首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The triblock copolymer based on poly(-caprolactone) (PCL) as hydrophobic part and poly(ethylene glycol) (PEG) as hydrophilic one was synthesized and characterized. Core-shell type nanoparticles of poly(-caprolactone)/poly(ethylene glycol)/poly(-caprolactone) (CEC) block copolymer were prepared by a dialysis technique. According to the amphiphilic characters, CEC block copolymer can self-associate at certain concentration and their critical association concentration (CAC) was determined by fluorescence probe technique. CAC value of the CEC-2 block copolymer was evaluated as 0.0030 g/l. CAC values of CEC block copolymer decreased with the increase of PCL chain length, i.e. the shorter the PCL chain length, the higher the CAC values. From the observation of transmission electron microscopy (TEM), the morphologies of CEC-2 core-shell type nanoparticles were spherical shapes. Particle size of CEC-2 nanoparticles was 32.3±17.3 nm as a monomodal and narrow distribution. Particle size, drug loading, and drug release rate of CEC-2 nanoparticles were changed by the initial solvents and the molecular weight of CEC. The degradation behavior of CEC-2 nanoparticles was observed by 1H NMR spectroscopy. It was suggested that clonazepam (CNZ) release kinetics were dominantly governed by diffusion mechanism.  相似文献   

2.
The triblock copolymer based on poly(epsilon-caprolactone) (PCL) as hydrophobic part and poly(ethylene glycol) (PEG) as hydrophilic one was synthesized and characterized. Core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) (CEC) block copolymer were prepared by a dialysis technique. According to the amphiphilic characters, CEC block copolymer can self-associate at certain concentration and their critical association concentration (CAC) was determined by fluorescence probe technique. CAC value of the CEC-2 block copolymer was evaluated as 0.0030 g/l. CAC values of CEC block copolymer decreased with the increase of PCL chain length, i.e. the shorter the PCL chain length, the higher the CAC values. From the observation of transmission electron microscopy (TEM), the morphologies of CEC-2 core-shell type nanoparticles were spherical shapes. Particle size of CEC-2 nanoparticles was 32.3+/-17.3 nm as a monomodal and narrow distribution. Particle size, drug loading, and drug release rate of CEC-2 nanoparticles were changed by the initial solvents and the molecular weight of CEC. The degradation behavior of CEC-2 nanoparticles was observed by 1H NMR spectroscopy. It was suggested that clonazepam (CNZ) release kinetics were dominantly governed by diffusion mechanism.  相似文献   

3.
The synthesis, characterization, and in vitro evaluation of a combination delivery of multiblock poly(N-2-hydroxypropyl)methacrylamide (HPMA), gemcitabine (GEM) and paclitaxel (PTX) conjugates is described in this study. Multiblock copolymer conjugates of a large molecular weight (Mw > 200 kDa) were studied and compared to traditional, small molecular weight (Mw < 45 kDa) conjugates. Stability of the conjugates in different pH was assessed, and their cytotoxicity in combination toward A2780 human ovarian cancer cells was evaluated by combination index analysis. Treatment duration (4 and 72 h) and sequence of addition were explored. In addition, an HPMA copolymer conjugate with both GEM and PTX in the side chains was evaluated in a similar manner and compared to a physical mixture of individual conjugates. Conjugates with narrow molecular weight distribution (Mw/Mn < 1.1) were obtained via RAFT polymerization, and drug loadings of between 5.5 and 9.2 wt% were achieved. Conjugates demonstrated moderate stability with less than 65% release over 24 h at pH 7.4, and near complete drug release in the presence of the lysosomal enzyme cathepsin B in 3 h. In combination, the cytotoxic effects of a mixture of the conjugates were primarily additive. Synergistic effects were observed when A2780 human ovarian cancer cells were treated simultaneously for 4 h with multiblock conjugates (CI < 0.7). When both GEM and PTX were conjugated to the same copolymer backbone, moderate antagonism (CI 1.3–1.6) was observed. These results demonstrate that multiblock HPMA copolymer–GEM and –PTX conjugates, when delivered as a mixture of individual agents, are promising for the treatment of ovarian cancer.  相似文献   

