首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的制备能够在一个月甚至更长时间内缓释石杉碱甲的注射型生物可降解微球。方法选用端基不封口的PLA或PLGA、采用简单的O/W乳化溶剂挥发法制备微球;详细考察了微球的形态、粒径及分布、载药量和包封率;用透析法测定微球的体外药物释放曲线。结果成功地将石杉碱甲包裹入聚合物中;制得的微球表面光滑,但不同材料制得的微球内部结构不同,粒径全部小于250μm,粒径分布较窄,载药量的质量分数在4%~6.5%内,包封率的质量分数在45%-65%内,比用端基封口的聚合物制备的微球包封率高15倍以上;体外释药试验表明,载有石杉碱甲的3种微球能够在5-7周内缓释药物。结论利用生物可降解型微球缓释石杉碱甲是可行的。  相似文献   

2.
The solvent evaporation process has been used to form hydrocortisone-loaded microspheres from poly((+/-)-lactide) (PLA) and a lactide-glycolide copolymer (65/35). Methylene chloride was the casting solvent. Partially hydrolysed (88%) poly(vinyl alcohol) and methylcellulose were used as aqueous phase emulsifiers. Methylcellulose was preferred, because it gave stable emulsions as the amount of hydrocortisone being encapsulated increased whereas poly(vinyl alcohol) did not. With methylcellulose as the emulsifier, a broad size range of spherical microspheres containing up to 50% (w/w) hydrocortisone could be prepared. Thermal and X-ray analyses established that poly((+/-)-lactide) microspheres containing hydrocortisone retained thermal events characteristic of both materials. This is evidence that such microspheres contain, to some extent, crystalline hydrocortisone domains dispersed in a PLA matrix. But most of the encapsulated drug was molecularly dispersed in the PLA glass. The stability of hydrocortisone in microspheres was evaluated in different storage conditions: no degradation of drug was found. The release of hydrocortisone from 250-350 microns diameter microspheres into agitated 37 degrees C water (nitrogen atmosphere) was determined by HPLC analysis. The microspheres evaluated had initial hydrocortisone payloads of 12 to 47% (w/w). The rate of drug release increased as the initial drug payload carried by the microspheres increased. The release data are not adequately described by zero order, first order, or square-root-of-time release kinetics. Drug release from microspheres that contain 12% (w/w) hydrocortisone approached a plateau value well below the amount of drug actually carried by the microspheres. This is particularly true for hydrocortisone encapsulated in lactide-glycolide polymer.  相似文献   

3.
The encapsulation of nedocromil sodium and beclomethasone dipropionate with microspheres of poly(l-lactic acid) has been studied and preparation conditions optimised for entrapment efficiency and microsphere size suitable for inhalation. DSC was used to characterise the microspheres both in terms of drug/polymer interaction and influence of annealing conditions on the Tg and degree of crystallinity. The absence of molecular interaction was confirmed by FTIR. Incubation of the microspheres in phosphate buffer at 37°C for 8 days demonstrated no chemical degradation of the polymer as evidenced by IR spectral analysis and estimates of percentage crystallinity. Surface morphology (SEM) and internal structure (TEM) were consistent with a homogeneous degradation pattern.  相似文献   

4.
In this paper, ibuprofen was encapsulated into microspheres by oil-in-water (o/w) emulsion solvent evaporation method. Biodegradable polymers with certain compositions and characteristics such as polylactide (PLA), poly(epsilon-caprolactone) (PCL) and their block copolymer were used to prepare the microspheres. The results indicate that, under the same processing conditions, the drug entrapment efficiency was similar (approximately 80%) for microspheres prepared with PLA and P(LA-b-CL) (78.7/21.3 by mole), but it was only 25.4% for PCL microspheres. The in vitro drug release rate decreased in the order of PCL, P(LA-b-CL) (78.7/21.3 by mole) and PLA microspheres. PCL microspheres showed more serious burst release during the first day (almost 80%) than P(LA-b-CL) (50%) and PLA microspheres (18%). The complete ibuprofen release duration from the last two kinds of microspheres exceeded 1 month. Characterization of the microspheres by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized optical microscope (POM) revealed that ibuprofen was amorphous in PCL microspheres and partially crystalline in P(LA-b-CL) and PLA microspheres. The different release behaviour of ibuprofen from the three kinds of microspheres could be attributed to the different crystallinity of the studied polymers and drug dispersion state in polymer matrices. All the above results suggest that the copolymer with a certain ratio of lactide to -caprolactone could have potential applications for long-term ibuprofen release.  相似文献   

