首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral reticular nucleus (LRN) resides in the rostral medulla and caudal pons, is implicated in cardiovascular regulation and cranial nerve reflexes, and gives rise to mossy fibers in the cerebellum. Retrograde tracing data revealed that medium-sized multipolar cells from the magnocellular part of the LRN project to the cochlear nucleus (CN). We sought to characterize the LRN projection to the CN using BDA injections. Anterogradely labeled terminals in the ipsilateral CN appeared as boutons and mossy fibers, and were examined with light and electron microscopy. The terminal field in the CN was restricted to the granule cell domain (GCD), specifically in the superficial layer along the anteroventral CN and in the granule cell lamina. Electron microscopy showed that the smallest LRN boutons formed 1-3 synapses, and as boutons increased in size, they formed correspondingly more synapses. The largest boutons were indistinguishable from the smallest mossy fibers, and the largest mossy fiber exhibited 15 synapses. Synapses were asymmetric with round vesicles and formed against thin dendritic profiles characterized by plentiful microtubules and the presence of fine filopodial extensions that penetrated the ending. These structural features of the postsynaptic target are characteristic of the terminal dendritic claw of granule cells. LRN projections are consistent with known organizational principles of non-auditory inputs to the GCD.  相似文献   

2.
The nucleus ambiguus is a brainstem structure which sends projections through the vagus nerve to the viscera, primarily heart, lung, and gut. The anatomical relationship between the nucleus ambiguus and other brain structures has not been elucidated nor has the cardiac region been identified physiologically in rats. We have attempted to clarify which areas of the nucleus ambiguus are cardioinhibitory and to determine other regions of the brain which send direct projections to this physiologically identified cardiac region. Stimulating electrodes were positioned stereotaxically in the medulla of anesthetized rats. Small currents were passed through the electrodes to locate regions in the ventrolateral medulla which slowed heart rate. In each rat, the area found was small (less than 200 μm in diameter), very specific, and located in the rostral portion of the nucleus ambiguus. Micro-quantities of horseradish peroxidase were then iontophoretically ejected into this brainstem area; 24–72 hours following the HRP injection, the rats were processed for HRP reaction product using the tetramethybenzidine method. The major brain area which sent projections to the rostral nucleus ambiguus was the ipsilateral medial subnucleus of the solitary tract. A few labeled cells were found in the ipsilateral ventrolateral subnucleus of the solitary tract, parabrachial complex, the paraventricular nucleus of the hypothalamus, and the contralateral nucleus ambiguus. Control injections in reticular areas surrounding the rostral nucleus ambiguus showed no label in the medial solitary nucleus.  相似文献   

3.
The projections from the cochlear nucleus to the lateral and medial superior olivary nuclei were studied in the cat by use of retrograde transport of horseradish peroxidase to demonstrate the connections. The medial superior olivary nucleus receives input only from the anterior and posterodorsal subdivisions of the anterior division of the anteroventral cochlear nucleus (AA and APD, respectively; Brawer, Morest, and Kane: J. Comp. Neurol. 155: 251-300, 1974). These two subdivisions are populated almost exclusively by spherical bushy cells. Like the medial superior olivary nucleus, the lateral superior olivary nucleus receives inputs from AA and APD. In addition, the lateral superior olivary nucleus receives projections from the posterior subdivision (AP) of the anterior division and also from the posterior division of the anteroventral cochlear nucleus. The projections to the medial superior olivary nucleus are bilateral, whereas the projections to the lateral superior olivary nucleus are almost entirely ipsilateral. One implication of the results is that the medial superior olivary nucleus receives inputs from only one cell type--the spherical bushy cell--but that, at the least, two cell types project to the lateral superior olivary nucleus. Both the olivary nuclei receive input from most, if not all, of the dorsoventral extent of the anteroventral cochlear nucleus, implying that both receive input from neurons arrayed across the entire frequency representation of the anteroventral cochlear nucleus. All of the projections appear to be organized topographically such that frequency representation is preserved.  相似文献   