4.
Those polymer anticancer-drug conjugates currently undergoing clinical evaluation have a tripartite structure; a water-soluble polymer, an anticancer agent and a pendant linker. To simplify the construct it would be attractive to develop anticancer polymer therapeutics that contain the bioactive agent as an integral part of the polymer backbone. The aim of this study was to utilise the reaction between a divinyl ethers and diols, to synthesise polyacetals incorporating a drug with bis-hydroxyl functionality into the polymer backbone. Degradation of the polymer backbone in the acidic environment of the lysosome or the extracellular fluid of some tumours would then trigger drug release eliminating the need for a biodegradable linker. A tert-polymerisation approach was used to incorporate non-steroidal oestrogen diethylstilboestrol (DES) into the mainchain of water-soluble polyacetals synthesised using as co-monomer PEG of Mw 2900 or 3400 g/mol. When PEG2900 was used the resultant polymer had a Mw of 18,900 g/mol, a Mw/Mn of 1.9 and a DES loading 4.3 wt.%. With PEG3400 the polymer Mw was 43,000 g/mol, Mw/Mn=1.8 and it had a DES loading 4.7 wt.%. 1H-NMR confirmed the presence of two distinct sets of acetal peaks, which correspond to the two possible mainchain acetals; from PEG at 1.25–1.3(d) and 4.7–4.8(q) ppm and from DES at 1.55–1.6(d) and 5.4–5.5(q) ppm. These were consistent with the acetal signals observed for the non-water-soluble co-polymer DES: tri(ethylene glycol) divinyl ether (TEGDVE) (1:2, Mw=6859 g/mol, Mw/Mn=1.3). When evaluated in vitro, the DES-polyacetal displayed greater cytotoxicity than DES against human and murine tumour cell lines (IC50=48 and 420 μg/ml against MCF-7 human breast cancer cells and IC50=97 and 560 μg/ml against B16F10 murine melanoma cells, respectively). These polymers showed no significant haemolysis at concentrations up to 20 mg/ml confirming suitability for further in vivo evaluation. An enhanced rate of hydrolytic degradation of the polymer backbone was seen at pH 5.5, (65% trans-DES released in 96 h), compared to pH 7.4 (4% trans-DES released in 96 h). These bioresponsive DES-polyacetals tert-polymers are the first water-soluble anticancer polymeric drugs designed for acidic pH-triggered release of a drug incorporated into the polymer mainchain. Their in vitro characteristics suggest further in vivo evaluation is warranted.  相似文献   

5.
Abstract

Context: Size, encapsulation efficiency and stability affect the sustained release from nanoparticles containing protein-type drugs.

Objectives: Insulin was used to evaluate effects of formulation parameters on minimizing diameter, maximizing encapsulation efficiency and preserving blood glucose control following intraperitoneal (IP) administration.

Methods: Homogenization or sonication was used to incorporate insulin into poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with increasing poly(ethylene glycol) (PEG) content. Effects of polymer type, insulin/polymer loading ratio and stabilizer in the internal aqueous phase on physicochemical characteristics of NP, in vitro release and stability of encapsulated insulin were investigated. Entrapment efficiency and release were assessed by radioimmunoassay and bicinconnic acid protein assay, and stability was evaluated using SDS-PAGE. Bioactivity of insulin was assessed in streptozotocin-induced, insulin-deficient Type I diabetic mice.

Results: Increasing polymeric PEG increased encapsulation efficiency, while the absence of internal stabilizer improved encapsulation and minimized burst release kinetics. Homogenization was shown to be superior to sonication, with NP fabricated from 10% PEG–PLGA having higher insulin encapsulation, lower burst release and better stability. Insulin-loaded NP maintained normoglycaemia for 24?h in diabetic mice following a single bolus, with no evidence of hypoglycemia.

