首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome integrity is monitored by a checkpoint that delays mitosis in response to DNA damage. This checkpoint is enforced by Chk1, a protein kinase that inhibits the mitotic inducer Cdc25. In fission yeast, Chk1 is regulated by a group of proteins that includes Rad3, a protein kinase related to human ATM and ATR. These kinases phosphorylate serine or threonine followed by glutamine (SQ/TQ). Fission yeast and human Chk1 proteins share two conserved SQ motifs at serine-345 and serine-367. Serine-345 of human Chk1 is phosphorylated in response to DNA damage. Here we report that Rad3 and ATM phosphorylate serine-345 of fission yeast Chk1. Mutation of serine-345 (chk1-S345A) abrogates Rad3-dependent phosphorylation of Chk1 in vivo. The chk1-S345A cells are sensitive to DNA damage and are checkpoint defective. In contrast, mutations of serine-367 and other SQ/TQ sites do not substantially impair the checkpoint or cause damage sensitivity. These findings attest to the importance of serine-345 phosphorylation for Chk1 function and strengthen evidence that transduction of the DNA damage checkpoint signal requires direct phosphorylation of Chk1 by Rad3.  相似文献   

2.
ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.  相似文献   

3.
AIM: To investigate whether hepatitis B virus (HBV) infection activates DNA damage response and DNA repair cofactors inhibit HBV infection and replication. METHODS: Human hepatocyte cell line HL7702 was studied. Immunoblotting was performed to test the expression of ataxia telangiectasia-mutated (ATM)- Rad3-related protein (ATR), p21 and the level of phosphorylation of Chkl, p53, H2AX, ATM in HBV-infected or non-infected-cells. Special short RNAi oligos was transfected to induce transient ATR knockdown in HL7702. ATR-ATN chemical inhibitors caffeine (CF) and theophylline (TP), or Chkl inhibitor 7-hydroxystaurosporine (UCN01) was studied to determine whether they suppress cellular DNA damage response and NG132 inhibits proteasome. RESULTS: The ATR checkpoint pathway, responding to single-strand breaks in DNA, was activated in response to HBV infection. ATR knockdown cells decreased the HBV DNA yields, implying that HBV infection and replication could activate and exploit the activated DNA damage response. CF/TP or UCN01 reduced the HBV DNA yield by 70% and 80%, respectively. HBV abrogated the ATR-dependent DNA damage signaling pathway by degrading p21, and introduction of the p21 protein before HBV infection reduced the HBV DNA yield. Consistent with this result, p21 accumulation after NG132 treatment also sharply decreased the HBV DNA yield. CONCLUSION: HBV infection can be treated with therapeutic approaches targeting host cell proteins by inhibiting a cellular gene required for HBV replication or by restoring a response abrogated by HBV, thus providing a potential approach to the prevention and treatment of HBV infection.  相似文献   

4.
ATR [ataxia-telangiectasia-mutated (ATM)- and Rad3-related] is a protein kinase required for both DNA damage-induced cell cycle checkpoint responses and the DNA replication checkpoint that prevents mitosis before the completion of DNA synthesis. Although ATM and ATR kinases share many substrates, the different phenotypes of ATM- and ATR-deficient mice indicate that these kinases are not functionally redundant. Here we demonstrate that ATR but not ATM phosphorylates the human Rad17 (hRad17) checkpoint protein on Ser(635) and Ser(645) in vitro. In undamaged synchronized human cells, these two sites were phosphorylated in late G(1), S, and G(2)/M, but not in early-mid G(1). Treatment of cells with genotoxic stress induced phosphorylation of hRad17 in cells in early-mid G(1). Expression of kinase-inactive ATR resulted in reduced phosphorylation of these residues, but these same serine residues were phosphorylated in ionizing radiation (IR)-treated ATM-deficient human cell lines. IR-induced phosphorylation of hRad17 was also observed in ATM-deficient tissues, but induction of Ser(645) was not optimal. Expression of a hRad17 mutant, with both serine residues changed to alanine, abolished IR-induced activation of the G(1)/S checkpoint in MCF-7 cells. These results suggest ATR and hRad17 are essential components of a DNA damage response pathway in mammalian cells.  相似文献   

