首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weaver  CH; Hazelton  B; Birch  R; Palmer  P; Allen  C; Schwartzberg  L; West  W 《Blood》1995,86(10):3961-3969
The CD34 antigen is expressed by committed and uncommitted hematopoietic progenitor cells and is increasingly used to assess stem cell content of peripheral blood progenitor cell (PBPC) collections. Quantitative CD34 expression in PBPC collections has been suggested to correlate with engraftment kinetics of PBPCs infused after myeloablative therapy. We analyzed the engraftment kinetics as a function of CD34 content in 692 patients treated with high-dose chemotherapy (HDC). Patients had PBPCs collected after cyclophosphamide based mobilization chemotherapy with or without recombinant human granulocyte colony-stimulating factor (rhG-CSF) until > or = 2.5 x 10(6) CD34+ cells/kg were harvested. Measurement of the CD34 content of PBPC collections was performed daily by a central reference laboratory using a single technique of CD34 analysis. Forty-five patients required a second mobilization procedure to achieve > or = 2.5 x 10(6) CD34+ cells/kg and 15 patients with less than 2.5 x 10(6) CD34+ cells/kg available for infusion received HDC. A median of 9.94 x 10(6) CD34+ cells/kg (range, 0.5 to 112.6 x 10(6) CD34+ cells/kg) contained in the PBPC collections was subsequently infused into patients after the administration of HDC. Engraftment was rapid with patients requiring a median of 9 days (range, 5 to 38 days) to achieve a neutrophil count of 0.5 x 10(9)/L and a median of 9 days (range, 4 to 53+ days) to achieve a platelet count of > or = 20 x 10(9)/L. A clear dose-response relationship was evident between the number of CD34+ cells per kilogram infused between the number of CD34+ cells per kilogram infused and neutrophil and platelet engraftment kinetics. Factors potentially influencing the engraftment kinetics of neutrophil and platelet recovery were examined using a Cox regression model. The single most powerful mediator of both platelet (P = .0001) and neutrophil (P = .0001) recovery was the CD34 content of the PBPC product. Administration of a post-PBPC infusion myeloid growth factor was also highly correlated with neutrophil recovery (P = .0001). Patients receiving high-dose cyclophosphamide, thiotepa, and carboplatin had more rapid platelet recovery than patients receiving other regimens (P = .006), and patients requiring 2 mobilization procedures versus 1 mobilization procedure to achieve > or = 2.5 x 10(6) CD34+ cells/kg experienced slower platelet recovery (P = .005). Although a minimal threshold CD34 dose could not be defined, > or = 5.0 x 10(6) CD34+ cells/kg appears to be optimal for ensuring rapid neutrophil and platelet recovery.  相似文献   

2.
We analyzed the relationship between the reinfusion of large or very large amounts of peripheral blood progenitor cells (PBPC) and hematologic toxicity in twenty-one advanced breast cancer patients subjected to a myeloablative dose of melphalan at the end of a high-dose sequential chemotherapy (HDSC) program. We also evaluated the influence of the white blood cell (WBC) count to predict an optimal PBPC harvest after high-dose chemotherapy and growth factor priming. Twenty-one patients with high-risk or metastatic breast cancer sequentially received: high-dose cyclophosphamide (HD-Cy) and G-CSF followed by PBPC harvest, HD-methotrexate plus vincristine, HD-doxorubicin, cisplatin and finally HD-melphalan 200 mg/m2 (HD-L-PAM) followed by PBPC reinfusion. No growth factor was administered after HD-L-PAM. CD34+ cytofluorimetric analysis, WBC count and clonogenic assays were employed to monitor circulating cells and to analyze the PBPC harvest. Correlation between different PBPC doses and hematologic toxicity as well as leukocyte and platelet recovery time was attempted. Patients received a median number of 16 (4-25.1) x 10(6)/kg CD34+ cells, 81.3 (30.8-228) x 10(4)/kg CFU-GM and 4.2 (1.3-7.3) x 10(8)/kg nucleated cells (NC) after HD-L-PAM. The number of days with fewer than 1 x 10(9)/l leukocytes and 20 x 10(9)/l platelets were 6 (range 4-9) and 0 (range 0-3), respectively. The CD34+ cell dose significantly correlated with both platelet count nadir (r = 0.73) and time to 50 x 10(9)/l platelets (r = 0.7), but did not correlate with time to reach more than 1 x 10(9)/l WBC count (r = 0.2). In particular, we found that in 12 patients given very large amounts of CD34+ cells, ranging between 15.8 and 25. 1 x 10(6)/kg (V-LA-CD34+), the platelet nadir count never fell below 20 x 10(9)/l and platelet transfusions were not required. Conversely, nine patients who received only large amounts of CD34+ cells, ranging between 4 and 12 x 10(6)/kg (LA-CD34+), experienced a platelet nadir lower than 20 x 10(9)/l and required 2 days (range 1-4) to achieve independence from platelet transfusions (P = 0.001 and P = 0. 0005). The requirement for packed red blood cells (RBC) was 1.5 vs 3 units in the V-LA-CD34+ and LA-CD34+ groups respectively (P = 0.063). The analysis of 44 PBPC collections demonstrated that 29 aphereses performed with a WBC count <20 x 10(9)/l yielded a mean of 312 +/- 43 x 10(6) CD34+ cells and 1831 +/- 201 x 10(4) CFU-GM, whereas 15 collections performed with WBC count >20 x 10(9)/l yielded 553 +/- 64 x 10(6) CD34+ cells and 3190 +/- 432 x 10(4) CFU-GM (P = 0.004). In conclusion, our data suggests that V-LA-CD34+ eliminates severe thrombocytopenia and platelet transfusion requirements in breast cancer patients subjected to HD-L-PAM, and higher PBPC collections seems to coincide with WBC count higher than 20 x 10(9)/l after HD-Cy and G-CSF mobilization. These results justify a prospective study to establish whether large doses of CD34+ cells result in significant clinical benefits.  相似文献   