Conclusions: Insulin-loaded NP prepared from 10% PEG–PLGA possessed therapeutically useful encapsulation and release kinetics when delivered by the IP route.  相似文献   

6.
In the present study chitosan grafted copolymers with poly(ethylene glycol) (CS-g-PEG) were prepared and studied using PEG with molecular weights 2000 and 5000g/mol. The materials were characterized using (1)H NMR, FTIR and WAXD techniques. These polyelectrolytes were ionically crosslinked with tripolyphosphate (TPP) and poly(glutamic acid) (PGA) at different polymer/crosslinking agent ratios (1:1, 2:1, 3:1 and 4:1, w/w) for the nanoencapsulation of bovine serum albumin (BSA). Prepared nanoparticles are spherical in shape with a mean diameter ranging from 150 to 600 nm. The size depends mainly to the molecular weight of the PEG and the crosslinking agent used. The PEG molecular weight also seems to affect the release rate of BSA especially the first burst effect which appears to be high in copolymers containing PEG5000, compared with copolymer prepared with PEG2000, and it is also higher when PGA was used as crosslinking agent, instead of TPP.  相似文献   

7.
Objectives Swelling kinetics and solute permeation (theophylline, vitamin B12 and fluorescein sodium) of hydrogels composed of poly(methyl vinyl ether‐co‐maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG) are presented. Methods The effects of PMVE/MA and PEG 10 000 content on swelling behaviour (percentage swelling, the type of diffusion and swelling rate constant) were investigated in 0.1 m phosphate buffer. Network parameters, such as average molecular weight between crosslinks (Mc) and crosslink density, were evaluated. Key findings The percentage swelling and Mc of hydrogels increased with decrease in PMVE/MA content, where the water diffusion mechanism into the hydrogels was Class‐II type. In contrast, increase in PMVE/MA content caused an increase in the crosslink density. Permeation of theophylline, vitamin B12 and fluorescein sodium, with increasing hydrodynamic radii, was studied through the equilibrium swollen hydrogels composed of PMVE/MA and PEG. In general, the permeability and diffusion coefficients of all three solutes decreased with increase in the PMVE/MA content. In addition, permeability and diffusion coefficient values increased with decreases in the hydrodynamic radii of the solute molecules. Conclusions The hydrogels have shown a change in swelling behaviour, crosslink density, Mc and solute permeation with change in PMVE/MA content, thus suggesting a potential application in controlled drug‐delivery systems.  相似文献   

8.
A novel targeting drug delivery system (TDDS) has been developed. Such a TDDS was prepared by W1/O/W2 solvent extraction/evaporation method, adopting poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] as the drug carrier, folic acid (FA) as the targeting ligand, and doxorubicin (DOX) as the model anticancer drug. The average size, drug loading capacity and encapsulation efficiency of the prepared DOX-loaded, folate-mediated P(HB-HO) nanoparticles (DOX/FA–PEG–P(HB-HO) NPs) were found to be around 240 nm, 29.6% and 83.5%. The in vitro release profile displayed that nearly 50% DOX was released in the first 5 days. The intracellular uptake tests of the nanoparticles (NPs) in vitro showed that the DOX/FA–PEG–P(HB-HO) NPs were more efficiently taken up by HeLa cells compared to non-folate-mediated P(HB-HO) NPs. In addition, DOX/FA–PEG–P(HB-HO) NPs (IC50 = 0.87 μM) showed greater cytotoxicity to HeLa cells than other treated groups. In vivo anti-tumor activity of the DOX/FA–PEG–P(HB-HO) NPs showed a much better therapeutic efficacy in inhibiting tumor growth, and the final mean tumor volume was 178.91 ± 17.43 mm3, significantly smaller than normal saline control group (542.58 ± 45.19 mm3). All these results have illustrated that our techniques for the preparing of DOX/FA–PEG–P(HB-HO) NPs developed in present work are feasible and these NPs are effective in selective delivery of anticancer drug to the folate receptor-overexpressed cancer cells. The new TDDS may be a competent candidate in application in targeting treatment of cancers.  相似文献   