4.
In anesthetized rabbits, electrophysiological experiments were conducted to determine if neurons of the lateral reticular nucleus that modified their activity during masticatory movements project directly into the trigeminal motor nucleus. Of the 125 neurons tested, 50 responded to stimulation of the trigeminal motor nucleus; of these, 22 were antidromically excited. Among this last population, 9 were antidromically driven also by cerebellar stimulation. In these neurons the antidromic response evoked from one structure collided with the response antidromically evoked from the other, thus indicating that both potentials are from the same neuron projecting to the trigeminal motor nucleus and the cerebellum. The remaining 28 neurons responding to stimulation of the trigeminal motor nucleus were orthodromically activated with a wider range of latencies. The possible significance of these findings in the organization of the rhythmic masticatory movements is briefly discussed.  相似文献   

5.
Neurons of the nucleus of the solitary tract (NTS) serve as interneurons in swallowing. We investigated the synaptology of the terminals of these neurons and whether they project directly to the esophageal motoneurons in the compact formation of the nucleus ambiguus (AmC). Following wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) injection into the NTS, many anterogradely labeled axodendritic terminals were found in the neuropil of the AmC. The majority of labeled axodendritic terminals (89%) contained round vesicles and made asymmetric synaptic contacts (Gray's type I), but a few (11%) contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II). More than half of the labeled terminals contacted intermediate dendrites (1-2 μm diameter). There were no retrogradely labeled medium-sized motoneurons, but there were many retrogradely labeled small neurons having anterogradely labeled axosomatic terminals. A combined retrograde and anterograde transport technique was developed to verify the direct projection from the NTS to the esophageal motoneurons. After the esophageal motoneurons were retrogradely labeled by cholera toxin subunit B conjugated HRP, the injection of WGA-HRP into the NTS permitted ultrastructural recognition of anterogradely labeled axosomatic terminals contacting directly labeled esophageal motoneurons. Serial sections showed that less than 20% of the axosomatic terminals were labeled in the esophageal motoneurons. They were mostly Gray's type I, but a few were Gray's type II. In the small neurons, more than 30% of axosomatic terminals were labeled, which were exclusively Gray's type I. These results indicate that NTS neurons project directly not only to the esophageal motoneurons, but also to the small neurons which have bidirectional connections with the NTS. J. Comp. Neurol. 381:18-30, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
During the pharyngeal phase of the swallowing reflex, the nucleus of the solitary tract (NTS) receives peripheral inputs from the pharynx by means of the glossopharyngeal ganglion and is the location of premotor neurons for the pharyngeal (PH) motoneurons. The semicompact formation of the nucleus ambiguus (AmS) is composed of small and medium-sized neurons that do not project to the pharynx, and large PH motoneurons. We investigated whether the neurons in the NTS projected directly to the PH motoneurons or to the other kinds of neurons in the AmS by using the electron microscope. When wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the NTS after cholera toxin subunit B-conjugated HRP (CT-HRP) injections into the pharyngeal muscles of male Sprague-Dawley rats, many nerve terminals anterogradely labeled with WGA-HRP were found to contact PH motoneurons retrogradely labeled with CT-HRP. Most of the labeled axodendritic terminals (63%) contained pleomorphic vesicles with symmetric synaptic contacts (Gray's type II), and the remaining ones contained round vesicles with asymmetric synaptic contacts (Gray's type I). About 14% of the axosomatic terminals on PH motoneuron in a sectional plane were anterogradely labeled, and about 70% of the labeled axosomatic terminals were Gray's type II. Observations of serial ultrathin sections revealed that both the small and the medium-sized neurons received only a few labeled axosomatic terminals that were exclusively Gray's type I. These results indicate that the NTS neurons may send mainly inhibitory as well as a few excitatory inputs directly to the PH motoneurons in the AmS. J. Comp. Neurol. 393:391–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Ma WL  Zhang WB  Feng G  Cai YL 《Brain research》2005,1038(2):132-140
The paratrigeminal nucleus (PTN) receives orofacial somatic and visceral afferent fibers and contains many calbindin-D28k neurons (CB-containing neurons) that project to nucleus of the solitary tract (NTS). In the present study, retrograde and transganglionic tracing methods combined with immunofluorescence histochemistry and confocal laser scanning microscopy were used. After Fluoro-gold (FG) injection into the unilateral NTS, 74.4% FG-labeled neurons of ipsilateral PTN were double-labeled with CB. Furthermore, 41.0% and 32.5% FG/CB double-labeled neurons co-existed with Fos induced by nociceptive stimulation of the lips and the upper alimentary tract, respectively. In the PTN unilateral to FG injection site, 26.6% CB-LI neurons were double-labeled with PAG, 61.5% and 79.0% CB/PAG double-labeled neurons were triple-labeled with FG and Fos, and 22.9% FG/CB double-labeled neurons were triple-labeled with PAG, 84.3% FG/PAG double-labeled neurons expressed Fos induced by the upper alimentary tract stimulation. In the intact animals, 62.8% CB-LI neurons and 88.3% PAG-LI neurons co-existed with GABA(B)R, respectively. In addition, some terminals from the inferior alveolar nerve (IAN) were closely apposed to CB/Fos double-labeled or CB single-labeled neurons. These results suggested that CB-containing neurons in the PTN receive the nociceptive information converge from the orofacial area and visceral organs, and comprising the glutamatergic excitatory transmission pathway from the PTN to the NTS. This pathway might be modulated by GABA via the GABA(B) receptor.  相似文献   