3.
For patients with metastatic breast cancer (MBC) who undergo high-dose therapy with autologous peripheral blood progenitor cell (PBPC) transplantation, an important prerequisite is a mobilization regimen that efficiently mobilizes PBPCs while producing an effective anti-tumor effect. We prospectively evaluated ifosfamide-based chemotherapy for mobilization efficiency, toxicity and disease response in 37 patients. Patients received two cycles of the ifosfamide-based regimen; ifosfamide (5 g/m2 with conventional-dose cycle and 6 g/m2 with mobilization cycle) with either 50 mg/m2 doxorubicin (if limited prior anthracycline and/or progression more than 12 months after an anthracycline-based regimen) or 175 mg/m2 paclitaxel. For the mobilization cycle, all patients received additional G-CSF (10 microg/kg SC, daily) commencing 24 h after completion of chemotherapy. The target yield was >6x10(6) CD34+ cells/kg, sufficient to support the subsequent three cycles of high-dose therapy. The mobilization therapy was well tolerated and the peak days for peripheral blood (PB) CD34+ cells were days 10-13 with no significant differences in the PB CD34+ cells mobilization kinetics between the ifosfamide-doxorubicin vs. ifosfamide-paclitaxel regimens. The median PBPC CD34+ cell content ranged from 2.9 to 4.0x10(6)/kg per day during days 9-14. After a median of 3 (range 1-5) collection days, the median total CD34+ cell, CFU-GM and MNC for all 44 individual sets of collections was 9.2x10(6)/kg (range 0.16-54.9), 37x10(4)/kg (range 5.7-247) and 7.3x10(8)/kg (range 2.1-26.1), respectively. The PBPC target yield was achieved in 35 of the 37 patients. The overall response rate for the 31 evaluable patients was 68% with 10% having progressive disease. Thirty-three patients have subsequently received high-dose therapy consisting of three planned cycles of high-dose ifosfamide, thiotepa and paclitaxel with each cycle supported with PBPCs. Rapid neutrophil and platelet recovery has been observed. Ifosfamide with G-CSF in combination with doxorubicin or paclitaxel achieves effective mobilization of PBPC and anti-tumor activity with minimal toxicity.  相似文献   

4.
We have determined the effect of delayed addition of G-CSF after chemotherapy on PBPC mobilization in a group of 30 patients with high risk breast cancer (HRBC) undergoing standard chemotherapy followed by high-dose chemotherapy (HDCT) and autologous SCT. Patients received FAC chemotherapy every 21 days followed by G-CSF at doses of 5 microg/kg/day starting on day +15 (groups 1 and 2) or +8 (group 3) after chemotherapy. PBPC collections were performed daily starting after 4 doses of G-CSF and continued until more than 2.5 x 10(6) CD34+ cells had been collected. In group 1, steady-state BM progenitors were also harvested and used for SCT. Groups 2 and 3 received PBPC only. The median number of collections was three in each group. Significantly more PB CD34+ cells were collected in patients receiving G-CSF starting on day 8 vs day 15 (9.43 x 10(6)/kg and 6.2 x 10(6)/kg, respectively) (P < 0.05). After conditioning chemotherapy all harvested cells including BM and PBPC were reinfused. Neutrophil and platelet engraftment was significantly faster in patients transplanted with day 8 G-CSF-mobilized PBPC (P < 0.05) and was associated with lower transplant related morbidity as reflected by days of fever, antibiotics or hospitalization (P < 0.05). Both schedules of mobilization provided successful long-term engraftment with 1 year post-transplant counts above 80% of pretransplant values. In conclusion, we demonstrate that delayed addition of G-CSF results in successful mobilization and collection of PBPC with significant advantage of day 8 G-CSF vs day 15. PBPC collections can be scheduled on a fixed day instead of being guided by the PB counts which provides a practical advantage. Transplantation of such progenitors results in rapid short-term and long-term trilineage engraftment.  相似文献   