5.
In higher eukaryotes, the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) checkpoint kinases play distinct, but partially overlapping, roles in DNA damage response. Yet their interrelated function has not been defined for telomere maintenance. We discover in Drosophila that the two proteins control partially redundant pathways for telomere protection: the loss of ATM leads to the fusion of some telomeres, whereas the loss of both ATM and ATR renders all telomeres susceptible to fusion. The ATM-controlled pathway includes the Mre11 and Nijmegen breakage syndrome complex but not the Chk2 kinase, whereas the ATR-regulated pathway includes its partner ATR-interacting protein but not the Chk1 kinase. This finding suggests that ATM and ATR regulate different molecular events at the telomeres compared with the sites of DNA damage. This compensatory relationship between ATM and ATR is remarkably similar to that observed in yeast despite the fact that the biochemistry of telomere elongation is completely different in the two model systems. We provide evidence suggesting that both the loading of telomere capping proteins and normal telomeric silencing requires ATM and ATR in Drosophila and propose that ATM and ATR protect telomere integrity by safeguarding chromatin architecture that favors the loading of telomere-elongating, capping, and silencing proteins.  相似文献   

6.
Claspin is a homolog of Mrc1, a checkpoint protein required for the DNA replication checkpoint in yeast. In Xenopus, phosphorylated Claspin binds to xChk1 and regulates xChk1 activation in response to replication stress. In this study, we have shown that the human homolog of Claspin is required for resistance to multiple forms of genotoxic stress including UV, IR, and hydroxyurea. Phosphorylation of Claspin was found to depend on the ataxia telangiectasia mutated-Rad3 related (ATR) pathway. DNA damage induces the formation of a complex between Claspin and BRCA1, a second regulator of Chk1 activation. Claspin was found to control BRCA1 phosphorylation on serine 1524, a site whose phosphorylation is controlled by the ATR pathway. These results are consistent with a model in which ATR regulates Claspin phosphorylation in response to DNA damage and replication stress resulting in recruitment and phosphorylation of BRCA1. BRCA1 and Claspin then function to activate the tumor suppressor Chk1. Unexpectedly, we found that Claspin has a second, positive role in control of the cell cycle as Claspin overexpression increased cell proliferation. These results suggest that Claspin has properties of both a tumor suppressor and an oncogene.  相似文献   

7.
Profiling of UV-induced ATM/ATR signaling pathways   总被引:3,自引:0,他引:3  
To ensure survival in the face of genomic insult, cells have evolved complex mechanisms to respond to DNA damage, termed the DNA damage checkpoint. The serine/threonine kinases ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) activate checkpoint signaling by phosphorylating substrate proteins at SQ/TQ motifs. Although some ATM/ATR substrates (Chk1, p53) have been identified, the lack of a more complete list of substrates limits current understanding of checkpoint pathways. Here, we use immunoaffinity phosphopeptide isolation coupled with mass spectrometry to identify 570 sites phosphorylated in UV-damaged cells, 498 of which are previously undescribed. Semiquantitative analysis yielded 24 known and 192 previously uncharacterized sites differentially phosphorylated upon UV damage, some of which were confirmed by SILAC, Western blotting, and immunoprecipitation/Western blotting. ATR-specific phosphorylation was investigated by using a Seckel syndrome (ATR mutant) cell line. Together, these results provide a rich resource for further deciphering ATM/ATR signaling and the pathways mediating the DNA damage response.  相似文献   

8.
Chk1 is widely known as a DNA damage checkpoint signaling protein. Unlike many other checkpoint proteins, Chk1 also plays an essential but poorly defined role in the proliferation of unperturbed cells. Activation of Chk1 after DNA damage is known to require the phosphorylation of several C-terminal residues, including the highly conserved S317 and S345 sites. To evaluate the respective roles of these individual sites and assess their contribution to the functions of Chk1, we used a gene targeting approach to introduce point mutations into the endogenous human CHK1 locus. We report that the essential and nonessential functions of Chk1 are regulated through distinct phosphorylation events and can be genetically uncoupled. The DNA damage response function of Chk1 was nonessential. Targeted mutation of S317 abrogated G2/M checkpoint activation, prevented subsequent phosphorylation of Chk1, impaired efficient progression of DNA replication forks, and increased fork stalling, but did not impact viability. Thus, the nonessential DNA damage response function of Chk1 could be unambiguously linked to its role in DNA replication control. In contrast, a CHK1 allele with mutated S345 did not support viability, indicating an essential role for this residue during the unperturbed cell cycle. A distinct, physiologic mode of S345 phosphorylation, initiated at the centrosome during unperturbed mitosis was independent of codon 317 status and mechanistically distinct from the ordered and sequential phosphorylation of serine residues on Chk1 induced by DNA damage. Our findings suggest an essential regulatory role for Chk1 phosphorylation during mitotic progression.  相似文献   

