首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of gene expression of cancer cell lines exposed to erlotinib, a small molecule inhibitor of the epidermal growth factor receptor (EGFR), showed a marked increase in EGFR mRNA in resistant cell lines but not in susceptible ones. Because cetuximab induces EGFR down-regulation, we explored the hypothesis that treatment with cetuximab would interfere with erlotinib-induced EGFR up-regulation and result in antitumor effects. Exposure of the resistant biliary tract cancer cell line HuCCT1 but not the susceptible A431 epidermoid cell line to erlotinib induced EGFR mRNA and protein expression. Combined treatment with cetuximab blunted the erlotinib-induced EGFR up-regulation and resulted in inhibition of cell proliferation and apoptosis in the HuCCT1 cells. Blockage of erlotinib-induced EGFR synthesis in HuCCT1 cells by small interfering RNA resulted in identical antitumor effects as cetuximab, providing mechanistic specificity. In mice xenografted with A431, HuCCT1, and the pancreatic cancer cell line Panc430, maximal growth arrest and decrease in Ki67 proliferation index were documented with combined therapy, and EGFR down-regulation was observed in cetuximab-treated tumors. These results may indicate that resistance to EGFR kinase inhibition may be, at least in part, mediated by a highly dynamic feedback loop consisting of up-regulation of the EGFR upon exposure to EGFR kinase inhibitors. Abrogation of this response by small interfering RNA-mediated EGFR mRNA down-regulation and/or by cetuximab-mediated protein clearance induced tumor arrest across several cancer models with different EGFR expression levels, suggesting that resistance and sensitivity are dynamic events where proportional decrease in the target rather than absolute content dictates outcome.  相似文献   

2.
PURPOSE: We investigated the molecular effect of the epidermal growth factor receptor (EGFR) inhibitors erlotinib and gefitinib in vivo on all available tumors from patients treated on North American Brain Tumor Consortium trials 01-03 and 00-01 for recurrent or progressive malignant glioma. EXPERIMENTAL DESIGN: EGFR expression and signaling during treatment with erlotinib or gefitinib were analyzed by Western blot and compared with pre-erlotinib/gefitinib-exposed tissue or unexposed controls. Tumors were also analyzed for EGFR mutations and for other genomic abnormalities by array-based comparative genomic hybridization. Clinical data were used to associate molecular features with tumor sensitivity to erlotinib or gefitinib. RESULTS: Erlotinib and gefitinib did not markedly affect EGFR activity in vivo. No lung signature mutations of EGFR exons 18 to 21 were observed. There was no clear association between erlotinib/gefitinib sensitivity and deletion or amplification events on array-based comparative genomic hybridization analysis, although novel genomic changes were identified. CONCLUSIONS: As erlotinib and gefitinib were generally ineffective at markedly inhibiting EGFR phosphorylation in these tumors, other assays may be needed to detect molecular effects. Additionally, the mechanism of erlotinib/gefitinib sensitivity likely differs between brain and lung tumors. Finally, novel genomic changes, including deletions of chromosomes 6, 21, and 22, represent new targets for further research.  相似文献   

3.
PURPOSE: Recognition that the epidermal growth factor receptor (EGFR) was a therapeutic target in non-small cell lung cancer (NSCLC) and other cancers led to development of the small-molecule receptor tyrosine kinase inhibitors gefitinib and erlotinib. Clinical trials established that EGFR tyrosine kinase inhibitors produced objective responses in a minority of NSCLC patients. We examined the sensitivity of 23 NSCLC lines with wild-type or mutated EGFR to gefitinib to determine genes/proteins related to sensitivity, including EGFR and HER2 cell surface expression, phosphorylated EGFR expression, EGFR gene copy number, and EGFR mutational status. Downstream cell cycle and signaling events were compared with growth-inhibitory effects. EXPERIMENTAL DESIGN: We determined gefitinib sensitivity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, EGFR expression by fluorescence-activated cell sorting and immunohistochemistry, phosphorylated EGFR by Western blotting, EGFR gene copy number by fluorescence in situ hybridization, and EGFR mutation by sequencing. The cellular effects of gefitinib on cell cycle were determined by flow cytometry and the molecular effects of gefitinib EGFR inhibition on downstream signal proteins by Western blotting. Gefitinib in vivo effects were evaluated in athymic nude mice bearing sensitive and resistant NSCLC xenografts. RESULTS: There was a significant correlation between EGFR gene copy number, EGFR gene mutations, and gefitinib sensitivity. EGFR protein was necessary but not sufficient for predicting sensitivity. Gefitinib-sensitive lines showed a G(1) cell cycle arrest and inactivation of downstream signaling proteins; resistant cell lines had no changes. The in vivo effects mirrored the in vitro effects. CONCLUSIONS: This panel of NSCLC lines characterized for gefitinib response was used to identify predictive molecular markers of response to gefitinib. Several of these have subsequently been shown to identify NSCLC patients likely to benefit from gefitinib therapy.  相似文献   