5.
A modified w/o/w emulsion solvent evaporation technique was adopted to prepare human Chorionic Gonadotropin (hCG)-loaded polylactide (PLA) or poly(lactide-co-glycolide) (PLGA) microspheres. The effects of preparative parameters, such as stirring rate, polymer MW and concentration, and the composition of both the inner aqueous phase and oil phase etc., on hCG entrapment efficiency and microsphere characteristics were investigated. It was found that by adding 20% glycerol into the inner aqueous phase and 40% acetone into the oil phase, smooth microspheres 1mum in diameter could be produced with high hCG entrapment efficiency (>90%). In vitro release test showed a burst release of hCG from PLGA (75:25) microspheres, followed by sustained release of 55% hCG over 2 months. The initial hCG burst from PLGA microspheres increased with the glycerol concentration in the inner aqueous phase, but decreased to a low value (ca. 20%) with the addition of acetone into the oil phase, which could beattributed to the associated changes in surface morphology of the microspheres. In vivo experiments demonstrated that a single shot of hCG-loaded PLGA microspheres could produce a comparable antibody response with the inoculation of free hCG four times.  相似文献   

6.
重组降血压肽缓释微球的制备与体外释放   总被引:1,自引:1,他引:0  
目的采用复乳溶剂蒸发法制备重组降血压肽(rAHP)缓释微球。方法以聚乳酸(PLA)为缓释材料,利用正交设计优化微球制备的最佳工艺条件,并考察了微球的体外释药特性。结果微球制备的最优工艺为:油相中PLA的浓度为7.5%、初乳搅拌速度为900 r/min、内水相与油相体积比为1∶10,外水相聚乙烯醇124浓度为5%;按此工艺制备的微球粒径跨度小、分布均匀,包封率为81.35%,载药量在10.92%,微球得率在80.26%,微球的平均粒径分布范围在75~80μm之间;载药微球在磷酸盐缓冲液中0.5 h内的累积释药量为17.5%,第15天累积释药率达到98.6%。结论该微球制备工艺成熟,包封率高,符合我国药典对缓释制剂的指导原则要求。  相似文献   

7.
The aim of this study was to prepare ondansetron-loaded biodegradable microspheres as a nasal delivery system. Microspheres were prepared with emulsification/spray-drying technique using poly(d,l-lactide) (PLA) and two different types of poly(d,l-lactide-co-glycolide) (PLGA). The effect of the type of organic solvent (dichloromethane (DCM) or a mixture of DCM and ethyl acetate) on the microsphere characteristics was also examined. The prepared microspheres were evaluated with respect to the morphological properties, particle size, zeta potential, drug loading efficiency, and in vitro drug release. The mean particle size (d50) of microsphere formulations was ranged from 11.67–25.54 μm, indicating suitable particle size for nasal administration. All microspheres had low drug loading efficiency in the range of 12.28–21.04%. The results indicated that particle size of microspheres were affected by both type of polymer and organic solvent, however drug loading efficiency of microspheres were affected by only the type of organic solvent used. All microspheres were negatively charged due to the polymers (PLA or PLGA) used. A prolonged in vitro drug release profile was observed for 96?h. Based on in vitro data, the selected microsphere formulation has been applied via nasal route to rats in vivo. Following nasal administration of ondansetron-loaded microsphere to rats, ondansetron plasma levels were within a range of 30–48?ng/mL during 96?h, indicating a sustained drug delivery pattern and relatively a constant plasma drug concentration level. The results suggested that biodegradable microspheres prepared with emulsification/spray-drying technique could be considered to deliver ondansetron via nasal route to obtain a prolonged release.  相似文献   