9.
Purpose. The purpose of this study was to investigate the potential of poly(lactide-co-glycolide) (PLGA) microspheres to stabilize and deliver the analogue of camptothecin, 10-hydroxycamptothecin (10-HCPT). Methods. 10-HCPT was encapsulated in PLGA 50:50 microspheres by using an oil-in-water emulsion-solvent evaporation method. The influence of encapsulation conditions (i.e., polymer molecular weight (Mw), polymer concentration, and carrier solvent composition) on the release of 10-HCPT from microspheres at 37°C under perfect sink conditions was examined. Analysis of the drug stability in the microspheres was performed by two methods:i) by extraction of 10-HCPT from microspheres and ii). by sampling release media before lactone— carboxylate conversion could take place. Results. Microspheres made, of low Mw polymer (inherent viscosity 0.15 dl/g) exhibited more continuous drug release than those prepared from polymers of higher Mw (i.v. = 0.58 and 1.07 dl/g). In addition, a high polymer concentration and the presence of cosolvent in the carrier solution to dissolve 10-HCPT were both necessary in the microsphere preparation in order to eliminate a large initial burst of the released 10-HCPT. An optimal microsphere formulation released 10-HCPT slowly and continuously for over two months with a relatively small initial burst of the released drug. Both analytical methods used to assess the stability of 10-HCPT revealed that the unreleased camptothecin analogue in the microspheres remained in its active lactone form (>95%) over the entire 2-month duration of study. Conclusions. PLGA carriers such as those described here may be clinically useful to stabilize and deliver camptothecins for the treatment of cancer.  相似文献   

10.
The star-shaped poly(lactide-co-glycolide (PLGA)–β-cyclodextrin (PLGA–β-CD) copolymer was synthesized by reacting L-lactide, glycolide, and β-cyclodextrin in the presence of stannous octoate as a catalyst. The structure of PLGA–β-CD copolymer was confirmed with 1H-NMR, 13C-NMR, and FT-IR spectra. Adriamycin (ADR), which is an antitumor antibiotic, was encapsulated within micro- and nanoparticles made of PLGA–β-CD with a modified double emulsion method. Relatively low amount of β-CD and catalyst were used in order to obtain high molecular weight polymers. Differential scanning calorimetry (DSC) was used to determine the thermal properties of star-shaped copolymers. The reduction of interactions between the starshaped polyester molecules is due to their branched structure lowered Tg and Tm compared to linear PLGA copolymers. Effects of the experimental parameters, such as copolymer composition, ADR concentration, copolymer concentration, and poly(vinyl alcohol) concentration, on particular size and encapsulation efficiency were investigated. An increase in the internal aqueous phase volume led to a decrease in particles average size. A decrease in the polymer concentration resulted in increasing the particle average size from 135.5 to 325.6 nm. The high entrapment efficiency (EE) (about 65%) was obtained for 220 μm particles. All of the release profiles indicated a close relationship between each formulation variable and the amount of ADR released.  相似文献   

11.
Insulin and insulin/poly(ethylene glycol) (PEG)-loaded poly(l-lactide) (PLA) nanoparticles were produced by gas antisolvent (GAS) CO(2) precipitation starting from homogeneous polymer/protein organic solvent solutions. Different amounts of PEG 6000 (0, 10, 30, 50, 100, and 200% PEG/PLA w/w) or concentration of 30% PEG/PLA with PEGs with different molecular weight (MW; 350, 750, 1900, 6000, 10,000, and 20,000) were used in the preparations. The process resulted in high product yield, extensive organic solvent elimination, and maintenance of > 80% of the insulin hypoglycemic activity. Nanospheres with smooth surface and compact internal structure were observed by scanning electron microscopy. The nanospheres presented a mean particle diameter in the range 400-600 nm and narrow distribution profiles. More than 90% of drug and PEG were trapped in the PLA nanoparticles when low MW PEGs were used in the formulation, whereas the addition of high MW PEGs significantly reduced the loading yield. In all cases, in vitro release studies showed that only a little amount of drug was released from the preparations. However, formulations containing low MW PEGs allowed for a slow but constant drug release throughout 1500 h, whereas a burst was obtained by increasing the PEG MW. In conclusion, the GAS process offers a mean to produce protein-loaded nanoparticles possessing the prerequisites for pharmaceutical applications. The PEG added to the formulation was found to play a key role in the simultaneous solute precipitation phenomena and in determining the release behavior and the chemical-physical properties of the formulation.  相似文献   

12.