5.
Fifty women with breast cancer metastatic to bone or bone marrow involvement on light microscopy at the time of initial evaluation were treated with high-dose chemotherapy (HDC) and peripheral blood progenitor cell (PBPC) transplantation with CD34(+) cell selection using the Isolex 300i system. All patients received induction chemotherapy. PBPC were mobilized with chemotherapy and granulocyte colony-stimulating factor. The median CD34(+) progenitor purity was 94.7% (range 72-98.7%) and recovery 38.4% (range 21-60%). Forty-eight hours after HDC with cyclophosphamide, cisplatin and carmustine, PBPC were reinfused. Median time to neutrophil count >0.5 x 10(9)/l was 9 (range 9-12) days and to platelet transfusion independence 11 (4-30) days. These data demonstrate that selected CD34(+) PBPCs allow rapid hematologic reconstitution after HDC. During follow-up, 23% of patients developed herpes zoster. Two patients developed cytomegalovirus infections. Three patients developed fungal infections. The development of these infections was not associated with steroid use but appeared more frequently in patients with diabetes mellitus. Seventy-four per cent of patients received steroids for pulmonary toxicity. Treatment-related mortality was 4%. Progression-free survival and overall survival at 35 months was 22.4% and 40.5%, with a median of 11.4 months and 15.4 months, respectively.  相似文献   

6.
BACKGROUND AND OBJECTIVES: We analyzed the relationship between long-term hematopoietic recovery and the number of CD34+ cells infused in order to determine the optimal dose of CD34+ cells for rapid and stable engraftment. PATIENTS AND METHODS: Between November 1993 and December 1998, 96 consecutive autologous transplantations were performed in 92 pediatric patients with different malignancies. Peripheral blood progenitor cells (PBPC) were mobilized by G-CSF alone (12 microg/kg/day s.c., Neupogen((R)); Amgen, Thousand Oaks, Calif., USA) and collected using a Cobe Spectra blood cell separator (Cobe, Denver, Colo., USA) through a central venous catheter with double lumen. The CD34+ cell contents of apheresis products were assessed by means of flow-cytometric analysis using an Epics Elite flow cytometer (Coulter, USA). RESULTS: The median number of CD34+ cells infused was 3.2 x 10(6)/kg (range 0.17-44.4). The median times for short-term engraftment (neutrophil count >0.5 x 10(9)/l and platelet count >20 x 10(9)/l) was 9 (range: 7-16) and 13 days (range: 7-91), respectively. The median times for long-term engraftment (platelet count >50 x 10(9)/l and >100 x 10(9)/l) was 21 (range: 10-249) and 45 days (range: 12-288). When the infused CD34+ cell dose was >/=5 x 10(6)/kg (median 7.99, range 5.01-44.4), there was a statistically significant increase in the rate of short- and long-term hematopoietic recovery compared to patients transplanted with a lower number of CD34+ cells (p < 0.0001). The earlier recovery in the high CD34+ cell group resulted in less transfusional support, fewer days on intravenous antibiotics and shorter hospitalization. CONCLUSIONS: This study confirms that G-CSF-mobilized PBPC provide rapid short- and long-term hematopoietic engraftment in pediatric patients undergoing autologous transplantation if a CD34+ cell dose >/=5.0 x 10(6)/kg is infused. As this PBPC dose seems to have clinical and potentially economic implications, it should be considered the optimal dose for apheresis.  相似文献   

7.
A high-dose (HD) chemotherapy scheme was designed for the collection of large numbers of peripheral blood progenitor cells (PBPC) in lymphoma patients who were candidates for myeloablative therapy with autograft. The scheme included the sequential administration of HD cyclophosphamide (CY) (7 g/m(2)) and HD ara-C (2 g/m(2) twice a day for 6 consecutive days), followed by final consolidation with PBPC autograft. PBPC harvests were scheduled following both HD CY and HD ara-C. To minimize hematologic toxicity, small aliquots of PBPC (20 circulating CD34(+) cells/microl, whereas the remaining 19 'low-mobilizer' patients did not reach this cut-off value. In spite of poor mobilization after HD CY, 16 out of 19 low mobilizers provided good harvests following HD ara-C; overall, median collected CD34(+) cells x 10(6)/kg were 1.4 (0-3.1) and 10.2 (0-37) after HD CY and HD ara-C, respectively (P = 0.00007). Similar patterns were observed when PBPC were evaluated by CFU-GM/kg. Complete and durable hemopoietic reconstitution followed autograft with post HD ara-C PBPC. Within the high-mobilizer group, 88 patients received HD ara-C and 79 (90%) still showed high mobilization; overall, median collected CD34(+)cells x 10(6)/kg were 17.8 (range 3-94) and 19 (range 0-107) after HD CY and HD ara-C respectively (P = NS). Thus, the scheme allowed sufficient PBPC collections for autografting in low mobilizer patients; in addition, the scheme could be considered whenever extensive chemotherapy debulking is needed prior to PBPC collection.  相似文献   

