首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-independent effects of a physiological increase in free fatty acid (FFA) levels on fasting glucose production, gluconeogenesis, and glycogenolysis were assessed by administering [6,6-(2)H(2)]-glucose and deuteriated water ((2)H(2)O) in 12 type 1 diabetic patients, during 6-h infusions of either saline or a lipid emulsion. Insulin was either fully replaced (euglycemic group, n = 6), or underreplaced (hyperglycemic group, n = 6). During saline infusions, plasma FFA levels remained unchanged. Glucose concentrations decreased from 6.7 +/- 0.4 to 5.3 +/- 0.4 mmol/l and 11.9 +/- 1.0 to 10.5 +/- 1.0 mmol/l in the euglycemic and hyperglycemic group, respectively. Accordingly, glucose production declined from 84 +/- 5 to 63 +/- 5 mg x m(-2) x min(-1) and from 84 +/- 5 to 68 +/- 4 mg x m(-2) x min(-1), due to declining rates of glycogenolysis but unaltered rates of gluconeogenesis. During lipid infusions, plasma FFA levels increased twofold. In the euglycemic group, plasma glucose increased from 6.8 +/- 0.3 to 7.8 +/- 0.8 mmol/l. Glucose production declined less in the lipid study than in the saline study due to a stimulation of gluconeogenesis by 6 +/- 1 mg x m(-2) x min(-1) and a decline in glycogenolysis that was 6 +/- 2 mg x m(-2) x min(-1) less in the lipid study than in the saline study. In contrast, in the hyperglycemic group, there were no significant effects of elevated FFA on glucose production, gluconeogenesis, or glycogenolysis. In conclusion, a physiological elevation of plasma FFA levels stimulates glycogenolysis as well as gluconeogenesis and causes mild fasting hyperglycemia. These effects of FFA appear attenuated in the presence of hyperglycemia.  相似文献   

2.
Impaired effectiveness of glucose to suppress endogenous glucose production (EGP) is an important cause of worsening hyperglycemia in type 2 diabetes. Elevated free fatty acids (FFAs) may impair glucose effectiveness via several mechanisms, including rapid changes in metabolic fluxes and/or more gradual changes in gene expression of key enzymes or other proteins. Thus, we examined the magnitude and time course of effects of FFAs on glucose effectiveness in type 2 diabetes and whether glucose effectiveness can be restored by lowering FFAs. Glucose fluxes ([3-(3)H]-glucose) were measured during 6-h pancreatic clamp studies, at euglycemia (5 mmol/l glucose, t=0-240 min), and hyperglycemia (10 mmol/l, t=240-360 min). We studied 19 poorly controlled subjects with type 2 diabetes (HbA(1c) 10.9 +/- 0.4%, age 50 +/- 3 years, BMI 30 +/- 2 kg/m(2)) on at least two occasions with saline (NA- group) or nicotinic acid (NA group) infusions for 3, 6, or 16 h (NA3h, NA6h, and NA16h groups, respectively) to lower FFAs to nondiabetic levels. As a reference group, glucose effectiveness was also assessed in 15 nondiabetic subjects. There was rapid improvement in hepatic glucose effectiveness following only 3 h of NA infusion (NA3h = 31 +/- 6% suppression of EGP with hyperglycemia vs. NA- = 8 +/- 7%; P<0.01) and complete restoration of glucose effectiveness after 6 h of NA (NA6h = 41 +/- 8% suppression of EGP; P = NS vs. nondiabetic subjects). Importantly, the loss of hepatic glucose effectiveness in type 2 diabetes is completely reversible upon correcting the increased FFA concentrations. A longer duration of FFA lowering may be required to overcome the chronic effects of increased FFAs on hepatic glucose effectiveness.  相似文献   

