首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular ATP is an important regulator of transepithelial transport in a number of tissues. In pancreatic ducts, we have shown that ATP modulates epithelial K+ channels via purinergic receptors, most likely the P2Y2 and P2Y4 receptors, but the identity of the involved K+ channels was not clear. In this study, we show by RT-PCR analysis that rat pancreatic ducts express Ca2+-activated K+ channels of intermediate conductance (IK) and big conductance (BK), but not small conductance (SK). Possible interactions between P2Y receptors and these Ca2+-activated K+ channels were examined in co-expression experiments in Xenopus laevis oocytes. K+ channel activity was measured electrophysiologically in oocytes stimulated with UTP (0.1 mM). UTP stimulation of oocytes expressing P2Y4 receptors and BK channels resulted in a 30% increase in the current through the expressed channels. In contrast, stimulation of P2Y2 receptors led to a 20% inhibition of co-expressed BK channel activity, a response that was sensitive to TEA. Furthermore, co-expression of IK channels with P2Y4 and P2Y2 receptors resulted in a large hyperpolarization and 22-fold and 5-fold activation of currents by UTP, respectively. Taken together, this study shows that there are different interactions between the subtypes of P2Y purinergic receptors and different Ca2+-activated K+ channels.  相似文献   

2.
1. Characteristics of Ca(2+)-activated K+ channels in the basolateral membrane of hair cells isolated from the caudal part of the goldfish saccular macula were studied mainly with the inside-out mode of the patch clamp method. 2. Several types of Ca(2+)-activated K+ channels differing in unitary conductance were identified. The conductances (n = 156) ranged from 130 to 320 pS (when measured in symmetrical 125 mM KCl) and could be roughly separated into four groups, centred on values of 150, 200, 250 and 300 pS. The pharmacological profile, assessed by, for example, tetraethylammonium blockade, and the relatively large conductance indicated that these channels can be classified as large-conductance Ca(2+)-activated K+ channels (BK channels). The relative permeability of these channels to different ion species was in the order K+ (1.0) > Rb+ (0.8) > NH4+ (0.14) > Na+, Cs+ (< 0.05). 3. Curves relating open state probability to [Ca2+]i, for membrane potentials between -50 and +50 mV, were similar to those observed for BK channels of rat muscle. However, the maximum open state probability (100-1000 microM [Ca2+]i and 50 mV membrane potential) was 0.4-0.9, and always less than 1. 4. These channels had a short arithmetic mean open time ranging from 0.08 to 1.2 ms (0.08-0.5 ms in 88% of cases) and an arithmetic mean shut time ranging from 0.24 to 1.2 ms (10 microM [Ca2+]i and 50 mV membrane potential). The shut intervals were more sensitive to changes in [Ca2+]i and membrane potential than were the open intervals. 5. The distribution of individual open and shut intervals was fitted with the sum of exponential functions. Except for the slowest shut component, which only accounted for less than 1% of shut events, all other components had time constants shorter than 1 ms. As a result of these short open and shut intervals, the current trace had a flickery pattern rather than a burst-interburst pattern. 6. There was a rough correlation between unitary conductance and mean open time, i.e. channels with a large unitary conductance had a longer mean open time. 7. The sensitivity to [Ca2+]i of the Ca(2+)-activated K+ channel in goldfish hair cells was one to two orders of magnitude lower than that of BK channels in rat muscle. Channels with a longer mean open time had a higher Ca2+ sensitivity. 8. The stability of the single Ca(2+)-activated K+ channel kinetics was studied by measuring the 'moving' mean duration of open and shut intervals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Large-conductance Ca2+-activated potassium channels in secretory neurons.   总被引:2,自引:0,他引:2  
Large-conductance Ca2+-activated K+ channels (BK) are believed to underlie interburst intervals and contribute to the control of hormone release in several secretory cells. In crustacean neurosecretory cells, Ca2+ entry associated with electrical activity could act as a modulator of membrane K+ conductance. Therefore we studied the contribution of BK channels to the macroscopic outward current in the X-organ of crayfish, and their participation in electrophysiological activity, as well as their sensitivity toward intracellular Ca2+, ATP, and voltage, by using the patch-clamp technique. The BK channels had a conductance of 223 pS and rectified inwardly in symmetrical K+. These channels were highly selective to K+ ions; potassium permeability (PK) value was 2.3 x 10(-13) cm(3) s(-1). The BK channels were sensitive to internal Ca2+ concentration, voltage dependent, and activated by intracellular MgATP. Voltage sensitivity (k) was approximately 13 mV, and the half-activation membrane potentials depended on the internal Ca2+ concentration. Calcium ions (0.3-3 microM) applied to the internal membrane surface caused an enhancement of the channel activity. This activation of BK channels by internal calcium had a KD(0) of 0.22 microM and was probably due to the binding of only one or two Ca2+ ions to the channel. Addition of MgATP (0.01-3 mM) to the internal solution increased steady state-open probability. The dissociation constant for MgATP (KD) was 119 microM, and the Hill coefficient (h) was 0.6, according to the Hill analysis. Ca2+-activated K+ currents recorded from whole cells were suppressed by either adding Cd2+ (0.4 mM) or removing Ca2+ ions from the external solution. TEA (1 mM) or charybdotoxin (100 nM) blocked these currents. Our results showed that both BK and K(ATP) channels are present in the same cell. Even when BK and K(ATP) channels were voltage dependent and modulated by internal Ca2+ and ATP, the profile of sensitivity was quite different for each kind of channel. It is tempting to suggest that BK and KATP channels contribute independently to the regulation of spontaneous discharge patterns in crayfish neurosecretory cells.  相似文献   