8.
Patients with delayed platelet recovery post-PBPC transplant (PBPCT) are a high-risk group for thrombocytopenic bleeding and platelet transfusion dependence. Total CD34+ cell dosage has been proposed as the most important factor influencing the rate of platelet recovery. To achieve the shortest time to platelet engraftment, a minimum leukapheresis target of 10x10(6) CD34+ cells/kg was established for 30 patients. Of the 29 evaluable patients, 62% had rapid (group I: time to platelets >20x10(9)/l < or =10 days and 50x10(9)/l < or =14 days) platelet recoveries while 38% had delayed (group II: 20x10(9)/l >10 days and 50x10(9)/l >14 days) recoveries. Groups I and II were compared for: (1) pretreatment variables; (2) mobilizing capability of CD34+ cells and subsets including megakaryocyte (Mk) progenitors; (3) infused dose of these cells at transplant; (4) changes in endogenous levels of Mpl ligand (or TPO) during mobilization and myeloablative chemotherapy. Group II patients received significantly more platelet transfusions (6 vs. 2.1, P = 0.002) post-PBPCT, had a higher proportion of patients with a prior history of BM disease (64% vs. 6%, P = 0.001), and showed a reduced ability to mobilize differentiated (CD34+/38+, CD34+/DR+) and Mk progenitors (CD34+/42a+, CD34+/61+). Only the number of Mk progenitors reinfused at transplant was significantly different between the groups (group II vs. group I: CD34+/42a+ = 1.02 vs. 2.56x10(6)/kg, P = 0.013; CD34+/61+ = 1.12 vs. 2.70x10(6)/kg, P = 0.015). The ability to mobilize Mk progenitors correlated with percentage changes in endogenous levels of TPO from baseline to platelet nadir during mobilization chemotherapy (CD34+/42a+: r = 0.684, P = 0.007; CD34+/61+: r = 0.684, P = 0.007), with group II patients experiencing lower percentage changes. An inverse trend but no correlation was observed between serial TPO levels and platelet counts. TPO levels remained elevated in group II patients throughout a prolonged period of thrombocytopenia (median days to 50x10(9)/l = 25 vs. 11 for group I), indicating that delayed engraftment was not due to a deficiency of TPO but to a lack of Mk progenitor target cells. Our results show that the number of reinfused Mk progenitors is a better predictor of platelet engraftment than total CD34+ cell dosage. Small changes in endogenous TPO levels during mobilization predict for low Mk progenitor yields.  相似文献   

9.
Peripheral blood progenitor cells (PBPC) can be mobilized using chemotherapy and granulocyte colony-stimulating factor (G-CSF). We and others previously reported a correlation of steady-state PBPC counts and the PBPC yield during mobilization in a small group of patients. Here we present data on 100 patients (patients: 25 non-Hodgkin's lymphoma (NHL), five Hodgkin's disease, 35 multiple myeloma (MM), 35 solid tumour) which enabled a detailed analysis of determinants of steady-state PBPC levels and of mobilization efficiency in patient subgroups. Previous irradiation (P = 0.0034) or previous chemotherapy in patients with haematological malignancies (P = 0.0062) led to a depletion of steady-state PB CD34+ cells. A correlation analysis showed steady-state PB CD34+ cells (all patients: r = 0.52, P < 0.0001; NHL patients, r = 0.69, P = 0.0003; MM patients: r = 0.66, P = 0.0001) and PB colony-forming cells can reliably assess the CD34+ cell yield in mobilized PB. In patients with solid tumour a similar trend was observed in mobilization after the first chemotherapy cycle (r = 0.51, P = 0.05) but not if mobilization occurred after the second or further cycle of a sequential dose-intensified G-CSF-supported chemotherapy regimen, when premobilization CD34+ counts were 18-fold elevated (P = 0.004). When the patients with MM (r = 0.63, P = 0.0008) or with NHL (r = 0.65, P = 0.006) were analysed separately, a highly significant correlation of the steady-state PB CD34+ cell count to the mean leukapheresis CD34+ cell yield was found, whereas no correlation was observed for patients with a solid tumour. For patients with haematological malignancies estimates could be calculated which, at a specific steady-state PB CD34+ cell count, could predict with a 95% probability a defined minimum progenitor cell yield. These results enable recognition of patients who mobilize PBPC poorly and may assist selection of patients for novel mobilization regimens.  相似文献   