4.
5.
PURPOSE: Agents inhibiting the epidermal growth factor receptor (EGFR) have shown clinical benefit in a subset of non-small cell lung cancer patients expressing amplified or mutationally activated EGFR. However, responsive patients can relapse as a result of selection for EGFR gene mutations that confer resistance to ATP competitive EGFR inhibitors, such as erlotinib and gefitinib. We describe here the activity of EXEL-7647 (XL647), a novel spectrum-selective kinase inhibitor with potent activity against the EGF and vascular endothelial growth factor receptor tyrosine kinase families, against both wild-type (WT) and mutant EGFR in vitro and in vivo. EXPERIMENTAL DESIGN: The activity of EGFR inhibitors against WT and mutant EGFRs and their effect on downstream signal transduction was examined in cellular assays and in vivo using A431 and MDA-MB-231 (WT EGFR) and H1975 (L858R and T790M mutant EGFR) xenograft tumors. RESULTS: EXEL-7647 shows potent and long-lived inhibition of the WT EGFR in vivo. In addition, EXEL-7647 inhibits cellular proliferation and EGFR pathway activation in the erlotinib-resistant H1975 cell line that harbors a double mutation (L858R and T790M) in the EGFR gene. In vivo efficacy studies show that EXEL-7647 substantially inhibited the growth of H1975 xenograft tumors and reduced both tumor EGFR signaling and tumor vessel density. Additionally, EXEL-7647, in contrast to erlotinib, substantially inhibited the growth and vascularization of MDA-MB-231 xenografts, a model which is more reliant on signaling through vascular endothelial growth factor receptors. CONCLUSIONS: These studies provide a preclinical basis for clinical trials of XL647 in solid tumors and in patients bearing tumors that are resistant to existing EGFR-targeted therapies.  相似文献   

6.
7.
Molecular inhibition of epidermal growth factor receptor (EGFR/HER1) signaling is under active investigation as a promising cancer treatment strategy. We examined the potency of EGFR inhibition achieved by combining anti-EGFR monoclonal antibody and tyrosine kinase inhibitor, which target extracellular and intracellular domains of the receptor, respectively. We specifically studied the combination of cetuximab (Erbitux, C225; ImClone Systems, New York, NY) with either gefitinib (Iressa, ZD1839; AstraZeneca, Macclesfield, UK) or erlotinib (Tarceva, OSI-774; Genentech, South San Francisco, CA) across a variety of human cancer cells. The combination of cetuximab plus gefitinib or erlotinib enhanced growth inhibition over that observed with either agent alone. As measured by immunostaining, inhibition of EGFR phosphorylation with the combination of cetuximab plus gefitinib or erlotinib was augmented over that obtained with single-agent therapy in head and neck (H&N) cancer cell lines. Phosphorylation inhibition of downstream effector molecules [mitogen-activated protein kinase (MAPK) and AKT] also was enhanced in tumor cells treated with the combination of cetuximab plus gefitinib or erlotinib. Flow cytometry and immunoblot analysis demonstrated that treatment of H&N tumor cells with cetuximab in combination with either gefitinib or erlotinib amplified the induction of apoptosis. Following establishment of cetuximab-resistant cell lines, we observed that gefitinib or erlotinib retained the capacity to inhibit growth of lung and H&N tumor cells that were highly resistant to cetuximab. Treatment with gefitinib or erlotinib, but not cetuximab, also could further inhibit the activation of downstream effectors of EGFR signaling in cetuximab-resistant cells, including MAPK and AKT. These data suggest that tyrosine kinase inhibitors may further modulate intracellular signaling that is not fully blocked by extracellular anti-EGFR antibody treatment. Finally, animal studies confirmed that single EGFR inhibitor treatment resulted in partial and transient tumor regression in human lung cancer xenografts. In contrast, more profound tumor regression and regrowth delay were observed in mice treated with the combination of cetuximab and gefitinib or erlotinib. Immunohistochemical staining, which demonstrated significant reduction of the proliferative marker proliferating cell nuclear antigen in mice treated with dual EGFR inhibitors, further supported this in vivo observation. Together, these data suggest that combined treatment with distinct EGFR inhibitory agents can augment the potency of EGFR signaling inhibition. This approach suggests potential new strategies to maximize effective target inhibition, which may improve the therapeutic ratio for anti-EGFR-targeted therapies in developing clinical trials.  相似文献   

