首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNA-cancer connection: the beginning of a new tale   总被引:15,自引:0,他引:15  
Calin GA  Croce CM 《Cancer research》2006,66(15):7390-7394
Cancer initiation and progression can involve microRNAs (miRNA), which are small noncoding RNAs that can regulate gene expression. Their expression profiles can be used for the classification, diagnosis, and prognosis of human malignancies. Loss or amplification of miRNA genes has been reported in a variety of cancers, and altered patterns of miRNA expression may affect cell cycle and survival programs. Germ-line and somatic mutations in miRNAs or polymorphisms in the mRNAs targeted by miRNAs may also contribute to cancer predisposition and progression. We propose that alterations in miRNA genes play a critical role in the pathophysiology of many, perhaps all, human cancers.  相似文献   

2.
Oncomirs - microRNAs with a role in cancer   总被引:3,自引:0,他引:3  
MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.  相似文献   

3.
刘志强  蔡琳 《肿瘤防治研究》2016,43(12):1090-1094
肺癌是世界最常见的癌症,已成为癌症死亡的主要原因。microRNAs(miRNAs)是一类高度保守、内源性非蛋白编码、长度约21~24核苷酸的小分子单链RNA,在基因调控中扮演着重要的角色。miRNA相关单核苷酸多态性(miRNA-related single nucleotide polymorphisms或miR-SNPs)主要包括miRNA基因SNPs、生物合成通路相关基因SNPs和miRNA靶基因中的SNPs,可通过影响miRNA的成熟过程、表达水平及与靶mRNA的识别结合等,使miRNA调控网络发生异常,从而参与肿瘤的发生发展。本文对miRNA相关SNPs与肺癌遗传易感性关系的研究进展进行综述,旨在为肺癌等恶性肿瘤的预防和控制提供参考。  相似文献   

4.
5.
To elucidate the involvement of 8-hydroxyguanine (oh(8)G) repair genes in human lung carcinogenesis, 47 lung cancer cell lines and 55 primary lung cancers were examined for somatic mutations and genetic polymorphisms in all coding exons of the MYH and APEX genes, and exon 8 of the OGG1 gene by polymerase chain reaction-single strand conformation polymorphism analysis. In the MYH gene, one missense mutation was detected in a cell line, NCI-H157, whereas no mutations were detected in primary cancers. There were no mutations in the APEX and OGG1 genes in the cell lines or primary cancers. Ten single nucleotide polymorphisms (SNPs) were identified, and seven of them were accompanied by amino acid substitutions. Differences in the oh(8)G repair activities of MYH, APEX and OGG1 proteins due to somatic mutations and SNPs can be involved in human carcinogenesis.  相似文献   

6.
7.
MicroRNAs: Novel regulators in the hallmarks of human cancer   总被引:2,自引:0,他引:2  
  相似文献   

8.
MicroRNAs (miRNAs) belong to a class of noncoding, regulatory RNAs that are involved in oncogenesis and show remarkable tissue specificity. miRNAs are approximately 22 nt non-coding RNAs, which regulate gene expression in a sequence-specific manner via translational inhibition or messenger RNA (mRNA) degradation, thus affecting various cellular processes. Since the discovery of their fundamental mechanisms of action, the field of miRNAs has opened a new era in the understanding of small noncoding RNAs. Recent evidence has shown that miRNA controls cell growth, apoptosis, and differentiation. Cancer is a complex genetic disease caused by abnormalities in gene structure and expression, moreover, miRNA expression correlates with cancers and could have a crucial function in tumor progression. Bioinformatic data indicate that each miRNA can control hundreds of target genes, but identification of the accurate miRNA targets will be crucial to exploit the emerging knowledge of miRNA contribution to cancer process.  相似文献   

9.
10.
11.
microRNAs (miRNAs) control a multitude of pathways in human cancers. Differential expression of miRNAs among different histological types of tumors within the same type of tissue offers insight into the mechanism of pathogenesis and may help to direct treatment to improve prognosis. We assessed expression of 667?miRNAs in endometrial endometrioid and serous adenocarcinomas using RNA extracted from benign endometrium as well as from primary endometrial tumors. Quantitative miRNA profiling of endometrial adenocarcinomas revealed four overlapping groups of significantly overexpressed and underexpressed miRNAs. The first group was composed of 20?miRNAs significantly dysregulated in both adenocarcinoma types compared with benign endometrium, two groups were composed of miRNAs significantly dysregulated in either endometrioid adenocarcinomas or in serous adenocarcinomas compared with benign endometrium, and the fourth group was composed of 17?miRNAs that significantly distinguished between endometrioid adenocarcinomas and serous adenocarcinomas themselves. Validation of the expression levels of the selected miRNAs was carried out in a second panel composed of ten endometrioid and five serous tumors. Experimentally validated mRNA targets of these dysregulated miRNAs were identified using published sources, whereas TargetScan was used to predict targets of miRNAs in the first and fourth profile groups. These validated and potential miRNA target lists were filtered using published lists of genes displaying significant overexpression or underexpression in endometrial cancers compared to benign endometrium. Our results revealed a number of dysregulated miRNAs that are commonly found in endometrial (and other) cancers as well as several dysregulated miRNAs not previously identified in endometrial cancers. Understanding these differences may permit the development of both prognostic and diagnostic biomarkers.  相似文献   

12.
13.
MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 base pairs that regulate the expression of genes by targeting messenger RNA with complementarity with the miRNA base sequence. Regulation of gene expression by miRNAs is crucial in cellular development and differentiation, and recent studies suggest a relationship between human diseases and the breakdown of gene silencing mechanisms induced by miRNA abnormalities. In particular, abnormal miRNA expression has been detected in various types of cancer and the target genes have been identified. These results indicate that miRNAs act in a manner equivalent to oncogenes or tumor suppressors. miRNAs may also serve as diagnostic biomarkers and therapeutic targets. In this review, we introduce the latest findings on miRNAs in human endometrial cancer, a common malignancy, and discuss the potential of miRNAs as biomarkers and targets for molecular therapy.  相似文献   