10.
Agents with stem cell-toxic potential are frequently used for salvage therapy of Hodgkin's disease (HD) and high-grade non-Hodgkin's lymphoma (NHL). Because many patients with relapsed or refractory lymphoma are candidates for autologous progenitor cell transplantation, possible toxic effects of salvage chemotherapy on progenitor cells must be taken into account. In a retrospective study, we have analyzed the influence of a salvage regimen containing the stem cell-toxic drugs BCNU and melphalan (Dexa-BEAM) on subsequently harvested bone marrow (BM)- and peripheral blood-derived progenitor cell grafts (PBPC) and compared it with other factors. Progenitor cells were collected from 96 patients with HD or high-grade NHL. Seventy-nine grafts were reinfused (35 PBPC and 44 BM) after high-dose chemotherapy. Compared with patients autografted with BM, hematopoietic recovery was significantly accelerated in recipients of PBPC. For PBPC, the number of Dexa-BEAM cycles ( > or = v > 1) was the predominate prognostic factor affecting colony-forming unit-granulocyte-macrophage (CFU-GM) yield (66 v 6.8 x 10(4)/kg, P = .0001), CD34+ cell yield (6.6 v 1.6 x 10(6)/kg, P = .0001), neutrophil recovery to > 0.5 x 10(9)/L (9 v. 11 days, P = .0086), platelet recovery to > 20 x 10(9)/L (10 v 15.5 days, P = .0002), and platelet count on day +100 after transplantation (190 v 107 x 10(9)/L, P = .031) using univariate analysis. Previous radiotherapy was associated with significantly lower CFU-GM and CD34+ cell yields but had no influence on engraftment. Patient age, patient sex, disease activity, or chemotherapy other than Dexa-BEAM did not have any prognostic impact. Multivariate analysis confirmed that Dexa-BEAM chemotherapy was the overriding factor adversely influencing CFU-GM yield (P < .0001), CD34+ cell yield (P < .0001), and platelet engraftment (P < .0001). BM grafts were not significantly affected by previous Dexa-BEAM chemotherapy or any other variable tested. However, prognostic factors favoring the use of BM instead of PBPC were not identified using joint regression models involving interaction terms between the graft type (PBPC or BM) and the explanatory variables investigated. We conclude that, in contrast to previous radiotherapy or other chemotherapy, exposure to salvage regimens containing stem cell- toxic drugs, such as BCNU and melphalan, is a critical factor adversely affecting yields and performance of PBPC grafts. Marrow progenitor cells appear to be less sensitive to stem cell-toxic chemotherapy. PBPC should be harvested before repeated courses of salvage chemotherapy involving stem cell-toxic drugs to preserve the favorable repopulation kinetics of PBPC in comparison with BM.  相似文献   

11.
There is limited experience in the mobilization of peripheral blood progenitor cells (PBPC) in children and the optimal method for PBPC mobilization is unknown. The present study was conducted to ascertain whether mobilization with G-CSF + GM-CSF (group I) provides some advantage over G-CSF alone (group II) in terms of collected CD34+ cells and hematopoietic recovery following myeloablative conditioning in children with malignancies. An economic analysis was also performed. Each group comprised 21 consecutive patients. The mean number of aphereses was 1.5+/-0.5 in group I and 1.2+/-0.46 in group II (NS). The mean number of CD34+ cells was 3.8 x 106+/-4.03/kg in group I and 4.2+/-5.4 in group II (NS). The mean number of total blood volumes (TBV) processed was 4.4+/-1.5 in group I and 4.3+/-1.5 in group II (NS). The mean duration of the procedure was 276+/-74.1 min in group I and 286.7+/-75.9 min in group II (NS), and the inlet flow was 45.1+/-12 ml/min in group I and 39.5+/-15.1 ml/min in group II (NS). No significant differences in the neutrophil and platelet engraftment probability were observed between the two groups. The mean overall cost of group II was not statistically significant from that of group I (US$ 9521+/-330 vs US$ 10201+/-1028, P = NS). The cost of mobilization was significantly higher in group I than in group II, conditioning regimen costs were similar in both groups and the costs related to the post-transplant period were similar in both groups. We conclude that PBPC mobilization with G-CSF + GM-CSF in children does not enhance hematological recovery in comparison with mobilization using G-CSF alone. However, the combination of G-CSF + GM-CSF does not significantly increase the overall cost of transplantation.  相似文献   

12.
BACKGROUND AND OBJECTIVE: Peripheral blood progenitor cells (PBPC) are now widely used to restore hematopoiesis following high dose chemotherapy in patients with malignancies. We sought to identify parameters that could predict the yield of PBPC after mobilization with chemotherapy (CT) with or without granulocyte colony-stimulating factor (G-CSF) in cancer patients. DESIGN AND METHODS: One hundred and fifty patients underwent 627 PBPC collections during the recovery phase following CT with (n = 469) or without (n = 142) G-CSF. Hemogram, CFC-assays and CD34+ cell count were performed on peripheral blood and leukaphereses products. After log transformation of the data, differences between groups were assessed with the unpaired t-test or one-way analysis of variance. RESULTS: Seventeen and two patients required 2 and 3 mobilization cycles respectively to reach our target of 15x10(4) CFU-GM/kg. In patients with lymphoma but not in those with leukemia, the yields of both CFU-GM and CD34+ cells/kg were dramatically increased when G-CSF was added to CT for mobilization. In collections primed with CT and G-CSF, better yields were obtained in patients with breast cancer or small-cell lung carcinoma (SCLC) as opposed to other solid tumors and leukemia. Among potential predictive factors of CT- and G-CSF-primed harvests, we found that the CD34+ cell count in peripheral blood (PB) was strongly correlated with both the CFU-GM and CD34+ cell yields. Except in leukemia patients, more than 1x10(6) CD34+ cells/kg were harvested when the CD34+ cell count in blood was above 20x10(6)/L. Similarly, better results were obtained in collections performed when the percentage of myeloid progenitors in blood on the day of apheresis was above 5 % or when the leukocyte count in blood was above 5x10(9)/L. INTERPRETATION AND CONCLUSIONS: A diagnosis of breast cancer or SCLC, a leukocyte count in PB of more than 5x10(9)/L, more than 5% myeloid progenitors or more than 20x10(6) CD34+ cells/L in PB were associated with higher yields of PBPC in collections mobilized with CT+G-CSF.  相似文献   