9.
The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway.  相似文献   

10.
Inhibition of DNA replication and physical DNA damage induce checkpoint responses that arrest cell cycle progression at two different stages. In Saccharomyces cerevisiae, the execution of both checkpoint responses requires the Mec1 and Rad53 proteins. This observation led to the suggestion that these checkpoint responses are mediated through a common signal transduction pathway. However, because the checkpoint-induced arrests occur at different cell cycle stages, the downstream effectors mediating these arrests are likely to be distinct. We have previously shown that the S. cerevisiae protein Pds1p is an anaphase inhibitor and is essential for cell cycle arrest in mitosis in the presence DNA damage. Herein we show that DNA damage, but not inhibition of DNA replication, induces the phosphorylation of Pds1p. Analyses of Pds1p phosphorylation in different checkpoint mutants reveal that in the presence of DNA damage, Pds1p is phosphorylated in a Mec1p- and Rad9p-dependent but Rad53p-independent manner. Our data place Pds1p and Rad53p on parallel branches of the DNA damage checkpoint pathway. We suggest that Pds1p is a downstream target of the DNA damage checkpoint pathway and that it is involved in implementing the DNA damage checkpoint arrest specifically in mitosis.  相似文献   

11.
Multiple human epidemiologic studies link caffeinated (but not decaffeinated) beverage intake with significant decreases in several types of cancer, including highly prevalent UV-associated skin carcinomas. The mechanism by which caffeine protects against skin cancer is unknown. Ataxia telangiectasia and Rad3-related (ATR) is a replication checkpoint kinase activated by DNA stresses and is one of several targets of caffeine. Suppression of ATR, or its downstream target checkpoint kinase 1 (Chk1), selectively sensitizes DNA-damaged and malignant cells to apoptosis. Agents that target this pathway are currently in clinical trials. Conversely, inhibition of other DNA damage response pathways, such as ataxia telangiectasia mutated (ATM) and BRCA1, promotes cancer. To determine the effect of replication checkpoint inhibition on carcinogenesis, we generated transgenic mice with diminished ATR function in skin and crossed them into a UV-sensitive background, Xpc(-/-). Unlike caffeine, this genetic approach was selective and had no effect on ATM activation. These transgenic mice were viable and showed no histological abnormalities in skin. Primary keratinocytes from these mice had diminished UV-induced Chk1 phosphorylation and twofold augmentation of apoptosis after UV exposure (P = 0.006). With chronic UV treatment, transgenic mice remained tumor-free for significantly longer (P = 0.003) and had 69% fewer tumors at the end of observation of the full cohort (P = 0.019), compared with littermate controls with the same genetic background. This study suggests that inhibition of replication checkpoint function can suppress skin carcinogenesis and supports ATR inhibition as the relevant mechanism for the protective effect of caffeinated beverage intake in human epidemiologic studies.  相似文献   

12.
The minichromosome maintenance (MCM) 2-7 helicase complex functions to initiate and elongate replication forks. Cell cycle checkpoint signaling pathways regulate DNA replication to maintain genomic stability. We describe four lines of evidence that ATM/ATR-dependent (ataxia-telangiectasia-mutated/ATM- and Rad3-related) checkpoint pathways are directly linked to three members of the MCM complex. First, ATM phosphorylates MCM3 on S535 in response to ionizing radiation. Second, ATR phosphorylates MCM2 on S108 in response to multiple forms of DNA damage and stalling of replication forks. Third, ATR-interacting protein (ATRIP)-ATR interacts with MCM7. Fourth, reducing the amount of MCM7 in cells disrupts checkpoint signaling and causes an intra-S-phase checkpoint defect. Thus, the MCM complex is a platform for multiple DNA damage-dependent regulatory signals that control DNA replication.  相似文献   