8.
A modified w/o/w emulsion solvent evaporation technique was adopted to prepare human Chorionic Gonadotropin (hCG)-loaded polylactide (PLA) or poly(lactide-co-glycolide) (PLGA) microspheres. The effects of preparative parameters, such as stirring rate, polymer MW and concentration, and the composition of both the inner aqueous phase and oil phase etc., on hCG entrapment efficiency and microsphere characteristics were investigated. It was found that by adding 20% glycerol into the inner aqueous phase and 40% acetone into the oil phase, smooth microspheres approximately 1 microm in diameter could be produced with high hCG entrapment efficiency (>90%). In vitro release test showed a burst release of hCG from PLGA (75:25) microspheres, followed by sustained release of 55% hCG over 2 months. The initial hCG burst from PLGA microspheres increased with the glycerol concentration in the inner aqueous phase, but decreased to a low value (ca. 20%) with the addition of acetone into the oil phase, which could be attributed to the associated changes in surface morphology of the microspheres. In vivo experiments demonstrated that a single shot of hCG-loaded PLGA microspheres could produce a comparable antibody response with the inoculation of free hCG four times.  相似文献   

9.
亮丙瑞林缓释微球的研究   总被引:7,自引:0,他引:7  
目的 :制备收率及包封率高、可持续释药 3mo的亮丙瑞林微球。方法 :以生物可降解聚合物聚乳酸 (PLA)为载体 ,采用W /O/W复乳 液中干燥法制备缓释亮丙瑞林微球 ,以包封率及收率为指标 ,用正交设计对微球处方工艺进行优化 ,并考察微球的体外释放及体内药效。结果 :经优化得到的亮丙瑞林微球收率及包封率分别为 6 8%和 6 5 %。在选择的释放条件下 ,至 10 5d时 ,累积释放 88%。给予成熟雄性大鼠 10 0 μg·kg- 1·d- 1单剂量皮下注射 ,12h内出现睾酮迅速升高 ,3d内降至 0 .1μg·L- 1以下 ,并维持低睾酮水平 10 5d。结论 :制备的亮丙瑞林微球能产生持续长时间的缓释作用  相似文献   

10.
To achieve sustained release of 3-ethyl-4-(4-methylisoxazol-5-yl)-5-(methylthio) thiophene-2-carboxamide (BFB0261), a new potent osteogenic compound for treating bone disorders, we prepared film formulations containing BFB0261 and the following newly synthesized biodegradable polymers by a solvent casting technique: poly(D,L-lactic acid) (PLA), poly(D,L-lactic acid-co-glycolic acid) (PLGA), poly(D,L-lactic acid)-block-poly(ethylene glycol) (PLA-PEG), and poly(D,L-lactic acid-co-trimethylene carbonate) (PLA-TMC) polymers or copolymers. Powder X-ray diffractometry (PXRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and tensile testing were performed to examine the physicochemical properties of these films. Almost all the films exhibited a smooth and homogeneous surface, as observed by SEM. In addition, PXRD and DTA revealed that BFB0261 existed in an amorphous state in the films. The in vitro release of BFB0261 from PLA100 (M(w): 251 kDa), PLAPEG9604H (PLA/PEG ratio: 96:4; M(w): 181 kDa), PLAPEG8515H (PLA/PEG ratio: 85:15; M(w): 51.5 kDa), or PLAPEG8020 (PLA/PEG ratio: 80:20; M(w): 33.7 kDa) films followed zero-order kinetics with slow release up to 12 weeks following incubation. Although release of BFB0261 from PLA-TMC films followed first-order kinetics, sustained release of BFB0261 for 12 weeks was still observed for PLATMC8416 (PLA/TMC ratio: 84:16; M(w): 170 kDa) films. Furthermore, when the BFB0261-loaded films constructed from various polymers were implanted subcutaneously on rat backs, the PLAPEG8515H and PLATMC8416 films were capable of achieving sustained release of BFB0261 at the administrated site for 12 weeks. Therefore, the present data indicate that films constructed from PLAPEG8515H or PLATMC8416 may be applicable to bone or tissue engineering.  相似文献   

11.
Poly(DL-lactic acid) (PLA) microspheres containing a neurotensin analogue [NA; H(CH3)-Arg-Lys-Pro-Trp-tert-Leu-Leu-OEt.3HCl] were prepared by a novel oil-in-water (o/w) solvent evaporation method, and the release behaviors were evaluated in vitro. About 20% of the loaded NA was released initially, and the subsequent release lasted for a month from microspheres prepared with PLA of molecular weight 2000 (PLA 2000). A smaller initial release from PLA 4000 and PLA 6000 microspheres was found, but a lag time of 2-3 weeks during which the drug was not released was observed with PLA 4000 and PLA 6000 microspheres. The addition of relatively hydrophilic monoglycerides decreased the lag time, and a fairly constant release of NA was achieved. The pharmacokinetic behavior of NA from PLA 2000 microspheres was studied in rats. The release of the drug after a subcutaneous injection exhibited pseudo-zero-order kinetics for 1 month. The initial release of the drug from the microspheres was reflected in a sharp increase of the plasma levels of the de-ester form of NA [H(CH3)-Arg-Lys-Pro-Trp-tert-Leu-Leu-OH], and the subsequent steady-state levels agreed well with the predicted levels obtained from analysis of constant-infusion kinetics.  相似文献   