13.
Myeloablative treatment and peripheral blood progenitor cell (PBPC) transplantation are increasingly used for lymphomas and leukemias. We have sought to optimize conditions for priming, collection, and engraftment of the leukapheresis product. Fifty-four consecutive adult patients were eligible, 31 with high-grade non-Hodgkin's lymphoma of poor prognosis, 12 with Hodgkin's disease in chemosensitive relapse, and 11 with poor prognosis acute lymphoblastic leukemia. Filgrastim was administered after routine chemotherapy with VAPEC-B or HiCCOM to mobilize PBPC. A rapidly increasing white blood cell count was used to predict the time of peak PBPC release and plan leukapheresis. Forty- five patients underwent leukapheresis. A median of 14 L of blood was processed at a single apheresis. A median of 2.4 x 10(8)/kg mononuclear cells (MNCs), 1.04 x 10(6)/kg granulocyte-macrophage colony-forming cells (GM-CFCs), and 10.6 x 10(6)/kg CD34+ cells were obtained. Slightly fewer MNCs were obtained from the heavily pretreated Hodgkin's disease group. There were no other significant differences in the size or composition of the leukapheresis harvest in the three patient groups. Forty patients underwent high-dose therapy and PBPC transplantation. Filgrastim was administered by daily subcutaneous injection until the absolute neutrophil count was > or = 1 x 10(9)/L for 2 consecutive days. Rapid and sustained hematopoietic engraftment occurred in all patients. The median time to achieve a neutrophil count > or = 0.5 x 10(9)/L was 9 days (range, 8 to 16 days); to achieve a platelet count > or = 20 x 10(9)/L was 10 days (range, 6 to 88 days); and to achieve a platelet count > or = 50 x 10(9)/L was 15.5 days (range, 10 to 100 days). Neutrophil recovery was faster than that of a historical control group treated with autologous bone marrow transplantation and filgrastim, but platelet recovery times were halved in the PBPC group. There was no secondary engraftment failure. Requirements for blood and platelet transfusions, antibiotic use, and parenteral nutrition were similar in the three patient groups. The median number of days in the hospital was 13 (range, 10 to 55) in the PBPC patients, compared with 19 (range, 14 to 51) in the historical controls. Leukapheresis yields (MNC, GM-CFC, and CD34+ cell numbers) were not useful for predicting the times to engraftment. We have shown that sufficient PBPC for transplantation can be obtained at a single leukapheresis after mobilization with routine chemotherapy and filgrastim in patients with non-Hodgkin's lymphoma, Hodgkin's disease, and acute lymphoblastic leukemia, even those heavily pretreated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Cytopenia after high-dose chemotherapy and autologous stem cell reinfusion is a major cause of morbidity. Ex vivo cultured expansion and differentiation of CD34+ peripheral blood progenitor cells (PBPC) to neutrophil precursors may shorten the neutropenic period further. We explored the use of these ex vivo cultured PBPCs in nine patients with metastatic breast cancer. All underwent PBPC mobilization with cyclophosphamide, VP-16, and G-CSF. Subsequently, they underwent four to five apheresis procedures. One apheresis product from each patient was prepared using the Isolex 300 Magnetic Cell Separation System (Baxter Immunotherapy, Irvine, CA) to obtain CD34+ cells. These cells were then cultured in gas permeable bags containing serum-free X-VIVO 10 (BioWhittaker, Walkersville, MD) medium supplemented with 1% human serum albumin and 100 ng/mL PIXY321. At day 12 of culture the mean fold expansion was 26x with a range of 6 to 64x. One patient's cells did not expand because of a technical difficulty. The final cell product contained an average of 29.3% CD15+ neutrophil precursors with a range of 18.5% to 48.1%. The patients underwent high-dose chemotherapy with cyclophosphamide, carboplatin, and thiotepa. On day 0, the cryopreserved PBPCs were reinfused and on day +1 the 12-day cultured cells were washed, resuspended, and reinfused into eight of nine patients. One patient was not infused with cultured cells. The mean number of cultured cells reinfused was 44.6 x 10(6) cells/kg with a range of 0.8 to 156.6 x 10(6) cells/kg. No toxicity was observed after reinfusion. The eight patients have recovered absolute neutrophil counts > 500/microL on a median of 8 days (range 8 to 10 days); the median platelet transfusion independence occurred on day 10 (range 8 to 12 days) and platelet counts > 50,000/microL were achieved by day 12 (range 9 to 14) for the seven patients whose platelet counts could be determined. Expanded CD34+ selected PBPC can be obtained and safely reinfused into patients.  相似文献   