13.
Checkpoint kinase 1 (Chk1) is a key regulator of checkpoint signaling in both the unperturbed cell cycle and DNA damage response. Under these conditions, Chk1 becomes active to prevent premature CDK1 activation and mitotic entry until DNA is properly replicated or repaired. It is unclear how Chk1 activity is controlled in the unperturbed cell cycle. During DNA damage, Chk1 is activated by ataxia telangiectasia and Rad3 related (ATR)-mediated phosphorylation; however, it is not entirely clear how this phosphorylation results in Chk1 activation. Here we report an N-terminally truncated alternative splice variant of Chk1, Chk1-S. Importantly, we show that Chk1-S is an endogenous repressor and regulator of Chk1. In the unperturbed cell cycle, Chk1-S interacts with and antagonizes Chk1 to promote the S-to-G2/M phase transition. During DNA damage, Chk1 is phosphorylated, which disrupts the Chk1-Chk1-S interaction, resulting in free, active Chk1 to arrest the cell cycle and facilitate DNA repair. Higher levels of Chk1-S are expressed, along with Chk1, in fetal and cancer tissues than in normal tissues. However, forced overexpression of Chk1-S in cultured cells and tumor xenografts induces premature mitotic entry, mitotic catastrophe, and reduction of tumor growth. The identification of Chk1-S as a unique splice variant and key regulator of Chk1 provides insights into cell cycle regulation and DNA damage response.  相似文献   

14.
Previous studies demonstrated that ataxia telangiectasia mutated- and Rad3-related (ATR) kinase and its downstream target checkpoint kinase 1 (Chk1) facilitate survival of cells treated with nucleoside analogs and other replication inhibitors. Recent results also demonstrated that Chk1 is depleted when cells are treated with heat shock protein 90 (Hsp90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). The present study examined the effects of 17-AAG and its major metabolite, 17-aminogeldanamycin (17-AG), on Chk1 levels and cellular responses to cytarabine in human acute myelogenous leukemia (AML) cell lines and clinical isolates. Cytarabine, at concentrations as low as 30 nM, caused activating phosphorylation of Chk1, loss of the phosphatase Cdc25A, and S-phase slowing. Conversely, treatment with 100 to 300 nM 17-AAG for 24 hours caused Chk1 depletion that was accompanied by diminished cytarabine-induced S-phase accumulation, decreased Cdc25A degradation, and enhanced cytotoxicity as measured by inhibition of colony formation and induction of apoptosis. Additional studies demonstrated that small inhibitory RNA (siRNA) depletion of Chk1 also sensitized cells to cytarabine, whereas disruption of the phosphatidylinositol 3-kinase (PI3k) signaling pathway, which is also blocked by Hsp90 inhibition, did not. Collectively, these results suggest that treatment with 17-AAG might represent a means of reversing checkpoint-mediated cytarabine resistance in AML.  相似文献   

15.
Checkpoint Rad proteins function early in the DNA damage checkpoint signaling cascade to arrest cell cycle progression in response to DNA damage. This checkpoint ensures the transmission of an intact genetic complement to daughter cells. To learn about the damage sensor function of the human checkpoint Rad proteins, we purified a heteropentameric complex composed of hRad17-RFCp36-RFCp37-RFCp38-RFCp40 (hRad17-RFC) and a heterotrimeric complex composed of hRad9-hHus1-hRad1 (checkpoint 9-1-1 complex). hRad17-RFC binds to DNA, with a preference for primed DNA and possesses weak ATPase activity that is stimulated by primed DNA and single-stranded DNA. hRad17-RFC forms a complex with the 9-1-1 heterotrimer reminiscent of the replication factor C/proliferating cell nuclear antigen clamp loader/sliding clamp complex of the replication machinery. These findings constitute biochemical support for models regarding the roles of checkpoint Rads as damage sensors in the DNA damage checkpoint response of human cells.  相似文献   