12.
In the current study, poly lactic acid (PLA) modified hollow crosslinked poly(hydroxyethyl methacrylate) (PHEMA) microspheres have been prepared, in order to obtain a stimulus-responsive, biocompatible carrier with sustained drug release properties. The synthetical process consisted of the preparation of poly(methacrylic acid)@poly(hydroxyethyl methacrylate-co-N,N'-methylene bis(acrylamide)) microspheres by a two stage distillation-precipitation polymerization technique using 2,2'-azobisisobutyronitrile as initiator. Following core removal, a PLA coating of the microspheres was formed, after ring opening polymerization of DL-lactide, attributing the initiator's role to the active hydroxyl groups of PHEMA. The anticancer drug daunorubicin (DNR) was selected for the study of loading and release behavior of the coated microspheres. The loading capacity of the PLA modified microspheres was found to be four times higher than that of the parent ones (16% compared to 4%). This coated microspherical carrier exhibited a moderate pH responsive drug release behavior due to the pH dependent water uptake of PHEMA, and PLA hydrolysis. The in vitro cytotoxicity of both the parent and the DNR-loaded or empty modified hollow microspheres has been also examined on MCF-7 breast cancer cells. The results showed that although the empty microspheres were moderately cytotoxic, the DNR-loaded microspheres had more potent anti-tumor effect than the free drug. Therefore, the prepared coated microspheres are interesting drug delivery systems.  相似文献   

13.
Biodegradable, tetracosactide-loaded microparticles were prepared by means of (i) spray drying, (ii) w/o/w solvent evaporation method (WOW) and (iii) by the aerosol solvent extraction system (ASES) using poly(l-lactic acid) (l-PLA) and poly(dl-lactic-co-glycolic acid) (dl-PLGA) of varying monomer composition or molecular weight. In the absence of the polymer the peptide did not degrade or aggregate irreversibly when in contact with methanol and methylene chloride or under the conditions used in the first step of WOW, as proven by HPLC, electrospray-mass spectrometry (MS) and circular dichroism (CD). During the extraction process, used to isolate the peptide from the microparticles, tetracosactide was partially oxidised. The highest stability of the peptide during microencapsulation was guaranteed with high molecular weight l-PLA, when using WOW or ASES, and with very low molecular weight PLGA, in the case of spray drying and WOW. The burst release of the microparticles, during in vitro release testing, depended on the preparation method as well as on the nature of the polymer and increased in the order ASES<spray drying<WOW and with increasing hydrophilicity of the polymer. Exceptionally, in the case of very low molecular weight PLGA, to which tetracosactide showed a very strong affinity during the in vitro adsorption study, no burst effect was observed. In addition, these microparticles released the peptide continuously, whereas for the others, composed of high molecular weight PLA and PLGA, the burst release was followed by a lag phase. During in vitro release peptide degradation increased with increasing polymer hydrophilicity but could be reduced by increasing drug loading. In polymer-free control solutions tetracosactide degradation was always slower than in the presence of microparticles. Oxidation and hydrolysis were found to be the major degradation pathways.  相似文献   

