck motor control. The perihypoglossal complex is viewed as being organized in such a fashion as to allow the nuclei intercalatus and prepositus hypoglossi to function as key structures in the integration of inputs related to neck and ocular motor control, respectively.  相似文献   

12.
Auditory nerve fibers were labeled by extracellular injections of horseradish peroxidase into the spiral ganglion in mice. The labeled fibers were traced in an anterograde direction through the auditory nerve into the cochlear nucleus. In almost half of the injections, the labeled endings of auditory nerve fibers contacted cochlear nucleus neurons that were also labeled with horseradish peroxidase and were presumably transneuronally labeled. Only darkly labeled endings were associated with transneuronally labeled neurons, but not all darkly labeled endings had targets that were transneuronally labeled. Transneuronal labeling occurred almost exclusively in the ventral cochlear nucleus, often between endbulbs and bushy cells. Both "modified" endbulbs and the larger endbulbs of Held transneuronally labeled the bushy cells that they contacted. At the ultrastructural level, transneuronal labeling was evident as a darkening of ribosomes and the membrane surfaces of mitochondria, endoplasmic reticulum, and the nucleus. Transneuronal labeling occurred rarely in octopus, small, and stellate cells, and in neurons of the dorsal cochlear nucleus. Spiral ganglion injections also label olivocochlear fibers, efferent fibers that pass through the ganglion en route to the hair cells. These fibers give off branches to the cochlear nucleus that were rarely associated with transneuronal labeling. In eight instances, the targets of olivocochlear branches were stellate cells or small cells. We suggest that in our mouse preparation, horseradish peroxidase is effective as a transneuronal marker because the short distance from injection site to the cochlear nucleus results in a high concentration of horseradish peroxidase in the endings of the auditory nerve fibers.  相似文献   

13.
In the cochlear nucleus, there is a magnocellular core of neurons whose axons form the ascending auditory pathways. Surrounding this core is a thin shell of microneurons called the granule cell domain (GCD). The GCD receives auditory and nonauditory inputs and projects in turn to the dorsal cochlear nucleus, thus appearing to serve as a central locus for integrating polysensory information and descending feedback. Nevertheless, the source of many of these inputs and the nature of the synaptic connections are relatively unknown. We used the retrograde tracer Fast Blue to demonstrate that a major projection arises from the contralateral pontine nuclei (PN) to the GCD. The projecting cells are more densely located in the ventral and rostral parts of the PN. They also are clustered into a lateral and a medial group. Injections of anterograde tracers into the PN labeled mossy fibers in the contralateral GCD. The terminals are confined to those parts of the GCD immediately surrounding the ventral cochlear nucleus. There is no PN projection to the dorsal cochlear nucleus. These endings have the form of bouton and mossy fiber endings as revealed by light and electron microscopy. The PN represent a key station between the cerebral and cerebellar cortices, so the pontocochlear nucleus projection emerges as a significant source of highly processed information that is introduced into the early stages of the auditory pathway. The cerebropontocerebellar pathway may impart coordination and timing cues to the motor system. In an analogous way, perhaps the cerebropontocochlear nucleus projection endows the auditory system with a timing mechanism for extracting temporal information.  相似文献   

14.
This report describes some observations of the synaptic organization of one region of the cat dorsal cochlear nucleus (DCN). The large “fusiform cell” and its innervation from the cochlea are emphasized. The morphology of the mature fusiform cell and its postnatal development are described in rapid Golgi impregnations of perfusion-fixed littermate cats. The mature features are correlated with profiles of fusiform cell bodies, apical dendrites, and basal dendritic trunks in electron micrographs from adult cat brains. Small neurons and granule cells are also identified in electron micrographs. In Golgi impregnations, axons of small cells and granule cells may terminate upon fusiform cells. Six classes of axons can be distinguished in rapid Golgi impregnations of the DCN. Two classes are of cochlear origin. One axonal class arises from small cells. The sources of the remaining axonal classes have not been identified in this study. Primary afferents can terminate as large, mossy endings in the DCN neuropil. They can also participate in axonal nests along with axons and dendrites of small cells. In electron micrographs, four synaptic endings can be distinguished. Primary cochlear fibers end in large terminals with asymmetrical synaptic complexes and round, clear vesicles. Primary axons can end in glomeruli, resembling those of the cerebellum, or in synaptic nests which are conglomerates of neuronal processes including other types of endings. The origins of the other synaptic types are not yet known. According to this study, primary afferent input could influence fusiform cells directly or indirectly, via small cells and granule cells.  相似文献   