16.
The checkpoint kinases Chk1 and ATR are broadly known for their role in the response to the accumulation of damaged DNA. Because Chk1 activation requires its phosphorylation by ATR, it is expected that ATR or Chk1 down-regulation should cause similar alterations in the signals triggered by DNA lesions. Intriguingly, we found that Chk1, but not ATR, promotes the progression of replication forks after UV irradiation. Strikingly, this role of Chk1 is independent of its kinase-domain and of its partnership with Claspin. Instead, we demonstrate that the ability of Chk1 to promote replication fork progression on damaged DNA templates relies on its recently identified proliferating cell nuclear antigen-interacting motif, which is required for its release from chromatin after DNA damage. Also supporting the importance of Chk1 release, a histone H2B-Chk1 chimera, which is permanently immobilized in chromatin, is unable to promote the replication of damaged DNA. Moreover, inefficient chromatin dissociation of Chk1 impairs the efficient recruitment of the specialized DNA polymerase η (pol η) to replication-associated foci after UV. Given the critical role of pol η during translesion DNA synthesis (TLS), these findings unveil an unforeseen facet of the regulation by Chk1 of DNA replication. This kinase-independent role of Chk1 is exclusively associated to the maintenance of active replication forks after UV irradiation in a manner in which Chk1 release prompts TLS to avoid replication stalling.  相似文献   

17.
AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection. METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chkl phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells. RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chkl, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h aEer HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increasedapoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection. CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.  相似文献   

18.
Understanding the role of DNA damage checkpoint kinases in the cellular response to genotoxic stress requires the knowledge of their substrates. Here, we report the use of quantitative phosphoproteomics to identify in vivo kinase substrates of the yeast DNA damage checkpoint kinases Mec1, Tel1, and Rad53 (orthologs of human ATR, ATM, and CHK2, respectively). By analyzing 2,689 phosphorylation sites in wild-type and various kinase-null cells, 62 phosphorylation sites from 55 proteins were found to be controlled by the DNA damage checkpoint. Examination of the dependency of each phosphorylation on Mec1 and Tel1 or Rad53, combined with sequence and biochemical analysis, revealed that many of the identified targets are likely direct substrates of these kinases. In addition to several known targets, 50 previously undescribed targets of the DNA damage checkpoint were identified, suggesting that a wide range of cellular processes is likely regulated by Mec1, Tel1, and Rad53.  相似文献   

19.
The human Rad17-Rfc2-5 and Rad9-Rad1-Hus1 complexes play crucial roles in the activation of the ATR-mediated DNA damage and DNA replication stress response pathways. In response to DNA damage, Rad9 is recruited to chromatin in a Rad17-dependent manner in human cells. However, the DNA structures recognized by the Rad17-Rfc2-5 complex during the damage response have not been defined. Here, we show that replication protein A (RPA) stimulates the binding of the Rad17-Rfc2-5 complex to single-stranded DNA (ssDNA), primed ssDNA, and a gapped DNA structure. Furthermore, RPA facilitates the recruitment of the Rad9-Rad1-Hus1 complex by the Rad17-Rfc2-5 complex to primed and gapped DNA structures in vitro. These findings suggest that RPA-coated ssDNA is an important part of the structures recognized by the Rad17-Rfc2-5 complex. Unlike replication factor C (RFC), which uses the 3' primer/template junction to recruit proliferating cell nuclear antigen (PCNA), the Rad17-Rfc2-5 complex can use both the 5' and the 3' primer/template junctions to recruit the Rad9-Rad1-Hus1 complex, and it shows a preference for gapped DNA structures. These results explain how the Rad17-Rfc2-5 complex senses DNA damage and DNA replication stress to initiate checkpoint signaling.  相似文献   