10.
11.
12.
We examined the subnuclear organization of projections to the parabrachial nucleus (PB) from the nucleus of the solitary tract (NTS), area postrema, and medullary reticular formation in the rat by using the anterograde and retrograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and anterograde tracing with Phaseolus vulgaris-leucoagglutinin. Different functional regions of the NTS/area postrema complex and medullary reticular formation were found to innervate largely nonoverlapping zones in the PB. The general visceral part of the NTS, including the medial, parvicellular, intermediate, and commissural NTS subnuclei and the core of the area postrema, projects to restricted terminal zones in the inner portion of the external lateral PB, the central and dorsal lateral PB subnuclei, and the "waist" area. The dorsomedial NTS subnucleus and the rim of the area postrema specifically innervate the outer portion of the external lateral PB subnucleus. In addition, the medial NTS innervates the caudal lateral part of the external medial PB subnucleus. The respiratory part of the NTS, comprising the ventrolateral, intermediate, and caudal commissural subnuclei, is reciprocally connected with the K?lliker-Fuse nucleus, and with the far lateral parts of the dorsal and central lateral PB subnuclei. There is also a patchy projection to the caudal lateral part of the external medial PB subnucleus from the ventrolateral NTS. The rostral, gustatory part of the NTS projects mainly to the caudal medial parts of the PB complex, including the "waist" area, as well as more rostrally to parts of the medial, external medial, ventral, and central lateral PB subnuclei. The connections of different portions of the medullary reticular formation with the PB complex reflect the same patterns of organization, but are reciprocal. The periambiguus region is reciprocally connected with the same PB subnuclei as the ventrolateral NTS; the rostral ventrolateral reticular nucleus with the same PB subnuclei as both the ventrolateral (respiratory) and medial (general visceral) NTS; and the parvicellular reticular area, adjacent to the rostral NTS, with parts of the central and ventral lateral and the medial PB subnuclei that also receive rostral (gustatory) NTS input. In addition, the rostral ventrolateral reticular nucleus and the parvicellular reticular formation have more extensive connections with parts of the rostral PB and the subjacent reticular formation that receive little if any NTS input. The PB contains a series of topographically complex terminal domains reflecting the functional organization of its afferent sources in the NTS and medullary reticular formation.  相似文献   

13.
The superficial reticular nucleus (SR) of ranid frogs is part of a lateral cell column extending from the isthmus to the rostral tegmentum. The caudal part of this nucleus receives input from lower brainstem auditory nuclei and projects bilaterally to the torus semicircularis. On the basis of its position, connections, and sensitivity to acoustic stimuli, the caudal SR appears to be homologous to all or part of the mammalian nuclei of the lateral lemniscus.  相似文献   