Purpose

Amphotericin B (AmB) is an effective anti-fungal and anti-leishmanial agent. However, AmB has low oral bioavailability (0.3%) and adverse effects (e.g., nephrotoxicity). The objectives of this study were to improve the oral bioavailability by entrapping AmB in pegylated (PEG) poly lactide co glycolide copolymer (PLGA–PEG) nanoparticles (NPs). The feasibility of different surfactants and stabilizers on the mean particle size (MPS) and entrapment efficiency were also investigated.

Materials and methods

NPs of AmB were prepared by a modified emulsification diffusion method employing a vitamin E derivative as a stabilizer. Physicochemical properties and particle size characterization were evaluated using Fourier Transform Infra-Red spectroscopy (FTIR), differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. Moreover, in vitro dissolution profiles were performed for all formulated AmB NPs.

Results

MPS of the prepared spherical particles of AmB ranged from 26.4 ± 2.9 to 1068 ± 489.8 nm. An increased stirring rate favored AmB NPs with a smaller MPS. There was a significant reduction in MPS, drug content and drug release, when AmB NPs were prepared using the diblock polymer PLGA–PEG with 15% PEG. Addition of three emulsifying agents poly vinyl pyrrolidone (PVP), Vitamin E (TPGS) and pluronic F-68 to AmB formulations led to a significant reduction in particle size and increase in drug entrapment efficiency (DEE) compared to addition of PVP alone. FTIR spectroscopy demonstrated a successful loading of AmB to pegylated PLGA–PEG copolymers. PLGA–PEG copolymer entrapment efficiency of AmB was increased up to 56.7%, with 92.7% drug yield. After a slow initial release, between 20% and 54% of AmB was released in vitro within 24 h phosphate buffer containing 2% sodium deoxycholate and were best fit Korsmeyer–Peppas model. In conclusion, PLGA–PEG diblock copolymer with 15% PEG produced a significant reduction (>70%) in MPS with highest drug content. The percentage of PEG in the copolymer and the surfactant/stabilizer used had a direct effect on AmB release in vitro, entrapment efficiency and MPS. These developed formulations are feasible, effective and improved alternatives to other carriers for oral delivery of AmB.  相似文献   

13.
In this study, the formulation and process parameters that determine successful production and long-term stability of freeze-dried poly(lactic acid) (PLA) nanoparticles with "hairy-like" poly(ethylene oxide) (PEO) surfaces were investigated. Nanoparticles with grafted (covalently bound) PEO coatings were produced by the salting-out method from blends of PLA and PLA-PEO diblock or triblock copolymers. PLA nanoparticles with physically adsorbed PEO were also produced. The redispersibility of the nanoparticles after freeze-drying under various conditions was assessed. The surface of the nanoparticles was characterized and classified in terms of "brush" and "loop" conformations. Upon freeze-drying, it appeared that the presence of PEO at the nanoparticle surface could severely impair the redispersibility of the particles, especially in the PEO-grafted systems. This effect was shown to be related to the amount and molecular weight of PEO in the various formulations. In most cases, particle aggregation was prevented by use of trehalose as lyoprotective agent. Increasing the concentration of particles in the suspension to be freeze-dried was shown to induce much less damage to the nanoparticles, and freezing the suspension at a very low temperature (-196 degrees C) was found to further improve the lyoprotective effect. Most of the lyoprotected nanoparticles remained stable for at least 12 weeks at 4 and -25 degrees C. The production and preservation of freeze-dried PLA-PEO diblock and triblock copolymer nanoparticles is feasible under optimized lyoprotective conditions.  相似文献   