15.
Injections of WGA-HRP were made in the rat C4-C8 dorsal root ganglia (DRGs) individually to study the central projections and their relations to each other. The main dorsal horn projections from these DRGs to the dorsal horn lamina II extended for about two segments rostrally and caudally to the injected DRG, whereas the projections to laminae I, III, and IV were less restricted rostrocaudally. Comparisons of the dorsal horn projections from the DRGs investigated indicated a tendency for a somatotopic organization, which was most prominent in lamina II. Labeled central branches from the C4-8 DRGs could be traced in the dorsal column as far caudally as 12-17 segments caudal to the level of entrance. Most of these fibers appeared to end in the medial dorsal horn base, including the column of Clarke. Labeling of primary afferents in the ventral horn generally extended for at least 3-4 segments rostral and caudal to the level of the injected DRG. Projections to the central cervical nucleus were most prominent from the C4 DRG and gradually became less prominent from the more caudal DRGs. Heavy projections to the cuneate nucleus (Cun) originated from the C7 and C8 DRG, whereas those from the C4-C6 DRGs were less extensive. The Cun projections from the different DRGs appeared to overlap, and the same was true for the projections to the external cuneate nucleus. Projections to the gracile nucleus, the vestibular nuclear complex, including nucleus X, and to trigeminal sensory nuclei were seen from all DRGs investigated.  相似文献   

16.
To learn the distribution of cells projecting to the thalamus, as opposed to the cerebellum, in the mechanosensory nuclei of the dorsal medulla of raccoons, we analyzed the retrograde transport of horseradish peroxidase from the ventrobasal complex of the thalamus and from the cerebellum. We found six nuclear regions projecting heavily to the thalamus with very small projections to the cerebellum: Bischoff's, central cuneate, central gracile, rostral cuneate, rostral gracile nuclei, and cell group z. Two regions showed heavy projections to the cerebellum with no projections to the thalamus: the lateral portion of the external cuneate nucleus and the compact portion of cell group x. Four regions showed more equivalent projections to both target regions: basal cuneate, medial portion of the external cuneate nucleus, medial tongue extension of the external cuneate nucleus, and reticular portion of cell group x. Three more ventral regions were labeled: lateral cervical nucleus from thalamic injections but not from cerebellar injections; central cervical nucleus from cerebellar injections, which crossed the midline, but not from thalamic injections; and lateral reticular nucleus from both target regions. In most medullary regions, most cells project to one target and very few project to the other; we suggest that the cells projecting to the minor target convey samples of the information going to the major target.  相似文献   