15.
We investigated the schedule dependency of G-CSF (10 microg/kg) alone in mobilizing peripheral blood progenitor cells (PBPC) in breast cancer patients. After a median of three cycles (range, 2-6) of anthracycline-based chemotherapy, 49 patients with breast cancer (stage II/III, > or = 10+ Ln n = 36; locally advanced/inflammatory n = 8, stage IV (NED) n = 5) underwent PBPC collection after steady-state mobilization either with 1 x 10 microg/kg (n = 27) or with 2 x 5 microg/kg (n = 22) G-CSF daily for 4 consecutive days until completion of apheresis. Apheresis was started on day 5. Priming with 2 x 5 microg/kg resulted in a higher median number of CD34+ cells (5.8 vs 1.9 x 10(6)/kg, P = 0.003), MNC (6.6 vs 2.6 x 10(8)/kg, P < 0.001) and CFU-GM (6.5 vs 1.3 x 10(4)/kg, P = 0.001) in the first apheresis than with 1 x 10 microg/kg. Also the overall number of collected BFU-E was higher in the 2 x 5 microg group (9.2 vs 3.1 x 10(4)/kg; P = 0.01). After high-dose chemotherapy with cyclophosphamide/thiotepa/mitoxantrone (n = 46) hematopoietic engraftment with leukocyte count > 1.0/nl was reached in both groups after a median of 10 days (range, 8-15) and with platelets count > 50/nl after 12 (range, 9-40) and 13 days (range, 12-41), respectively. A threshold of > 2.5 x 10(6)/kg reinfused CD34+ cells ensured rapid platelet engraftment (12 vs 17 days; P = 0.12). Therefore, the target of collecting > 2.5 x 10(6) CD34+ cells was achieved in 21/27 (80%) patients of the 1 x 10 microg group and in 21/22 (95%) patients of the 2 x 5 microg/kg group with a median of two aphereses (range, 1-4). None in the 10 microg/kg group, but 6/22 (28%) patients in the 2 x 5 microg/kg group required only one apheresis procedure, resulting in fewer apheresis procedures in the 2 x 5 microg/kg group (mean, 1.8 vs 2.3, P = 0.01). These results demonstrate that priming with 10 microg/kg G-CSF alone is well tolerated and effective in mobilizing sufficient numbers of CD34+ cells in breast cancer patients and provide prompt engraftment after CTM high-dose chemotherapy. G-CSF given 5 microg/kg twice daily (2 x 5 microg) leads to a higher harvest of CD34+ cells and required fewer apheresis procedures than when given 10 microg/kg once daily (1 x 10 microg).  相似文献   

16.
Factors influencing hematopoietic recovery (HR) after autologous blood stem cell transplantation (ABSCT) were analyzed in 73 patients with various non-myeloid malignancies (NMM), and in 58 patients with acute myeloblastic leukemia (AML). Peripheral blood stem cells were collected following mobilization with chemotherapy, granulocyte colony-stimulating factor (G-CSF), or chemotherapy plus G-CSF. The conditioning regimen used consisted of either chemotherapy alone (112 cases) or chemotherapy plus total body irradiation (19 cases). The median number of colony-forming units granulocyte-macrophage (CFU-GM) was similar in both groups of patients, with the median number of CD34(+) cells infused being higher in the AML group (5.4 vs 4 x 10(6)/kg; P = 0.03). Median time neutrophils >0.5 x 10(9)/l was 13 days in both groups, and median time to a platelet count >20 x 10(9)/l was longer in AML patients (14 vs 12 days; P = 0.01). In multivariate analysis, the only factors affecting neutrophil recovery in the NMM group were the CD34+ cell number (continuous model) and the CFU-GM dose (categorized model) infused, whereas for platelet recovery, previous chemotherapy also remained significant. In the AML group, the only factors significantly affecting the speed of neutrophil recovery were dose of CD34+ cells administered and the patient's age. As for platelet recovery, only the progenitor dose administered remained significant. In the NMM group, the most discriminating cut-off values for a rapid neutrophil and platelet recovery were 1.5 x 10(6) and 2.5 x 10(6) CD34+ cells/kg, respectively, and for AML patients these figures were 1.5 x 10(6) and 4 x 10(6) CD34+ cells/kg, respectively. Our results confirm the slower HR after ABSCT in AML, and highlight the importance of progenitor cell dose in accelerating HR after ABSCT.  相似文献   

17.
The kinetics of mobilization and optimal timing of peripheral blood progenitor cell (PBPC) collection were evaluated in 190 patients with multiple myeloma undergoing stem cell harvest after mobilization with cyclophosphamide, prednisone and G-CSF. There was a strong correlation between the WBC count and the number of CD34+ cells circulating in peripheral blood (r = 0.875). Initiating leukapheresis based on rising WBC and platelet counts rather than on a fixed day increased the mean number of CD34+ cells 115% (9.7 to 20.9 x 10(6) CD34+ cells/kg; P = 0.010) for the total of all leukaphereses and 59% for the total of all CD34-selected products (5.1 to 8.1 x 10(6) CD34+ cells/kg; P = 0.011). Although the yield and purity of the CD34-selected product were not significantly affected (P > or = 0.071), the percentage of patients with concentrations of CD34+ cells in the initial leukapheresis of > 1% increased from 47% to 70% (P = 0.004). The mean purity of the selected product was related to the starting percentage: 48.9% if < 1% and 81.5% if > or = 1% (P < 0.001). Collection of stem cells based on rising WBC and platelet counts significantly increased the number of CD34+ cells in leukaphereses and CD34-selected products in comparison with collection on a fixed day.  相似文献   