8.
EGFR mutations are a major determinant of lung tumor response to gefitinib, an EGFR-specific tyrosine kinase inhibitor. Obtaining a response from lung tumors expressing wild-type EGFR is a major obstacle. The combination of gefitinib and cytotoxic drugs is one strategy against lung cancers expressing wild-type EGFR. The DNA topoisomerase inhibitor irinotecan sulfate (CPT-11) is active against lung cancer. We examined the sensitivity of lung cancers expressing wild- or mutant-type EGFR to the combination of gefitinib and CPT-11. The in vitro effect of gefitinib and SN-38 (the active metabolite of CPT-11) was examined in seven lung cancer cell lines using the dye formation assay with a combination index. When administered concurrently, gefitinib and SN-38 had a synergistic effect in five of the seven cell lines expressing wild-type EGFR, whereas the combination was antagonistic in PC-9 cells and a PC-9 subline resistant to gefitinib and expressing deletional mutant EGFR (PC-9/ZD). When administered sequentially, treatment with SN-38 followed by gefitinib had remarkable synergistic effects in the PC-9 and PC-9/ZD cells. In an in vivo tumor-bearing model, this combination had a schedule-dependent synergistic effect in the PC-9 and PC-9/ZD cells. An immunohistochemical analysis of the tumors in mice treated with CPT-11 and gefitinib demonstrated that the number of Ki-67 positive tumor cells induced by CPT-11 treatment was decreased when CPT-11 was administered in combination with gefitinib. In conclusion, the sequential combination of CPT-11 and gefitinib is considered to be active against lung cancer.  相似文献   

9.
To better understand the response of HCC to EGFR inhibition, we analyzed factors connected to the resistance of HCC cells against gefitinib. Sensitive HCC3 cells co-expressed EGFR and ErbB3 but lacked kinase-domain mutations in EGFR. Interestingly, expression of MVP was restricted to resistant cell lines, whereas ABCB1 and ABCC1 showed no association with gefitinib resistance. Moreover, ectopic MVP expression in HCC3 cells decreased gefitinib sensitivity, increased AKT phosphorylation and reduced the expression of inflammatory pathway-associated genes, whereas silencing of MVP in Hep3B and HepG2 cells increased sensitivity. These findings suggest MVP as a novel player in resistance against EGFR inhibition.  相似文献   

10.
Johnson BE  Jänne PA 《Cancer research》2005,65(17):7525-7529
A year has passed since mutations of the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) were discovered in patients with non-small cell lung cancer (NSCLC) who had dramatic clinical responses to treatment with gefitinib. Additional laboratory and clinical studies have provided further insight into the biological impact of EGFR mutations in cell culture experiments and in patients with NSCLC. In vitro characterizations of NSCLC cell lines and host cell lines transfected with these mutant and wild-type EGFR show that most cell lines with mutated EGFR are growth-inhibited by 10- to 100-fold lower concentrations of gefitinib and erlotinib compared with wild-type EGFR. NSCLC lines with mutations of the EGFR treated with concentrations of gefitinib and erlotinib that are achievable in the plasma undergo apoptosis rather than growth arrest. Retrospective studies of patients with NSCLC-treated gefitinib have reported a close association between EGFR mutations, increased chance of clinical response and longer survival. This review will provide information on the impact of EGFR mutations on gefitinib and erlotinib treatment by in vitro experiments, the outcome of NSCLC patients with these mutations when treated with gefitinib and erlotinib, and the subsets of patients with NSCLC in whom these mutations arise.  相似文献   