14.
The aim of this study was to prepare ondansetron-loaded biodegradable microspheres as a nasal delivery system. Microspheres were prepared with emulsification/spray-drying technique using poly(d,l-lactide) (PLA) and two different types of poly(d,l-lactide-co-glycolide) (PLGA). The effect of the type of organic solvent (dichloromethane (DCM) or a mixture of DCM and ethyl acetate) on the microsphere characteristics was also examined. The prepared microspheres were evaluated with respect to the morphological properties, particle size, zeta potential, drug loading efficiency, and in vitro drug release. The mean particle size (d(50)) of microsphere formulations was ranged from 11.67-25.54 μm, indicating suitable particle size for nasal administration. All microspheres had low drug loading efficiency in the range of 12.28-21.04%. The results indicated that particle size of microspheres were affected by both type of polymer and organic solvent, however drug loading efficiency of microspheres were affected by only the type of organic solvent used. All microspheres were negatively charged due to the polymers (PLA or PLGA) used. A prolonged in vitro drug release profile was observed for 96?h. Based on in vitro data, the selected microsphere formulation has been applied via nasal route to rats in vivo. Following nasal administration of ondansetron-loaded microsphere to rats, ondansetron plasma levels were within a range of 30-48?ng/mL during 96?h, indicating a sustained drug delivery pattern and relatively a constant plasma drug concentration level. The results suggested that biodegradable microspheres prepared with emulsification/spray-drying technique could be considered to deliver ondansetron via nasal route to obtain a prolonged release.  相似文献   

15.
Three low-molecular weight polyesters, poly(L-lactic acid) (PLA), copoly(lactic acid/glycolic acid) (PLGA) and poly(delta-valerolactone) (PV), were used to prepare water-soluble sodium diclofenac-loaded microspheres by using the oil-in-oil (o/o) emulsification-solvent evaporation method. Their micromeritic and physicochemical properties, and degradation and dissolution behaviours were determined in vitro. The results indicate that high encapsulation efficiency and better monodispersity might be achieved by the o/o emulsification-solvent evaporation method, depending on the amount of drug loading used. The slower evaporation of organic solvent from the system during microencapsulation seemed to modify the crystallinity of drug and polyester in the microspheres, determined by powder x-ray diffractometry and differential scanning calorimetry. The in vitro degradation rate of all the microspheres in pH7.4 phosphate buffer solution showed first-order kinetics and ranked in the order of PLGA > PLA > PV microspheres. Furthermore, the first-order release rate was also found in all the microspheres after an initial drug burst and ranked in the order of PLGA> PLA > PV microspheres, too. The relationship between degradation and dissolution behaviours of these microspheres is discussed.  相似文献   

16.
Biodegradable carriers containing gentamicin for local treatment of bone infection were developed. This paper describes the preparation and in vitro evaluation of these biodegradable implants. Poly-l-lactic acid (PLA) and polyl-lactic acid/polyethylene glycol (PLA/PEG) disk implants containing gentamicin sulphate were obtained by compression of microspheres prepared by a double emulsion process. The mean particle size distribution of the microspheres, based on volume, ranged from 95-270 µm. The gentamicin sulphate loading of the microspheres, after a methylene chloride-water extraction procedure, exceeded 90% of the theoretical value. In vitro dissolution studies on the microspheres and implants with drug loadings 10-40% w/w indicated that the rate of drug release from both PLA and PLA/PEG implants increased, with an increase in drug loading. The release of gentamicin from microspheres was dependent on the properties of PLA and/or PLA/PEG. The PLA/PEG copolymer was more hydrophilic than the PLA homopolymer, and with a smaller pH change in the microenvironment with polymer being degraded. In comparison, the PLA/PEG implant released antibiotic faster and had a larger inhibitory zone based on the Bauer-Kirby experiments used to test the inhibitory activity of antimicrobial devices. Experimental results showed that the biodegradable PLA/PEG gentamicin delivery system had a potential for prophylaxis of post-operative infection.  相似文献   

17.
The purpose of this research was to investigate the potential of surface modified Poly (l-lactic acid) (PLA) microspheres as a carrier for site-specific delivery of anti-inflammatory drug, ketoprofen, for the treatment of rheumatoid arthritis. Microspheres were prepared by solvent evaporation method using 20% w/w PLA in methylene chloride and 100 mL of a 2.5% poly vinyl alcohol (PVA) solution. Formulations were optimized for several processing parameters like drug to polymer ratio, stirring rate and volume of preparation medium etc. The surface of PLA microspheres was modified with gelatin to impart fibronectin recognition. The microspheres were characterized by surface morphology, size distribution, encapsulation efficiency, and by in vitro drug release studies. The prepared microspheres were light yellow, discrete, and spherical. Formulation with optimum drug to polymer ratio exhibited smallest vesicle size (43.02), high drug encapsulation efficiency (81.11) and better process yield (83.45). The release of drug was extended up to 24 h with Higuchi pattern of drug release. The in vivo results showed that the gelatin modified formulation reduced paw edema at greater extent than pure drug and PLA microspheres and it could be a promising carrier system for controlled and site-specific delivery of ketoprofen with possible clinical applications.  相似文献   