14.
Growing evidence suggests that microRNAs (miRNAs) are aberrantly expressed in many human cancers, and that they play significant roles in carcinogenesis and cancer progression. The identification of tumor suppressive miRNAs and their target genes could provide new insights into the mechanism of carcinogenesis. However, the genetic or epigenetic regulations of these miRNAs have not yet been fully elucidated in bladder cancer (BC). Chromosomal alterations of cancer cells give us important information for the identification of tumor suppressor genes. Our miRNA array-comparative genomic hybridization (CGH) analysis showed several miRNAs to be candidate tumor suppressors of BC. Our array-CGH analysis revealed that chromosome 4 was lost in all BC cell lines. We selected 19 miRNAs located on chromosome 4 and evaluated their expression levels in cancer cell lines as well as clinical samples. Gain-of-function analysis revealed that miR-218 inhibited BC cell proliferation, migration and invasion. Furthermore, flow cytometry analysis showed that it induced BC cell apoptosis. Genome-wide gene expression analysis showed that it targeted multiple oncogenes in BC. Our study is the first to demonstrate that miR-218 located on chrosomosme 4p15.31 is a tumor suppressive miRNA in BC. The identification of tumor suppressive miRNAs and their target genes on the basis of array-CGH analysis could provide new insights into the mechanisms of BC carcinogenesis.  相似文献   

15.
16.
MicroRNAs (miRNA) represent a novel class of genes that function as negative regulators of gene expression. Recently, miRNAs have been implicated in several cancers. However, aberrant miRNA expression and its clinicopathologic significance in human ovarian cancer have not been well documented. Here, we show that several miRNAs are altered in human ovarian cancer, with the most significantly deregulated miRNAs being miR-214, miR-199a*, miR-200a, miR-100, miR-125b, and let-7 cluster. Further, we show the frequent deregulation of miR-214, miR-199a*, miR-200a, and miR-100 in ovarian cancers. Significantly, miR-214 induces cell survival and cisplatin resistance through targeting the 3'-untranslated region (UTR) of the PTEN, which leads to down-regulation of PTEN protein and activation of Akt pathway. Inhibition of Akt using Akt inhibitor, API-2/triciribine, or introduction of PTEN cDNA lacking 3'-UTR largely abrogates miR-214-induced cell survival. These findings indicate that deregulation of miRNAs is a recurrent event in human ovarian cancer and that miR-214 induces cell survival and cisplatin resistance primarily through targeting the PTEN/Akt pathway.  相似文献   

17.
18.
19.
DICER1, an endoribonuclease required for microRNA (miRNA) biogenesis, is essential for embryogenesis and the development of many organs including ovaries. We have recently identified somatic hotspot mutations in RNase IIIb domain of DICER1 in half of ovarian Sertoli-Leydig cell tumors, a rare class of sex-cord stromal cell tumors in young women. These hotspot mutations lost IIIb cleavage activity of DICER1 in vitro and failed to produce 5p-derived miRNAs in mouse Dicer1-null ES cells. However, the oncogenic potential of these hotspot DICER1 mutations has not been studied. Here, we further revealed that the global expression of 5p-derived miRNAs was dramatically reduced in ovarian Sertoli-Leydig cell tumors carrying DICER1 hotspot mutations compared with those without DICER1 hotspot mutation. The miRNA production defect was associated with the deregulation of genes controlling cell proliferation and the cell fate. Using an immortalized human granulosa cell line, SVOG3e, we determined that the D1709N-DICER1 hotspot mutation failed to produce 5p-derived miRNAs, deregulated the expression of several genes that control gonadal differentiation and cell proliferation, and promoted cell growth. Re-expression of let-7 significantly inhibited the growth of D1709N-DICER1 SVOG3e cells, accompanied by the suppression of key regulators of cell cycle control and ovarian gonad differentiation. Taken together, our data revealed that DICER1 hotspot mutations cause systemic loss of 5p-miRNAs that can both drive pseudodifferentiation of testicular elements and cause oncogenic transformation in the ovary.  相似文献   

20.
MicroRNA expression profiling in prostate cancer   总被引:16,自引:0,他引:16  
MicroRNAs (miRNA) are small, endogenously expressed noncoding RNAs that negatively regulate expression of protein-coding genes at the translational level. Accumulating evidence, such as aberrant expression of miRNAs, suggests that they are involved in the development of cancer. They have been identified in various tumor types, showing that different sets of miRNAs are usually deregulated in different cancers. To identify the miRNA signature specific for prostate cancer, miRNA expression profiling of 6 prostate cancer cell lines, 9 prostate cancer xenografts samples, 4 benign prostatic hyperplasia (BPH), and 9 prostate carcinoma samples was carried out by using an oligonucleotide array hybridization method. Differential expression of 51 individual miRNAs between benign tumors and carcinoma tumors was detected, 37 of them showing down-regulation and 14 up-regulation in carcinoma samples, thus identifying those miRNAs that could be significant in prostate cancer development and/or growth. There was a significant trend (P=0.029) between the expression of miRNAs and miRNA locus copy number determined by array comparative genomic hybridization, indicating that genetic aberrations may target miRNAs. Hierarchical clustering of the tumor samples by their miRNA expression accurately separated the carcinomas from the BPH samples and also further classified the carcinoma tumors according to their androgen dependence (hormone naive versus hormone refractory), indicating the potential of miRNAs as a novel diagnostic and prognostic tool for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号