14.
In this study, the formulation and process parameters that determine successful production and long-term stability of freeze-dried poly(lactic acid) (PLA) nanoparticles with “hairy-like” poly(ethylene oxide) (PEO) surfaces were investigated. Nanoparticles with grafted (covalently bound) PEO coatings were produced by the salting-out method from blends of PLA and PLA–PEO diblock or triblock copolymers. PLA nanoparticles with physically adsorbed PEO were also produced. The redispersibility of the nanoparticles after freeze-drying under various conditions was assessed. The surface of the nanoparticles was characterized and classified in terms of “brush” and “loop” conformations. Upon freeze-drying, it appeared that the presence of PEO at the nanoparticle surface could severely impair the redispersibility of the particles, especially in the PEO-grafted systems. This effect was shown to be related to the amount and molecular weight of PEO in the various formulations. In most cases, particle aggregation was prevented by use of trehalose as lyoprotective agent. Increasing the concentration of particles in the suspension to be freeze-dried was shown to induce much less damage to the nanoparticles, and freezing the suspension at a very low temperature (?196°C) was found to further improve the lyoprotective effect. Most of the lyoprotected nanoparticles remained stable for at least 12 weeks at 4 and ?25°C. The production and preservation of freeze-dried PLA–PEO diblock and triblock copolymer nanoparticles is feasible under optimized lyoprotective conditions.  相似文献   

15.
Poly(gamma-benzyl L-glutamate) (PBLG)/poly(ethylene glycol) (PEG) diblock copolymer endcapped with galactose moiety (abbreviated as GEG) was synthesized and characterized for study of liver-specific targeting. From dynamic light scattering measurement, particle sizes of copolymeric nanoparticles were decreased with an increase of PEG in the copolymer. The morphology of GEG-3 nanoparticles observed by transmission electron micrograph was observed as almost spherical shapes and ranged about 50-300 nm. From the structural characterization using 1H nuclear magnetic resonance, both characteristic peaks of PBLG and PEG were visible in CDCl3 but the characteristic peaks of PBLG were invisible in D2O, indicating that GEG block copolymers are found to the core-shell type nanoparticles in water with PBLG innercore and PEG outershell, exposing that galactose moiety of GEG block copolymers are outerwards oriented on the nanoparticle surfaces. By galactose-specific aggregation test of particles using beta-galactose specific lectin, and flow cytometry measurement, specific interaction between asialoglycoprotein receptors (ASGPR) of HepG2, human hepatoma cell line, and galactose moieties of the GEG nanoparticles was confirmed. From cell cytotoxicity test, HepG2 cells with ASGPR are more sensitive to paclitaxel (TX)-loaded nanoparticles than free TX whereas, P388 cells, murine leukemia cell line, and SK-Hep 01, human hepatoma cell line, without ASGPR is less sensitive to TX-loaded nanoparticles than free TX, suggesting that specific interaction between HepG2 cells and galactose moiety of the nanoparticles occurred.  相似文献   

16.
Fluorophore-assisted carbohydrate electrophoresis (FACE) was applied to determine the molecular mass (M) values of various chondroitin sulfate (CS) samples. After labeling with 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS), FACE was able to resolve each CS sample as a discrete band depending on the M value. After densitometric acquisition, the migration distance of each CS standard was acquired and the third grade polynomial calibration standard curve was determined by plotting the logarithms of the M values as a function of migration ratio. Purified CS samples of different origin and the European Pharmacopeia CS standard were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (Mp), the number-average Mn, weight-average Mw, and polydispersity (Mw/Mn) were examined by both techniques and found to be quite similar. This study demonstrates that FACE analysis is a suitable, sensitive and simple method for the determination of the M values of CS macromolecules with possible utilization in virtually any kind of research and development such as quality control laboratories.  相似文献   