14.
The projections of aortic depressor (ADN) and carotid sinus (CSN) afferent fibers to the region of the nucleus of the solitary tract were studied in the cat with the anterograde transport of horseradish peroxidase (HRP) technique and by recording single unit activity during electrical stimulation of these nerves. In the first series of experiments, after application of crystalline HRP to the proximal cut end of either buffer nerve and a postoperative survival period of 24–120 h, brain stem sections were processed according to the tetramethyl benzidine method. ADN and CSN labeling were found bilaterally, with a predominant ipsilateral labeling, in the medial (Sm), lateral (Slt), commissural (Com) and dorsomedial aspect of the parvocellular solitary nuclei. Additional CSN labeling was found in the ventrolateral and intermediate (Int) solitary nuclei, in the reticular formation ventrolateral to the solitary complex and along the dorsal border of the dorsal motor nucleus of the vagus. In the second series of experiments these areas receiving primary afferent fibers were explored for single units responding to stimulation of the buffer nerves in chloralosed cats, paralyzed and artificially ventilated. Of 177 responsive units, 80 responded only to stimulation of the CSN, 44 only to the ADN and 53 to both nerves. Responsive units were found throughout the rostrocaudal extent of the solitary complex and areas adjacent to the solitary complex. However, most of the units were found in 3 regions: the Sm, Slt and adjacent areas. Units in the Slt and Com were found to respond to only one input, either the CSN or the ADN alone. On the other hand, units in the Int responded only to both buffer nerves and not selectively to one nerve. These results demonstrate that the CSN has a wider distribution in the solitary complex than the ADN and that second order neurons in the solitary complex receive inputs from either one or both buffer nerves, suggesting a degree of separation of central pathways carrying cardiovascular afferent information.  相似文献   

15.
The superficial reticular nucleus (SR) of ranid frogs is part of a lateral cell column extending from the isthmus to the rostral tegmentum. The caudal part of this nucleus receives input from lower brainstem auditory nuclei and projects bilaterally to the torus semicircularis. On the basis of its position, connections, and sensitivity to acoustic stimuli, the caudal SR appears to be homologous to all or part of the mammalian nuclei of the lateral lemniscus.  相似文献   

16.
The projections of the nucleus of the solitary tract (NST) were studied by autoradiographic anterograde fiber-tracing and horseradish peroxidase (HRP) retrograde cell-labeling. Tritiated proline and leucine were deposited in electrophysiologically identified regions of NST. Injections of NST at levels caudal to where the vagus enters the nucleus, from which responses were evoked by stimulation of cranial nerves IX and X, revealed topographically organized bilateral projections to, most prominently, the ventrolateral medullary reticular formation which contains neurons of the ambiguus complex, and to the lateral and medial parabrachial nuclei, including a small portion of the medially adjacent central gray substance. Labeled fibers in the ventrolateral reticular formation were present from the nucleus retroambigualis rostralward to the retrofacial nucleus, with the densest concentration located over the nucleus ambiguus proper. The parabrachial projection was confirmed using HRP and shown to originate from cells in the medial subdivision of NST. Due to the problem of fibers en passant, it was not possible to interpret conclusively the cell-labeling seen around the solitary tract after HRP injections made in the region of the nucleus ambiguus. Labeled fibers were also traced from caudal NST to the dorsal motor nucleus of the vagus, but their origin could not be determined with certainty. Other labeled axons, traced to circumscribed parts of the inferior olivary complex and via the contralateral medial lemniscus to VPL of the thalamus, were shown in HRP experiments to originate from the dorsal column nuclei rather than NST. No labeled fibers were traced into the spinal cord, nor were any cells labeled in NST after large HRP deposits in upper cervical segments. Isotope deposits at levels of NST rostral to the entrance of the vagus, from which responses were evoked by rapid stimulation of the tongue, revealed an ipsilateral projection which ascends as a component of the central tegmental tract to the parvicellular part of the ventral posteromedial thalamic nucleus (VPMpc). After small HRP deposits in VPMpc, labeled cells in NST were restricted to the rostral part of the lateral subdivision. No labeled axons were traced from rostral NST to the ambiguus complex or parabrachial area. Injections of 3H-amino acids at intermediate levels of NST resulted in fiber-labeling in VPMpc, the parabrachial area, and the ambiguus complex.  相似文献   