3.
Effects of free fatty acids (FFAs) on endogenous glucose production (EGP) and gluconeogenesis (GNG) were examined in healthy subjects (n = 6) during stepwise increased Intralipid/heparin infusion (plasma FFAs 0.8+/-0.1, 1.8+/-0.2, and 2.8+/-0.3 mmol/l) and during glycerol infusion (plasma FFAs approximately 0.5 mmol/l). Rates of EGP were determined with D-[6,6-2H2]glucose and contributions of GNG from 2H enrichments in carbons 2 and 5 of blood glucose after 2H2O ingestion. Plasma glucose concentrations decreased by approximately 10% (P < 0.01), whereas plasma insulin increased by approximately 47% (P = 0.02) after 9 h of lipid infusion. EGP declined from 9.3+/-0.5 (lipid) and 9.0+/-0.8 pmol x kg(-1) x min(-1) (glycerol) to 8.4+/-0.5 and 8.2+/-0.7 micromol x kg(-1) x min(-1), respectively (P < 0.01). Contribution of GNG similarly rose (P < 0.01) from 46+/-4 and 52+/-3% to 65+/-8 and 78+/-7%. To exclude interaction of FFAs with insulin secretion, the study was repeated at fasting plasma insulin (approximately 35 pmol/l) and glucagon (approximately 90 ng/ml) concentrations using somatostatin-insulin-glucagon clamps. Plasma glucose increased by approximately 50% (P < 0.005) during lipid but decreased by approximately 12% during glycerol infusion (P < 0.005). EGP remained unchanged over the 9-h period (9.9+/-1.2 vs. 9.0+/-1.1 micromol x kg(-1) x min(-1)). GNG accounted for 62+/-5 (lipid) and 60+/-6% (glycerol) of EGP at time 0 and rose to 74+/-3% during lipid infusion only (P < 0.05 vs. glycerol: 64+/-4%). In conclusion, high plasma FFA concentrations increase the percent contribution of GNG to EGP and may contribute to increased rates of GNG in patients with type 2 diabetes.  相似文献   

4.
Xu et al used the HOMA2 model to estimate the β-cell function and insulin resistance levels in an individual from simultaneously measured fasting plasma glucose and fasting plasma insulin levels. This method is based on the assumption that the glucose-insulin axis is central for the metabolic activities, which led to type 2 diabetes. However, significant downregulation of both the NKX2-1 gene and the TPD52L3 gene force an increase in the release of free fatty acids (FFAs) into the blood circulation, which leads to a marked reduction in membrane flexibility. These data favor a FFA-glucose-insulin axis. The authors are invited to extend their study with the introduction of the saturation index (number of carbon-carbon double bonds per 100 fatty-acyl chains), as observed in erythrocytes.  相似文献   

5.
Homko CJ  Cheung P  Boden G 《Diabetes》2003,52(2):487-491
To study effects of sex on free fatty acid (FFA)-induced insulin resistance, we have examined the effects of acute elevations of plasma FFA levels on insulin-stimulated total body glucose uptake in nine healthy young women. Euglycemic-hyperinsulinemic (approximately 500 pmol/l) clamps were performed for 4 h with coinfusion of either lipid/heparin (L/H) to acutely raise plasma FFA levels (from approximately 600 to approximately 1,200 micro mol/l) or saline/glycerol to lower fatty acids (from approximately 600 to approximately 50 micro mol/l). L/H infusion inhibited insulin-stimulated glucose uptake (determined with [3-(3)H]glucose) and glycogen synthesis by 31 and 40%, respectively (P < 0.01), almost completely abolished insulin suppression of endogenous glucose production (EGP) (13.6 vs. 10.0 micro mol x kg(-1) x min(-1), NS), prevented the insulin induced increase in carbohydrate oxidation (8.1 vs. 7.4 micro mol x kg(-1) x min(-1), NS), and stimulated fat oxidation (from 3.6 to 5.1 micro mol x kg(-1) x min(-1), P < 0.01). These data showed that acute increases in plasma FFA levels inhibited the actions of insulin on glucose uptake, glycogen synthesis, and EGP in women to a degree similar to that previously reported in men. We conclude that at insulin and FFA levels in the postprandial range, women and men were susceptible to FFA-induced peripheral and hepatic insulin resistance.  相似文献   