18.
To evaluate the impact of ex vivo expanded megakaryocyte (MK) progenitors on high-dose chemotherapy-induced thrombocytopenia, we conducted a phase II study in 10 patients with relapsed lymphoma. Two fractions of peripheral blood progenitor cells (PBPC) were cryopreserved, one with enough cells for at least 2 x 10(6) CD34+ cells/kg and a second obtained after CD34+ selection. Ten days before autologous stem cell transplantation, the CD34+ fraction was cultured with MGDF+SCF for 10 days. After BEAM (BCNU, cyclophosphamide, cytarabine, and melphalan) chemotherapy, patients were reinfused with standard PBPC and ex vivo expanded cells. No toxicity was observed after reinfusion. The mean fold expansion was 9.27 for nucleated cells, 2 for CD34+ cells, 676 for CD41+ cells, and 627 for CD61+ cells. The median date of platelet transfusion independence was day 8 (range: 7-12). All patients received at least one platelet transfusion. In conclusion, ex vivo expansion of MK progenitors was feasible and safe, but this procedure did not prevent BEAM-induced thrombocytopenia. Future studies will determine if expansion of higher numbers of CD34+ cells towards the MK-differentiation pathway will translate into a functional effect in terms of shortening of BEAM-induced thrombocytopenia.  相似文献   

19.
Leukapheresis collections obtained following one of four mobilization regimens from 90 cancer patients were analyzed for their content of various progenitor cell types including erythroid and granulopoietic colony-forming cells in methylcellulose (total CFC), CFC-megakaryocyte (CFC-Mk), CFC detected after 10, 35 and 56 days in long-term culture (LTC), and total CD34+ cells. The number of each of these progenitor cell types collected from individual patients varied over 1000-fold. Nevertheless, within an individual leukapheresis, there was a significant correlation between the number of CD34+ cells and each progenitor type (except day 56 LTC CFC) suggesting that all of them are mobilized by a common mechanism. Patients who had previously received extensive chemotherapy and/or radiotherapy mobilized fewer of all these cell types than those who had not. For the 65 patients who proceeded to autologous transplantation, the median times to an absolute neutrophil count (ANC) of > or =0.5 x 109/l and the last platelet transfusion post transplant were 13 and 11 days, respectively, with 14 (22%) of patients having platelet recovery delayed beyond day 21. There was no significant difference between patients who had or had not received extensive chemo/radiotherapy or among the different mobilization regimens for time to neutrophil or platelet recovery or the number of platelet or red blood cell transfusions received post transplant. Threshold doses of the different cell types transplanted (per kg of patient weight) which predicted rapid platelet recovery were 2 x 106 CD34+ cells, 5 x 105 total CFC and 2.5 x 104CFC-Mk. Corresponding thresholds for progenitor activity measured in LTC could not be established. These results further support the view that standard mobilization regimens yield progenitor numbers that are, in most cases, nonlimiting for generating neutrophil and platelet recoveries within 2 to 3 weeks after myeloablative therapy. Assessment of the CD34+ cell and/or CFC content of leukapheresis collections may identify patients in whom platelet recovery is likely to be significantly delayed although CFC-Mk enumeration does not appear to offer any unique predictive advantage.  相似文献   

20.
To date, no randomized study has compared different doses of recombinant human granulocyte colony-stimulating factor (rhG-CSF) following submyeloablative mobilization chemotherapy. Therefore, we evaluated the effect of different doses of rhG-CSF following mobilization chemotherapy on yields of CD34+ peripheral blood stem cells (PBSC). Fifty patients were randomized to receive 8 (n = 25) versus 16 microg/kg/d (n = 25) of rhG-CSF following mobilization chemotherapy. The median number of CD34+ cells collected after 8 microg/kg/d of rhG-CSF was 2.36 x 10(6)/kg (range, 0.21-7.80), compared with 7.99 (2.76-14.89) after 16 microg/kg/d (P < 0.001). Twenty out of 25 (80%) patients in the low-dose and 23 out of 25 (92%) in the high-dose rhG-CSF arm underwent high-dose chemotherapy (HDC) and autologous stem cell transplantation (ASCT). Median days to white blood cell engraftment in patients mobilized with 8 microg/kg and 16 microg/kg of rhG-CSF were 12 (10-20) and 9 (8-11) respectively (P < 0.001). There was no difference between the two groups regarding the other parameters of peritransplant morbidity: days to platelet engraftment (P = 0.10), number of red blood cell (P = 0.56) and platelet transfusions (P = 0.22), days of total parenteral nutrition requirement (P = 0.84), fever (P = 0.93) and antibiotics (P = 0.77), and number of different antibiotics used (P = 0.58). These data showed that higher doses of rhG-CSF following submyeloablative mobilization chemotherapy were associated with a clear dose-response effect based on the collected cell yields. Based on the parameters of peritransplant morbidity, 8 microg/kg/d was as effective as 16 microg/kg/d except for a rapid neutrophil engraftment in the high-dose arm. Therefore, in routine clinical practice, despite some advantage in the use of higher doses of rhG-CSF, lower doses may be used for PBSC collections following chemotherapy-based mobilization regimens in this cost-conscious era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号