11.
12.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, such as gefitinib and erlotinib, are effective for non‐small cell lung cancer with activating EGFR mutations. However, even in patients with an initial dramatic response to such a drug, acquired resistance develops after 6–12 months. A secondary mutation of T790M in EGFR and amplification of the MET gene account for this resistance; however, the mechanism(s) of approximately 30% of acquired resistance cases remain unknown. We established an erlotinib‐resistant lung cancer cell line named PC‐9/ER3 that harbors an EGFR mutation after continuously exposing PC‐9 cells to erlotinib. PC‐9/ER3 cells were 136‐fold more resistant to erlotinib than the parental cells. Although the PC‐9/ER3 cells did not carry the T790M mutation or MET amplification and had similar levels of phosphorylated (p) STAT3, pJAK2 increased in the resistant cells. It was found in the present study that 3–12 h of exposure to erlotinib in both cell lines did not affect pJAK2 expression, but did result in increased pSTAT3 expression. pAkt in PC‐9/ER3 cells was less suppressed than in PC‐9 cells, although pEGFR and pMAPK were markedly suppressed in both cell lines. The combined treatment of erlotinib plus a JAK2 inhibitor (JSI‐124) suppressed pAkt in PC‐9/ER3 cells. Similarly, the combination of erlotinib plus JSI‐124 or siRNA against JAK2 restored sensitivity to erlotinib in PC‐9/ER3 cells. The combination of erlotinib plus JSI‐124 was also effective for reducing PC‐9/ER3 tumors in a murine xenograft model. Our results suggest that the activation of JAK2 partially accounts for acquired erlotinib resistance.(Cancer Sci, doi: 10.1111/j.1349‐7006.2012.02363.x, 2012)  相似文献   

13.
目的:观察嵌合型单克隆抗体CH12对头颈部鳞状细胞癌(head and neck squamous cell carcinomas,HNSCC)裸鼠种植瘤生长的抑制作用,为进一步研究CH12单抗在肿瘤治疗中的作用提供参考数据。方法:Western blotting检测5种HNSCC细胞系A253、CAL27、Detroit 562、FaDu和RPMI 2650中表皮生长因子受体(epidermal growth factor receptor,EGFR)的表达,流式细胞术检测CH12单抗同这5种细胞系的结合能力。皮下接种CAL27和A253细胞,建立HNSCC裸鼠种植瘤模型。模型鼠腹腔注射CH12单抗,以PBS作为阴性对照,观察肿瘤生长情况,绘制肿瘤生长曲线。结果:EGFR在CAL27、A253、FaDu及Detroit 562细胞中均有不同程度的表达,其中CAL27细胞中EGFR的表达水平最高,A253细胞次之。CH12单抗与5种HNSCC细胞系的结合能力由高到低依次为CAL27、FaDu、A253、Detroit 562和RPMI 265细胞。CH12单抗对CAL27和A253细胞裸鼠种植瘤的生长均有显著抑制作用,抑瘤率分别为56.8%(P=0.022)和59.7%(P=0.015)。结论:单克隆抗体CH12对EGFR高表达的HNSCC细胞种植瘤的生长具有明显的抑制作用。  相似文献   

14.
Inhibitors of epidermal growth factor receptor (EGFR) signaling are among the novel drugs showing great promise for cancer treatment in the clinic. However, the possibility of acquired resistance to such drugs because of tumor cell genetic instabilities has not yet been explored. Here we report the experimental derivation and properties of such cell variants obtained from recurrent tumor xenografts of the human A431 squamous cell carcinoma, after two consecutive cycles of therapy with one of three different anti-EGFR monoclonal antibodies: mR3, hR3, or C225. Initial response to a 2-week period of treatment was generally total tumor regression and was not significantly different among the three antibody groups. However, tumors often reappeared at the site of inoculation, generally after prolonged latency periods, and most of the tumors became refractory to a second round of therapy. Cell lines established from such resistant tumors retained high EGFR expression, normal sensitivity to anti-EGFR antibody or ligand, and unaltered growth rate when compared with the parental line in vitro. In contrast, the A431 cell variants exhibited an accelerated growth rate and a significantly attenuated response to anti-EGFR antibodies in vivo relative to the parental line. Because of the reported suppressive effect of EGFR inhibitors on vascular endothelial growth factor (VEGF) expression, and the demonstrated role of VEGF in the angiogenesis and growth of A431 tumor xenografts, relative VEGF expression was examined. Five of six resistant variants expressed increased levels of VEGF, which paralleled an increase in both angiogenic potential in vitro and tumor angiogenesis in vivo. In addition, elevated expression of VEGF in variants of A431 cells obtained by gene transfection rendered the cells significantly resistant to anti-EGFR antibodies in vivo. Taken together, the results suggest that, at least in the A431 system, variants displaying acquired resistance to anti-EGFR antibodies can emerge in vivo and can do so, at least in part, by mechanisms involving the selection of tumor cell subpopulations with increased angiogenic potential.  相似文献   