6.
Splanchnic glucose uptake (SGU) plays a major role in the disposal of an oral glucose load (OGL). To investigate the effect of an elevated plasma free fatty acid (FFA) concentration on SGU in patients with type 2 diabetes, we measured SGU in eight diabetic patients (mean age 51 +/- 4 years, BMI 29.3 +/- 1.4 kg/m(2), fasting plasma glucose 9.3 +/- 0.7 mmol/l) during an intravenous Intralipid/heparin infusion and 7-10 days later during a saline infusion. SGU was estimated by the OGL insulin clamp method: subjects received a 7-h euglycemic-hyperinsulinemic clamp (insulin infusion rate = 100 mU x m(-2) x min(-1)), and a 75-g OGL was ingested 3 h after starting the insulin clamp. After glucose ingestion, the steady-state glucose infusion rate during the insulin clamp was decreased appropriately to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in glucose infusion rate during the 4-h period after glucose ingestion from the ingested glucose load (75 g). 3-[(3)H]glucose was infused during the 3-h insulin clamp before glucose ingestion to determine the rates of endogenous glucose production and glucose disappearance (R(d)). Intralipid/heparin or saline infusion was initiated 2 h before the start of the OGL clamp. Plasma FFA concentrations were significantly higher during the OGL clamp with the intralipid/heparin infusion than with the saline infusion (2.5 +/- 0.3 vs. 0.11 +/- 0.02 mmol/l, P < 0.001). During the 3-h insulin clamp period before glucose ingestion, Intralipid/heparin infusion reduced R(d) (4.4 +/- 0.3 vs. 5.3 +/- 0.3 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly decreased during the intralipid/heparin versus saline infusion (30 +/- 2 vs. 37 +/- 2%, P < 0.01). In conclusion, an elevation in plasma FFA concentration impairs both peripheral and SGU in patients with type 2 diabetes.  相似文献   

7.
Boden G  Chen X 《Diabetes》1999,48(3):577-583
The objective of this study was to assess the role of free fatty acids (FFAs) as insulin secretagogues in patients with type 2 diabetes. To this end, basal insulin secretion rates (ISR) in response to acute increases in plasma FFAs were evaluated in patients with type 2 diabetes and in age- and weight-matched nondiabetic control subjects during 1) intravenous infusion of lipid plus heparin (L/H), which stimulated intravascular lipolysis, and 2) the FFA rebound, which followed lowering of plasma FFAs with nicotinic acid (NA) and was a consequence of increased lipolysis from the subject's own adipose tissue. At comparable euglycemia, diabetic patients had similar ISR but higher plasma beta-hydroxybutyrate (beta-OHB) levels during L/H infusion and higher plasma FFA and beta-OHB levels during the FFA rebound than nondiabetic control subjects. Correlating ISR with plasma FFA plus beta-OHB levels showed that in response to the same changes in FFA plus beta-OHB levels, diabetic patients secreted approximately 30% less insulin than nondiabetic control subjects. In addition, twice as much insulin was secreted during L/H infusion as during the FFA rebound in response to the same FFA/beta-OHB stimulation by both diabetic patients and control subjects. Glycerol, which was present in the infused lipid (272 mmol/l) did not affect ISR. We concluded that 1) assessment of FFA effects on ISR requires consideration of effects on ISR by ketone bodies; 2) ISR responses to FFA/beta-OHB were defective in patients with type 2 diabetes (partial beta-cell lipid blindness), but this defect was compensated by elevated plasma levels of FFAs and ketone bodies; and 3) approximately two times more insulin was released per unit change in plasma FFA plus beta-OHB during L/H infusion than during the FFA rebound after NA. The reason for this remains to be explored.  相似文献   

8.
Adipose triglyceride lipase (ATGL) was recently described to predominantly perform the initial step in triglyceride hydrolysis and therefore seems to play a pivotal role in the lipolytic catabolism of stored fat in adipose tissue. In the first study investigating genetic variations within the ATGL gene in humans, 12 polymorphisms identified via sequencing and database search were studied in 2,434 individuals of European ancestry from Utah. These polymorphisms and their haplotypes were analyzed in subjects not taking diabetes medication for association with plasma free fatty acids (FFAs) as primary analysis, as well as triglycerides and glucose as a secondary analysis (n = 1,701, 2,193, or 2,190, respectively). Furthermore, type 2 diabetes (n = 342 of 2,434) was analyzed as an outcome. FFA concentrations were significantly associated with several single nucleotide polymorphisms (SNPs) of ATGL (P values from 0.015 to 0.00003), consistent with additive inheritance. The pattern was similar when considering triglyceride concentrations. Furthermore, two SNPs showed associations with glucose levels (P < 0.00001) and risk of type 2 diabetes (P < 0.05). Haplotype analysis supported and extended the shown SNP association analyses. These results complement previous findings of functional studies in mammals and elucidate a potential role of ATGL in pathways involved in components of the metabolic syndrome.  相似文献   