17.
Shih  Chung 《Pharmaceutical research》1995,12(12):2041-2048
Purpose. To obtained rate constants from weight-averaged (Mw) or z-averaged (Mz) molecular weights for polymers of Schule-Flory distribution and undergoing random scission. These constants were compared with those obtained by parallel 1HNMR studies. Methods. The hydrolysis of two poly(ortho ester)s were followed by 1HNMR and gel permeation chromatography (GPC). Results. Equations to convert number-averaged (Mn), Mw and Mz into fraction of backbone remaining (fc) were derived. First-order hydrolytic rate constants of two poly(ortho ester)s; DETOSU-HD and DETOSU-CDM were calculated using these relationships. The rate constants calculated from 1HNMR, Mz and Mw were 0.215, 0.218 and 0.182 hr–1, respectively, for DETOSU-CDM and 0.152, 0.086 and 0.038 hr–l for DETOSU-HD. The large discrepancy in the rates determined by 1HNMR and GPC in the latter case was attributed to that the detector response (refractive index) of the monomers was lower than that of the high molecular weight polymer. The difference is small in the case of DETOSU-CDM, and the rates calculated from GPC data were comparable or nearly identical to that obtained from 1HNMR data. Conclusions. Although GPC can yield rapid and valuable kinetic data for the degradation of biodegradable polymers, the system, however, must be carefully calibrated to account for the variations in Mark-Houwink coefficients and in the response of the mass detector between the high and low MW polymers.  相似文献   

18.
A conjugate of the antihypertensive drug, lisinopril, with triblock poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA–PEG–PLA) copolymer was synthesized by the reaction of PLA–PEG–PLA copolymer with lisinopril in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugated copolymer was characterized in vitro by hydrogen nuclear magnetic resonance (HNMR), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) techniques. Then, the lisinopril conjugated PLA–PEG–PLA were self-assembled into micelles in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the micelles formed by the lisinopril-conjugated PLA–PEG–PLA have spherical structure with the average size of 162?nm. The release behavior of conjugated copolymer, micelles and micelles physically loaded by lisinopril were compared in different media. In vitro release study showed that in contrast to physically loaded micelles, the release rate of micelles consisted of the conjugated copolymer was dependent on pH of media where it was higher at lower pH compared to the neutral medium. Another feature of the conjugated micelles was their more sustained release profile compared to the lisinopril-conjugated copolymer and physically loaded micelles.  相似文献   

19.
The objective of the present study was to synthesize core–corona nanoparticles of doxorubicin (DOX) using hyaluronic acid–polyethyleneglycol–polycaprolactone (HA–PEG–PCL) copolymer for tumor targeting. Targeting efficiency of HA–PEG–PCL nanoparticles was compared with non-HA-containing nanoparticles (methoxy poly ethylene glycol (MPEG)–PCL). The copolymers were chemically synthesized and characterized by IR and NMR spectroscopies. The nanoparticles were characterized for shape and morphology by transmission electron microscopy, particle size, percentage of drug entrapment, and in vitro drug release profile. Differential scanning calorimetry and X-ray diffraction studies were also performed to appraise the crystalline or amorphous nature of DOX inside the polymer matrix. Formulations were prepared using different DOX:polymer ratios (1:1–1:3 w/w) and the optimum formulation with the drug:polymer ratio of 1:1 showed the mean particle size of 95 ± 5 nm and entrapment efficiency of 95.56% in the case of HA–PEG–PCL nanoparticles, while the values were 115 nm and 95.50%, respectively, in the case of MPEG–PCL nanoparticles. The HA–PEG–PCL nanoparticles could release DOX for up to 17 days, whereas the MPEG–PCL nanoparticles could release it for up to 14 days. The hemolytic toxicity and hematological studies confirmed that both DOX-loaded HA–PEG–PCL and MPEG–PCL nanoparticles were safe and suitable for sustained and targeted drug delivery. The tissue distribution study and tumor growth inhibition were performed after intravenous injection of nanoparticles in Ehrlich ascites tumor (EAT)-bearing mice. The nanoparticles of HA–PEG–PCL copolymer accomplishes efficient delivery of DOX in EAT tumor when compared with the MPEG–PCL nanoparticles by the process of receptor-mediated endocytosis, as well as enhanced permeability and retention effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号