20.
The master checkpoint kinase ATR (ATM and Rad3-related) and its partner ATRIP (ATR-interacting protein) exist as a complex and function together in the DNA damage response. Unexpectedly, we found that the stability of the ATR–ATRIP complex is regulated by an unknown kinase independently of DNA damage. In search for this regulator of ATR–ATRIP, we found that a single member of the NIMA (never in mitosis A)-related kinase family, Nek1, is critical for initiating the ATR response. Upon DNA damage, cells lacking Nek1 failed to efficiently phosphorylate multiple ATR substrates and support ATR autophosphorylation at threnine 1989, one of the earliest events during the ATR response. The ability of Nek1 to promote ATR activation relies on the kinase activity of Nek1 and its interaction with ATR–ATRIP. Importantly, even in undamaged cells, Nek1 is required for maintaining the levels of ATRIP, the association between ATR and ATRIP, and the basal kinase activity of ATR. Thus, as an ATR-associated kinase, Nek1, enhances the stability and activity of ATR–ATRIP before DNA damage, priming ATR–ATRIP for a robust DNA damage response.The ability of cells to sense and signal DNA damage is crucial for genomic stability. In human cells, the ataxia telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) checkpoint kinases are central players in DNA damage signaling (1). In contrast to ATM, which primarily responds to double-stranded DNA breaks (DSBs), ATR is elicited by a broad spectrum of DNA damage and DNA replication stress (2, 3). ATR functions in a complex with its regulatory partner ATRIP (4). RPA-coated single-stranded DNA (RPA–ssDNA), a common intermediate of DNA replication and repair, plays a key role in recruiting and activating the ATR–ATRIP kinase complex (5). Once activated, ATR phosphorylates and activates its downstream effector kinase Chk1 (checkpoint kinase 1) with the help of a group of mediator proteins. Together, activated ATR and Chk1 phosphorylate a number of proteins involved in DNA replication, DNA repair, and cell-cycle transitions, thereby coordinating these cellular processes to suppress genomic instability.Although the ATR-Chk1 kinase cascade is clearly the backbone of the ATR signaling pathway, several other protein kinases, such as ATM (6, 7), CDKs (cyclin-dependent kinases) (810), PLK1 (polo-like kinase) (11-14), AKT (15, 16), and casein kinases (17, 18), have been implicated in tuning the strength and dynamics of ATR signaling in different contexts. The effects of these kinases on ATR signaling suggest that the ATR pathway is intertwined with other signaling pathways and cellular programs. In addition to the aforementioned kinases, the NIMA (never in mitosis A)-related kinases have recently emerged as a new class of checkpoint regulator (19).NIMA was originally discovered in Aspergillus nidulans as a protein kinase essential for mitosis (20). In human cells, 11 NIMA-related kinases have been identified, which were dubbed Nek1 to Nek11. The human Nek kinases have apparently adapted to a variety of functions (21). For example, Nek2 is critical for centrosome duplication, whereas Nek6, 7, and 9 are important regulators of the mitotic spindle and cytokinesis (19). Interestingly, several members of the Nek family have been linked to the ATR-mediated DNA damage response. Nek1, through unknown mechanisms, promotes Chk1 activation (22, 23) and repair of several types of DNA damage (24). Nek11, on the other hand, is a substrate of Chk1, and it promotes the G2/M checkpoint arrest by phosphorylating Cdc25A (cell division cycle 25A) and targeting Cdc25A for degradation (25). Nek6 may also be a substrate of Chk1 and contribute to the G2/M checkpoint arrest (26). Although these studies have suggested a functional link between some of the Nek kinases and the ATR checkpoint, how the Nek kinases as a family regulate the signaling events along the ATR pathway is still largely unknown.In this study, we unexpectedly found that the stability of ATR–ATRIP complex is regulated by an unknown kinase in the absence of DNA damage. In search for this regulator of ATR–ATRIP, we tested all Nek family members using a panel of siRNAs. We found that Nek1 is the only Nek kinase that functions upstream of Chk1. We showed that Nek1 not only associates with the ATR–ATRIP kinase complex physically, but also regulates multiple phosphorylation events along the ATR pathway. In particular, cells lacking Nek1 failed to undergo efficient ATR autophosphorylation at Thr-1989 (threnine 1989) after DNA damage, suggesting that Nek1 is required for the initial step of ATR response (27). Both the association of Nek1 with ATR–ATRIP and the kinase activity of Nek1 are required for efficient ATR signaling. Importantly, even in the absence of DNA damage, Nek1 is required for maintaining normal levels of ATRIP, the ATR–ATRIP interaction, and ATR basal kinase activity, suggesting that ATR–ATRIP needs to be primed by Nek1 to be fully activated in response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号