9.
Hawkins M  Tonelli J  Kishore P  Stein D  Ragucci E  Gitig A  Reddy K 《Diabetes》2003,52(11):2748-2758
Increased circulating free fatty acids (FFAs) inhibit both hepatic and peripheral insulin action. Because the loss of effectiveness of glucose to suppress endogenous glucose production and stimulate glucose uptake contributes importantly to fasting hyperglycemia in type 2 diabetes, we examined whether the approximate twofold elevations in FFA characteristic of poorly controlled type 2 diabetes contribute to this defect. Glucose levels were raised from 5 to 10 mmol/l while maintaining fixed hormonal conditions by infusing somatostatin with basal insulin, glucagon, and growth hormone. Each individual was studied at two FFA levels: with (NA+) and without (NA-) infusion of nicotinic acid in nine individuals with poorly controlled type 2 diabetes (HbA(1c) = 10.1 +/- 0.7%) and with (LIP+) and without (LIP-) infusion of lipid emulsion in nine nondiabetic individuals. Elevating FFA to approximately 500 micro mol/l blunted the ability of glucose to suppress endogenous glucose production (LIP- = -48% vs. LIP+ = -28%; P < 0.01) and increased glucose uptake (LIP- = 97% vs. LIP+ = 51%; P < 0.01) in nondiabetic individuals. Raising FFA also blunted the endogenous glucose production response in 10 individuals with type 2 diabetes in good control (HbA(1c) = 6.3 +/- 0.3%). Conversely, normalizing FFA nearly restored the endogenous glucose production (NA- = -7% vs. NA+ = -41%; P < 0.001) and glucose uptake (NA- = 26% vs. NA+ = 64%; P < 0.001) responses to hyperglycemia in individuals with poorly controlled type 2 diabetes. Thus, increased FFA levels contribute substantially to the loss of glucose effectiveness in poorly controlled type 2 diabetes.  相似文献   

10.
Free fatty acids (FFA) have been shown in vitro to inhibit insulin-mediated glucose uptake by muscle and have been proposed as in vivo mediators of peripheral insulin resistance. Twenty percent fat emulsion and heparin were administered to six awake healthy dogs during 3-hr insulin clamp studies. Lipid infusion resulted in a fivefold increase in FFA concentration over control (2371 ± 331 vs 439 ± 65, P < 0.002), but did not importantly alter glucose and insulin concentrations. No change was observed in glucose disposal (13.30 ± 1.41 vs 13.76 ± 1.51 mg/kg · min control), hindquarter A–V glucose concentration difference (9 ± 2 vs 9 ± 1 mg/dl), or hindquarter glucose uptake (3.42 ± 0.84 vs 3.71 ± 0.65 mg/kg · min). These observations suggest that FFA may not be important mediators of peripheral insulin resistance in critically ill patients.  相似文献   

11.
The contribution of gluconeogenesis (GNG) to endogenous glucose output (EGO) in type 2 diabetes is controversial. Little information is available on the separate influence of obesity on GNG. We measured percent GNG (by the 2H2O technique) and EGO (by 6,6-[2H]glucose) in 37 type 2 diabetic subjects (9 lean and 28 obese, mean fasting plasma glucose [FPG] 8.3 +/- 0.3 mmol/l) and 18 control subjects (6 lean and 12 obese) after a 15-h fast. Percent GNG averaged 47 +/- 5% in lean control subjects and was significantly increased in association with both obesity (P < 0.01) and diabetes (P = 0.004). By multivariate analysis, percent GNG was independently associated with BMI (partial r = 0.27, P < 0.05, with a predicted increase of 0.9% per BMI unit) and FPG (partial r = 0.44, P = 0.0009, with a predicted increase of 2.7% per mmol/l of FPG). In contrast, EGO was increased in both lean and obese diabetic subjects (15.6 +/- 0.5 micromol x min(-1) x kg(-1) of fat-free mass, n = 37, P = 0.002) but not in obese nondiabetic control subjects (13.1 0.7, NS) as compared with lean control subjects (12.4 +/- 1.4). Consequently, gluconeogenic flux (percent GNG x EGO) was increased in obesity (P = 0.01) and markedly elevated in diabetic subjects (P = 0.0004), whereas glycogenolytic flux was reduced only in association with obesity (P = 0.05). Fasting plasma glucagon levels were significantly increased in diabetic subjects (P < 0.05) and positively related to EGO, whereas plasma insulin was higher in obese control subjects than lean control subjects (P = 0.05) and unrelated to measured glucose fluxes. We conclude that the percent contribution of GNG to glucose release after a 15-h fast is independently and quantitatively related to the degree of overweight and the severity of fasting hyperglycemia. In obese individuals, reduced glycogenolysis ensures a normal rate of glucose output. In diabetic individuals, hyperglucagonemia contributes to inappropriately elevated rates of glucose output from both GNG and glycogenolysis.  相似文献   