17.
The posterior lateral hypothalamus (PLH) has long been considered crucial to normal wakefulness while the ventral part of the oral pontine reticular nucleus (vRPO) is involved in the generation and maintenance of rapid eye movement (REM) sleep. However, to date, there is no information on the ultrastructure or neurotransmitter content of the hypothalamo-reticular projection. In the present study, we examined the morphology and synaptic organization of PLH terminals in the vRPO using PLH injections of biotinylated dextran amine (BDA) as well as of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Since some PLH neurons are GABAergic, we used a post-embedding immunogold technique to determine whether any anterogradely labeled terminals were GABA-immunopositive. Electron microscope analyses revealed a variety of ultrastructural features in the vRPO anterogradely labeled terminals. Although most labeled terminals (over 63%) formed symmetric synapses on vRPO somata and dendrites, others made asymmetric synapses on vRPO dendrites. The relative percentages of labeled terminals observed on large, medium and small diameter dendrites were 44.3 +/- 5.5%, 35.3 +/- 3.0% and 20.4 +/- 3.1%, respectively. Finally, post-embedding immunogold technique revealed that there are GABA-immunopositive and immunonegative components to this projection, indicating that GABA is one of the transmitters used by the PLH cells that project to the vRPO. Furthermore, most, if not all, of the GABA-labeled axon terminals formed symmetric synapsis. In conclusion, our results suggest that the PLH could modulate the physiological responses of vRPO neurons through a GABAergic pathway as well as by other inhibitory and/or excitatory pathways. Activation of the descending PLH GABAergic projection may inhibit the REM sleep-inducing neurons within the vRPO and thus contribute to the suppression of REM sleep activation during wakefulness.  相似文献   

18.
Certain amount of neurons in vestibular nuclei were labelled after horseradish peroxidase injection in the medullar lateral reticular nucleus of cat. Such projections were strictly homolateral and formed by small and medium-size neurons localized mainly in the Deiters nucleus; their number was, probably, much less in comparison with the number of vestibulo-spinal units. Functional role of vestibular projections to the lateral reticular nucleus in the motor activity control is discussed.  相似文献   

19.
The afferent input from splanchnic nerves to the lateral reticular nucleus (LRN) was studied in anesthetized cats. The activity of neurons of the parvi- and magnocellular regions of the nucleus was recorded by means of extracellular microelectrodes. The LRN neurons were stereotaxically located and identified by their response to antidromic stimulation of the cerebellar cortex. Activity of the LRN neurons studied was modified by electrical stimulation of the ipsi- and contralateral splanchnic nerves, and by mechanical stimulation of peritoneal receptors. Response latencies to stimulation of the splanchnic nerves were measured, and conduction velocities of peripheral fibers were determined; most of them were myelinated fibers with a small diameter (sub-groups of A- A gamma delta) and were connected with 'peritoneal movement mechanoreceptors'. Numerous convergences were observed. All of the tested neurons which responded to stimulation of the homolateral splanchnic nerve also responded to stimulation of the contralateral splanchnic and to diverse somatic stimulations. In 90% of the neurons tested, a splanchno-cortical convergence (sensory-somatic cortex) was observed. Two possible roles of splanchnic afferents that activate neurons of the LRN were considered: (1) they might, like other spinal inputs, influence LRN and cerebellar control of motor activity; and (2) they might also participate in cardiovascular regulations in which the LRN is involved.  相似文献   

20.
Afferent connection to lateral vestibular nucleus (LVN) was examined using retrograde transport of horseradish peroxidase (HRP). When HRP was microiontophoretically applied to the immediate vicinity of the LVN neuron, which monosynaptically fired spike upon VIIIth cranial nerve stimulation, HRP-labelled cells were observed in the ipsilateral lateral reticular nucleus, bilateral gigantocellular nucleus, and contralateral dorsal cap and beta-nucleus of inferior olive in addition to various parts of cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号