15.
Most advanced Non–Small-cell lung cancers (NSCLCs) with activating epidermal growth factor receptor (EGFR) mutations (exon 19 deletions or L858R) initially respond to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. However, over time (median of 6–12 months), most tumors develop acquired resistance to EGFR TKIs. Intense research in these NSCLCs has identified two major mechanisms of resistance to gefitinib/erlotinib: secondary resistance mutations and “oncogene kinase switch" systems. The secondary T790M mutation occurs in 50% of EGFR-mutated patients with TKI resistance, and in vitro, this mutation negates the hypersensitivity of activating EGFR mutations. Sensitive detection methods have identified a proportion of TKI-naive tumors that carry T790M, and these resistant clones may be selected after exposure to gefitinib or erlotinib. Other secondary resistance mutations (D761Y, L747S, T854A) seem to be rare. The amplification of the MET oncogene is present in 20% of TKI-resistant tumors; however, in half of the cases with this “oncogene kinase switch" mechanism the T790M is coexistent. It is possible that other kinases (such as insulin-like growth factor-1 receptor [IGF-1R]) might also be selected to bypass EGFR pathways in resistant tumors. The growing preclinical data in EGFR-mutated NSCLCs with acquired resistance to gefitinib or erlotinib has spawned the initiation or conception of clinical trials testing novel EGFR inhibitors that in vitro inhibit T790M (neratinib, XL647, BIBW 2992, and PF-00299804), MET, or IGF-1R inhibitors in combination with EGFR TKIs, and heat shock protein 90 inhibitors. Ongoing preclinical and clinical research in EGFR-mutated NSCLC has the potential to significantly improve the outcomes of patients with these somatic mutations.  相似文献   

16.
Erlotinib (Tarceva), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has clinical activity in advanced lung cancer, but disease that initially responds to erlotinib eventually progresses. The mechanism of this acquired resistance is unclear. We established two erlotinib-resistant pools of A-431 cells, a well-characterized epidermoid cancer cell line that constitutively overexpresses EGFR and is sensitive to erlotinib, by continuous exposure to erlotinib over a 6-month period. The extent of EGFR gene amplification or mutation of the EGFR tyrosine kinase domain was not altered in the resistant cells. Intracellular erlotinib concentrations, determined by liquid chromatography-tandem mass spectrometry, were almost the same in all three cell lines. Immunoprecipitation with EGFR antibody followed by detection with phosphotyrosine antibody revealed that erlotinib effectively reduced EGFR phosphorylation in both parental cells and resistant cells. Erlotinib induced mutated in multiple advanced cancers 1/phosphatase and tensin homologue (MMAC1/PTEN) and suppressed phosphorylated Akt (Ser(473)) but not in the erlotinib-resistant cells. Overexpression of MMAC1/PTEN by transfection with Ad.MMAC1/PTEN or by pharmacologic suppression of Akt activity restored erlotinib sensitivity in both resistant pools. Further, transfection of parental A-431 cells with constitutively active Akt was sufficient to cause resistance to erlotinib. We propose that acquired erlotinib resistance associated with MMAC1/PTEN down-regulation and Akt activation could be overcome by inhibitors of signaling through the phosphatidylinositol 3-kinase pathway.  相似文献   