12.
Impaired glucose effectiveness (i.e., a diminished ability of glucose per se to facilitate its own metabolism), increased gluconeogenesis, and endogenous glucose release are, together with insulin resistance and beta-cell abnormalities, established features of type 2 diabetes. To explore aspects of the pathophysiology behind type 2 diabetes, we assessed in a group of healthy people prone to develop type 2 diabetes (n = 23), namely first-degree relatives of type 2 diabetic patients (FDR), 1) endogenous glucose release and fasting gluconeogenesis measured using the 2H2O technique and 2) glucose effectiveness. The FDR group was insulin resistant when compared with an age-, sex-, and BMI-matched control group without a family history of type 2 diabetes (n = 14) (M value, clamp: 6.07 +/- 0.48 vs. 8.06 +/- 0.69 mg x kg(-1) lean body weight (lbw) x min(-1); P = 0.02). Fasting rates of gluconeogenesis (1.28 +/- 0.06 vs. 1.41 +/- 0.07 mg x kg(-1) lbw x min(-1); FDR vs. control subjects, P = 0.18) did not differ in the two groups and accounted for 53 +/- 2 and 60 +/- 3% of total endogenous glucose release. Glucose effectiveness was examined using a combined somatostatin and insulin infusion (0.17 vs. 0.14 mU x kg(-1) x min(-1), FDR vs. control subjects), the latter replacing serum insulin at near baseline levels. In addition, a 360-min labeled glucose infusion was given to simulate a prandial glucose profile. After glucose infusion, the integrated plasma glucose response above baseline (1,817 +/- 94 vs. 1,789 +/- 141 mmol/l per 6 h), the ability of glucose to simulate its own uptake (1.50 +/- 0.13 vs. 1.32 +/- 0.16 ml x kg(-1) lbw x min(-1)), and the ability of glucose per se to suppress endogenous glucose release did not differ between the FDR and control group. In conclusion, in contrast to overt type 2 diabetic patients, healthy people at high risk of developing type 2 diabetes are characterized by normal glucose effectiveness at near-basal insulinemia and normal fasting rates of gluconeogenesis.  相似文献   

13.
The present study sought to determine whether elevated plasma free fatty acids (FFAs) alter the ability of insulin and glucose to regulate splanchnic as well as muscle glucose metabolism. To do so, FFAs were increased in 10 subjects to approximately 1 mmol/l by an 8-h Intralipid/heparin (IL/Hep) infusion, whereas they fell to levels near the detection limit of the assay (<0.05 mmol/l) in 13 other subjects who were infused with glycerol alone at rates sufficient to either match (n = 5, low glycerol) or double (n = 8, high glycerol) the plasma glycerol concentrations observed during the IL/Hep infusion. Glucose was clamped at approximately 8.3 mmol/l, and insulin was increased to approximately 300 pmol/l to stimulate both muscle and hepatic glucose uptake. Insulin secretion was inhibited with somatostatin. Leg and splanchnic glucose metabolism were assessed using a combined catheter and tracer dilution approach. Leg glucose uptake (21.7 +/- 3.5 vs. 48.3 +/- 9.3 and 57.8 +/- 11.7 micromol x kg(-1) leg x min(-1)) was lower (P < 0.001) during IL/Hep than the low- or high-glycerol infusions, confirming that elevated FFAs caused insulin resistance in muscle. IL/Hep did not alter splanchnic glucose uptake or the contribution of the extracellular direct pathway to UDP-glucose flux. On the other hand, total UDP-glucose flux (13.2 +/- 1.7 and 12.5 +/- 1.0 vs. 8.1 +/- 0.5 micromol x kg(-1) x min(-1)) and flux via the indirect intracellular pathway (8.4 +/- 1.2 and 8.1 +/- 0.6 vs. 4.8 +/- 0.05 micromol x kg(-1) x min(-1)) were greater (P < 0.05) during both the IL/Hep and high-glycerol infusions than the low-glycerol infusion. In contrast, only IL/Hep increased (P < 0.05) splanchnic glucose production, indicating that elevated FFAs impaired the ability of the liver to autoregulate. Splanchnic insulin extraction, directly measured using the arterial and hepatic vein catheters, did not differ (67 +/- 3 vs. 71 +/- 5 vs. 69 +/- 1%) during IL/Hep and high- and low-glycerol infusions. We conclude that elevated FFAs exert multiple effects on glucose metabolism. They inhibit insulin- and glucose-induced stimulation of muscle glucose uptake and suppression of splanchnic glucose production. They increase the contribution of the indirect pathway to glycogen synthesis and impair hepatic autoregulation. On the other hand, they do not alter either splanchnic glucose uptake or splanchnic insulin extraction in nondiabetic humans.  相似文献   