17.
The cuneate nucleus is a relay center for somatosensory information by receiving tactile and proprioceptive inputs from primary afferent fibers that ascend in the dorsal funiculus. The morphology, synaptic contacts, and neurochemical content of primary afferent terminals in the cuneate nucleus of rats were investigated by combining anterograde transport of horseradish peroxidase conjugated to wheat-germ agglutinin or to cholera toxin (injected in cervical dorsal root ganglia) with postembedding immunogold labeling for glutamate and GABA. Both tracers gave similar results. Two types of terminals were labeled: type I terminals were irregularly shaped, had a mean area of 4.0 μm2, synapsed on several dendrites, and were contacted by other terminals, some of which were GABA positive. Type II terminals were dome-shaped, had a mean area of 2.18 μm2, and made synaptic contact on a single dendrite. All the anterogradely labeled terminals (interpreted as endings of primary afferents) were enriched in glutamate but not in GABA. The finding that identified primary afferent terminals are enriched in glutamate with respect to other tissue profiles strongly suggests a neurotransmitter role for glutamate in this afferent pathway to the rat cuneate nucleus. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Transganglionic degeneration and transganglionic transport of HRP were used for investigation of the spinal cord and brainstem projections from the superficial, cutaneous (SR) and deep, muscular (DR) branches of the radial nerve. The HRP study included a numerical and size analysis of labelled dorsal root ganglion (DRG) cells. In degeneration experiments the SR nerve was found to project somatotopically to laminae III-IV, but degeneration was also found in lamina I and inconsistently in lamina II. Transection of the DR nerve was found to give rise to a small amount of degeneration, which in "sham" operations was established to result from the skin injury during dissection of the DR nerve. With the HRP method, the SR nerve was found to project somatotopically to laminae I-IV, whereas the DR nerve projected more diffusely to the medial part of laminae V-VII. HRP application to the SR and DR nerves resulted in labelling of a mean of 1,024 and 310 DRG cells, respectively. These labelled neurons had a median cell area of 381 and 562 micron 2 for the SR and DR nerves, respectively, and both small and large cells were labelled in both types of experiments. In the lower brainstem, projections from the SR nerve were found only in the ipsilateral dorsal part of the main cuneate nucleus (MCN) with both methods. Brainstem projections from the DR nerve that were found only with the HRP method were found in the ipsilateral ventral part of the MCN together with a projection to the ipsilateral external cuneate nucleus. No projections were found to the central cervical nucleus. The present results indicate that cutaneous compared to muscular primary sensory neurons are much more prone to react with transganglionic degeneration after peripheral nerve transection. Furthermore, in the rat the SR nerve projects somatotopically, whereas the DR nerve does not. Both nerve branches are connected to small and large spinal ganglion cells, although the median cell area is larger in muscular neurons.  相似文献   

19.
In addition to input from auditory centers, the cochlear nucleus (CN) receives inputs from nonauditory centers, including the trigeminal sensory complex. The detailed anatomy, however, and the functional implications of the nonauditory innervation of the auditory system are not fully understood. We demonstrated previously that the trigeminal ganglion projects to CN, with terminal labeling most dense in the marginal cell area and secondarily in the magnocellular area of the ventral cochlear nucleus (VCN). We continue this line of study by investigating the projection from the spinal trigeminal nucleus to CN in guinea pig. After injections of the retrograde tracers FluoroGold or biotinylated dextran amine (BDA) in VCN, labeled cells were found in the spinal trigeminal nuclei, most densely in the pars interpolaris and pars caudalis with ipsilateral dominance. The anterograde tracers Fluoro-Ruby or BDA were stereotaxically injected into the spinal trigeminal nucleus. Most labeled puncta were found in the marginal area of VCN and the fusiform cell layer of dorsal cochlear nucleus (DCN). A smaller number of labeled puncta was located in the molecular and deep layers of DCN and the magnocellular area of VCN. The trigeminal projection to CN may provide somatosensory information necessary for pursuing a sound source or for vocal production. These projections may have a role in the generation and modulation of tinnitus.  相似文献   

20.
The central course and the projections of the first and the second cervical dorsal root ganglia and of suboccipital muscle primary afferent fibers in the guinea pig were studied by means of anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA/HRP) or aqueous solution of horseradish peroxidase (HRP). Injections of WGA/HRP into the second cervical dorsal root ganglion produced labeling in the dorsal and ventral horns. Within the spinal cord, the largest amount of HRP reaction product was found within the lateral third of the substantia gelatinosa and within the central cervical nucleus. The main area of termination in the medulla was the external cuneate nucleus. However, HRP reaction product was also found within the medial and inferior vestibular nuclei, cell group x, the perihypoglossal nuclei, the nucleus of the solitary tract, and the nucleus of the spinal trigeminal tract. Descending fibers could be detected as caudal as spinal segment T5. Injections of WGA/HRP into the first cervical dorsal root ganglion produced heavy terminal label within the central cervical nucleus but not within the substantia gelatinosa. Again, the external cuneate nucleus was the main area of termination within the medulla. Label could not be observed within the vestibular nuclear complex or within the spinal trigeminal nucleus. Injections of aqueous HRP into the suboccipital muscles produced heavy transganglionic label within the central cervical nucleus, whereas the substantia gelatinosa totally lacked terminal label. Ascending proprioceptive fibers reached the external cuneate nucleus and group x. Scanty projections could be detected within the vestibular nuclei as well as within the perihypoglossal nuclei except for the nucleus prepositus hypoglossi. Label was absent in the spinal trigeminal nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号