17.
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors erlotinib and gefitinib provide significant clinical benefit for non-small cell lung cancer (NSCLC) patients whose tumors bear EGFR mutations/amplifications. However, anti-EGFR therapy is largely ineffective in NSCLC with activating KRAS mutations. In this study, we investigated the treatment efficacy of erlotinib and gefitinib in combination with the histone deacetylase inhibitors (HDACi) vorinostat and sodium butyrate in the KRAS-mutated NSCLC cell line A549. For comparison, we tested the combination of HDACi with the dual tyrosine kinase inhibitor lapatinib. A549 cells proved to be resistant to erlotinib and gefitinib, but could be sensitized by cotreatment with HDACi, as assessed by flow cytometric analyses of cell death and mitochondrial depolarization. In contrast, A549 cells were a priori responsive to lapatinib treatment, but responsiveness to lapatinib could not be enhanced by HDACi cotreatment. These divergent effects of the different combination regimens may be explained by dissimilar types of cell death induced by the treatments: The use of the pan-caspase inhibitor z-VAD-fmk in the cell death and mitochondrial depolarization assays as well as fluorescence microscopy analyses indicated that erlotinib or gefitinib combined with HDACi elicited apoptosis, whereas lapatinib treatment induced a non-apoptotic type of cell death. Our study suggests that both HDACi/EGFR inhibitor-combination treatment and lapatinib-single treatment may be effective options for the therapy of NSCLC with KRAS mutations.  相似文献   

18.
PURPOSE: We have investigated mechanisms of acquired resistance to the HER2 antibody trastuzumab in BT-474 human breast cancer cells. EXPERIMENTAL DESIGN: BT-474 xenografts established in athymic nude mice were eliminated by trastuzumab. Continuous cell lines (HR for Herceptin resistant) were generated from tumors that recurred in the presence of continuous antibody therapy. RESULTS: The isolated cells behaved resistant to trastuzumab in culture as well as when reinjected into nude mice. They retained HER2 gene amplification and trastuzumab binding and were exquisitely sensitive to peripheral blood mononuclear cells ex vivo in the presence of the antibody. The HR cells exhibited higher levels of phosphorylated epidermal growth factor receptor (EGFR) and EGFR/HER2 heterodimers. Phosphorylation of HER2 in HR cells was inhibited by the EGFR tyrosine kinase inhibitors erlotinib and gefitinib. Gefitinib also inhibited the basal association of p85 with phosphorylated HER3 in HR cells. Both inhibitors as well as the dual EGFR/HER2 inhibitor, lapatinib, induced apoptosis of the HR cells in culture. Growth of established HR5 xenografts was inhibited by erlotinib in vivo. In addition, the HR cells overexpressed EGFR, transforming growth factor alpha, heparin-binding EGF, and heregulin RNAs compared with the parental trastuzumab-sensitive cells. CONCLUSIONS: These results are consistent with the inability of trastuzumab to block the heterodimerization of HER2 and suggest that amplification of ligand-induced activation of ErbB receptors is a plausible mechanism of acquired resistance to trastuzumab that should be investigated in primary mammary cancers.  相似文献   

19.
PURPOSE: Erlotinib (Tarceva, OSI-774) is a potent and specific inhibitor of the HER1/epidermal growth factor receptor (EGFR) tyrosine kinase. In phase II clinical studies, oral erlotinib monotherapy has shown antitumor activity in patients with advanced non-small cell lung cancer, head and neck cancer, and ovarian cancer after the failure of standard chemotherapy. We hypothesized that some tumors treated with multiple cytotoxic therapies may become more dependent on the HER1/EGFR signaling pathways for survival. EXPERIMENTAL DESIGN: The growth-inhibitory effect of erlotinib was tested on 10 pairs of chemosensitive, parental, and chemoresistant tumor cell lines. RESULTS: Enhanced sensitivity to erlotinib was observed in the doxorubicin-resistant human breast cancer cell line MCF-7, paclitaxel-resistant human ovarian carcinoma cell line A2780, and cisplatin-resistant human cervical carcinoma cell line ME180. The IC(50) values of erlotinib in the resistant cell lines were 2- to 20-fold lower than those in the corresponding parental cell lines. This enhanced sensitivity to erlotinib correlated with higher HER1/EGFR and phospho-HER1/EGFR expression when compared with the corresponding parental cell lines. Acquired resistance to cytotoxic agents was not associated with cross-resistance to erlotinib. AE-ME180/CDDP-resistant xenografts showed greater sensitivity to erlotinib than parental ME180 xenografts did. CONCLUSIONS: Our findings suggest that acquired resistance to cytotoxic therapy in some tumors is associated with enhanced sensitivity to HER1/EGFR inhibitors, which correlates with increased HER1/EGFR expression. These data may explain some of the observed clinical activity of HER1/EGFR inhibitors in patients previously treated with multiple therapies. HER1/EGFR tyrosine kinase inhibitors may be more effective as second- or third-line treatment for certain patients with tumors that were previously treated with multiple chemotherapy regimens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号