14.
Mechanism by which metformin reduces glucose production in type 2 diabetes   总被引:19,自引:0,他引:19  
To examine the mechanism by which metformin lowers endogenous glucose production in type 2 diabetic patients, we studied seven type 2 diabetic subjects, with fasting hyperglycemia (15.5 +/- 1.3 mmol/l), before and after 3 months of metformin treatment. Seven healthy subjects, matched for sex, age, and BMI, served as control subjects. Rates of net hepatic glycogenolysis, estimated by 13C nuclear magnetic resonance spectroscopy, were combined with estimates of contributions to glucose production of gluconeogenesis and glycogenolysis, measured by labeling of blood glucose by 2H from ingested 2H2O. Glucose production was measured using [6,6-2H2]glucose. The rate of glucose production was twice as high in the diabetic subjects as in control subjects (0.70 +/- 0.05 vs. 0.36 +/- 0.03 mmol x m(-2) min(-1), P < 0.0001). Metformin reduced that rate by 24% (to 0.53 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0009) and fasting plasma glucose concentration by 30% (to 10.8 +/- 0.9 mmol/l, P = 0.0002). The rate of gluconeogenesis was three times higher in the diabetic subjects than in the control subjects (0.59 +/- 0.03 vs. 0.18 +/- 0.03 mmol x m(-2) min(-1) and metformin reduced that rate by 36% (to 0.38 +/- 0.03 mmol x m(-2) x min(-1), P = 0.01). By the 2H2O method, there was a twofold increase in rates of gluconeogenesis in diabetic subjects (0.42 +/- 0.04 mmol m(-2) x min(-1), which decreased by 33% after metformin treatment (0.28 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0002). There was no glycogen cycling in the control subjects, but in the diabetic subjects, glycogen cycling contributed to 25% of glucose production and explains the differences between the two methods used. In conclusion, patients with poorly controlled type 2 diabetes have increased rates of endogenous glucose production, which can be attributed to increased rates of gluconeogenesis. Metformin lowered the rate of glucose production in these patients through a reduction in gluconeogenesis.  相似文献   

15.
Changes of individual free fatty acids during glucose tolerance test   总被引:1,自引:0,他引:1  
H Nakamura  G Faludi  J J Spitzer 《Diabetes》1967,16(3):175-180
  相似文献   

16.
17.
A total of 8 obese subjects with type 2 diabetes were studied while on a eucaloric diet and after reduced energy intake (25 and then 75% of requirements for 10 days each). Weight loss was 2, 3, and 3 kg after 5, 10, and 20 days, respectively; all of the weight lost was body fat. Fasting blood glucose (FBG) levels fell from 11.9 +/- 1.4 at baseline to 8.9 +/- 1.6, 7.9 +/- 1.4, and 8.8 +/- 1.3 mmol/l at days 5, 10, and 20, respectively (P < 0.05, baseline vs. 5, 10, and 20 days). Endogenous glucose production (EGP) was 22 +/- 2, 18 +/- 2, 17 +/- 2, and 22 +/- 2 pmol x kg(-1) lean body mass (LBM) x min(-1) (P < 0.05, days 5 and 10 vs. baseline). Gluconeogenesis measured by mass isotopomer distribution analysis provided 31 +/- 4, 41 +/- 5, 40 +/- 4, and 33 +/- 4%, respectively, of the EGP (NS); absolute glycogenolytic contribution to the EGP was 15 +/- 2, 11 +/- 2, 11 +/- 2, and 15 +/- 2 pmol x kg(-1) LBM x min(-1), respectively (P < 0.001, baseline vs. days 5 and 10 and day 10 vs. day 20). The blood glucose clearance rate increased significantly at day 20 (P < 0.05). Neither lipolysis nor flux of plasma nonesterified fatty acids were altered compared with baseline. In conclusion, severe energy restriction per se independent of major changes in body composition reduces both FBG concentration and EGP in type 2 diabetes, the reduction in EGP results entirely from a reduction of glycogenolytic input into blood glucose, and the duration of reduced glycogenolysis is short-lived after relaxation of energy restriction even without weight gain, but effects on plasma glucose clearance persist and partially maintain the improvement in fasting glycemia.  相似文献   