18.
Purpose. The acidic microclimate in poly(D, L-lactide-co-glycolide) 50/50 microspheres has been previously demonstrated by our group as the primary instability source of encapsulated bovine serum albumin (BSA). The objectives of this study were to stabilize the encapsulated model protein, BSA, and to achieve continuous protein release by using a blend of: slowly degrading poly(D, L-lactide) (PLA), to reduce the production of acidic species during BSA release; and pore-forming poly(ethylene glycol) (PEG), to increase diffusion of BSA and polymer degradation products out of the polymer. Methods. Microspheres were formulated from blends of PLA (Mw 145,000) and PEG (Mw 10,000 or 35,000) by using an anhydrous oil-in-oil emulsion and solvent extraction (O/O) method. The polymer blend composition and phase miscibility were examined by FT-IR and DSC, respectively. Microsphere surface morphology, water uptake, and BSA release kinetics were also investigated. The stability of BSA encapsulated in microspheres was examined by losses in protein solubility, SDS-PAGE, IEF, CD, and fluorescence spectroscopy. Results. PEG was successfully incorporated in PLA microspheres and shown to possess partial miscibility with PLA. A protein loading level of 5% (w/w) was attained in PLA/PEG microspheres with a mean diameter of approximately 100 m. When PEG content was less than 20% in the blend, incomplete release of BSA was observed with the formation of insoluble, and primarily non-covalent aggregates. When 20%-30% PEG was incorporated in the blend formulation, in vitro continuous protein release over 29 days was exhibited. Unreleased BSA in these formulations was water-soluble and structurally intact. Conclusions. Stabilization and controlled relaease of BSA from PLA/PEG microspheres was achieved due to low acid and high water content in the blend formulation.  相似文献   

19.
In this paper, ibuprofen was encapsulated into microspheres by oil-in-water (o/w) emulsion solvent evaporation method. Biodegradable polymers with certain compositions and characteristics such as polylactide (PLA), poly(?-caprolactone) (PCL) and their block copolymer were used to prepare the microspheres. The results indicate that, under the same processing conditions, the drug entrapment efficiency was similar (~80%) for microspheres prepared with PLA and P(LA-b-CL) (78.7/21.3 by mole), but it was only 25.4% for PCL microspheres. The in vitro drug release rate decreased in the order of PCL, P(LA-b-CL) (78.7/21.3 by mole) and PLA microspheres. PCL microspheres showed more serious burst release during the first day (almost 80%) than P(LA-b-CL) (50%) and PLA microspheres (18%). The complete ibuprofen release duration from the last two kinds of microspheres exceeded 1 month. Characterization of the microspheres by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized optical microscope (POM) revealed that ibuprofen was amorphous in PCL microspheres and partially crystalline in P(LA-b-CL) and PLA microspheres. The different release behaviour of ibuprofen from the three kinds of microspheres could be attributed to the different crystallinity of the studied polymers and drug dispersion state in polymer matrices. All the above results suggest that the copolymer with a certain ratio of lactide to ?-caprolactone could have potential applications for long-term ibuprofen release.  相似文献   

20.
A novel method for investigating drug release in a dynamic manner from nanoparticles including, but not limited to, biodegradable poly(lactic acid) (PLA) is reported. The PLA nanoparticles were prepared by the nanoprecipitation method. Two poorly soluble drugs, beclomethasone dipropionate (BDP) and indomethacin, were encapsulated into PLA nanoparticles, and their dissolution from the nanoparticles were followed in a dynamic way. The on-line method comprised a short column (vessel) packed with the PLA nanoparticles, on-line connected to an analytical liquid chromatographic column via a multiport switching valve equipped with two loops. The system allowed monitoring of the drug release profiles in real time, and the conditions for the drug release could be precisely controlled and easily changed. The effects of solvent composition and temperature on the rate of dissolution of the drugs from the PLA nanoparticles were investigated. The system proved to be linear for the drugs tested over the concentration range 10–3000 ng (n = 6, R2 = 0.999 and 0.997 for indomethacin and beclomethasone, respectively) and repeatable (RSD of peak areas <0.5%). The recoveries of the dissolution study were quantitative (120 and 103% for indomethacin and beclomethasone, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号