18.
19.
Boden G  Cheung P  Homko C 《Diabetes》2003,52(1):133-137
To determine whether insulin induces acute changes in endogenous glucose production (EGP) via changes in gluconeogenesis (GNG), glycogenolysis (GL), or both, we measured GNG (with (2)H(2)O) and GL (EGP-GNG) in nine patients with type 1 diabetes during acute insulin excess produced by subcutaneous injection of insulin and during insulin deficiency which developed between 5 and 8 h after insulin injection. During insulin excess, free insulin concentration rose fivefold (from 36 to 180 pmol/l). Plasma glucose was maintained between 6.2 and 6.7 mmol/l for approximately 4 h with IV glucose. EGP (with 6,6-(2)H glucose) decreased from 17.1 to 9.8 micro mol. kg(-1). min(-1) after 1 h. This decrease was almost completely accounted for by a decrease in GL (from 10.7 to 4.6 micro mol. kg(-1). min(-1)). During insulin deficiency, plasma glucose rose from 6.2 to 10.5 mmol/l and EGP from 9.5 to 14.3 micro mol/kg min. The increase in EGP again was accounted for by an increase in GL. We conclude that in type 1 diabetes acute regulation of EGP by insulin is mainly via changes in GL while GNG changes little during the early hours of acute insulin excess or deficiency.  相似文献   

20.
Acute elevations in free fatty acids (FFAs) stimulate insulin secretion, but prolonged lipid exposure impairs beta-cell function in both in vitro studies and in vivo animal studies. In humans data are limited to short-term (< or =48 h) lipid infusion studies and have led to conflicting results. We examined insulin secretion and action during a 4-day lipid infusion in healthy normal glucose tolerant subjects with (FH+ group, n = 13) and without (control subjects, n = 8) a family history of type 2 diabetes. Volunteers were admitted twice to the clinical research center and received, in random order, a lipid or saline infusion. On days 1 and 2, insulin and C-peptide concentration were measured as part of a metabolic profile after standardized mixed meals. Insulin secretion in response to glucose was assessed with a +125 mg/dl hyperglycemic clamp on day 3. On day 4, glucose turnover was measured with a euglycemic insulin clamp with [3-3H]glucose. Day-long plasma FFA concentrations with lipid infusion were increased within the physiological range, to levels seen in type 2 diabetes (approximately 500-800 micromol/l). Lipid infusion had strikingly opposite effects on insulin secretion in the two groups. After mixed meals, day-long plasma C-peptide levels increased with lipid infusion in control subjects but decreased in the FH+ group (+28 vs. -30%, respectively, P < 0.01). During the hyperglycemic clamp, lipid infusion enhanced the insulin secretion rate (ISR) in control subjects but decreased it in the FH+ group (first phase: +75 vs. -60%, P < 0.001; second phase: +25 vs. -35%, P < 0.04). When the ISR was adjusted for insulin resistance (ISRRd = ISR / [1/Rd], where Rd is the rate of insulin-stimulated glucose disposal), the inadequate beta-cell response in the FH+ group was even more evident. Although ISRRd was not different between the two groups before lipid infusion, in the FH+ group, lipid infusion reduced first- and second-phase ISR(Rd) to 25 and 42% of that in control subjects, respectively (both P < 0.001 vs. control subjects). Lipid infusion in the FH+ group (but not in control subjects) also caused severe hepatic insulin resistance with an increase in basal endogenous glucose production (EGP), despite an elevation in fasting insulin levels, and impaired suppression of EGP to insulin. In summary, in individuals who are genetically predisposed to type 2 diabetes, a sustained physiological increase in plasma FFA impairs insulin secretion in response to mixed meals and to intravenous glucose, suggesting that in subjects at high risk of developing type 2 diabetes, beta-cell lipotoxicity may play an important role in the progression from normal glucose tolerance to overt hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号