4.
5.
The Ca2+-activated and voltage-sensitive large conductance K+ channel (BK channel) with a slope conductance of about 300 pS is present in the surface membrane of cultured human renal proximal tubule epithelial cells (RPTECs). In this study we examined the effects of cytoplasmic pH (pH(i)) on activity and gating kinetics of the BK channel by using the inside-out configuration of the patch-clamp technique. At a constant cytoplasmic Ca(2+) concentration ([Ca2+]i), membrane depolarization raised channel open probability (P(o)), and lowering pH(i) shifted the P(o)-membrane potential (V(m)) relationship to the positive voltage direction. However, the value of the gating charge was not affected by changes in pH(i), suggesting that the effects of pH(i) on P(o) were not due to an alternation of the voltage sensitivity. At constant V(m), lowering pH(i) suppressed the [Ca2+]i-dependent channel activation and shifted the P(o)-[Ca2+]i relationship in the direction of higher [Ca2+]i with a reduction of maximal P(o). Furthermore, both the mean open and mean closed times of the BK channels at pH(i) 6.3 in the presence of 10(-4) M [Ca2+](i) were shorter than those at pH(i) 7.3 in the presence of 10(-5) M [Ca2+]i, even though these two different conditions gave a similar P(o). The data indicate that cytoplasmic H+ suppresses P(o) of the BK channel in RPTECs, which involves the mechanism independent of Ca2+ activation. Our preliminary kinetic analysis also supported this notion.  相似文献   

6.
Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation. The effects of combined O2/glucose deprivation were investigated on large aspiny (LA) interneurons recorded from a striatal slice preparation by means of simultaneous electrophysiological and optical recordings. LA interneurons were visually identified and impaled with sharp microelectrodes loaded with the calcium (Ca2+)-sensitive dye bis-fura-2. These cells showed the morphological, electrophysiological, and pharmacological features of large striatal cholinergic interneurons. O2/glucose deprivation induced a membrane hyperpolarization coupled to a concomitant increase in intracellular Ca2+ concentration ([Ca2+]i). Interestingly, this [Ca2+]i elevation was more pronounced in dendritic branches rather than in the somatic region. The O2/glucose-deprivation-induced membrane hyperpolarization reversed its polarity at the potassium (K+) equilibrium potential. Both membrane hyperpolarization and [Ca2+]i rise were unaffected by TTX or by a combination of ionotropic glutamate receptors antagonists, D-2-amino-5-phosphonovaleric acid and 6cyano-7-nitroquinoxaline-2, 3-dione. Sulfonylurea glibenclamide, a blocker of ATP-sensitive K+ channels, markedly reduced the O2/glucose-deprivation-induced membrane hyperpolarization but failed to prevent the rise in [Ca2+]i. Likewise, charybdotoxin, a large K+-channel (BK) inhibitor, abolished the membrane hyperpolarization but did not produce detectable changes of [Ca2+]i elevation. A combination of high-voltage-activated Ca2+ channel blockers significantly reduced both the membrane hyperpolarization and the rise in [Ca2+]i. In a set of experiments performed without dye in the recording electrode, either intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid or external barium abolished the membrane hyperpolarization induced by O2/glucose deprivation. The hyperpolarizing effect on membrane potential was mimicked by oxotremorine, an M2-like muscarinic receptor agonist, and by baclofen, a GABAB receptor agonist. However, this membrane hyperpolarization was not coupled to an increase but rather to a decrease of the basal [Ca2+]i. Furthermore glibenclamide did not reduce the oxotremorine- and baclofen-induced membrane hyperpolarization. In conclusion, the present results suggest that in striatal LA cells, O2/glucose deprivation activates a membrane hyperpolarization that does not involve ligand-gated K+ conductances but is sensitive to barium, glibenclamide, and charybdotoxin. The increase in [Ca2+]i is partially due to influx through voltage-gated high-voltage-activated Ca2+ channels.  相似文献   

7.
The properties of a native Ca(2+)-activated large conductance K(+) channel (BK channel) present in the surface membrane of cultured human renal proximal tubule epithelial cells (RPTECs) were investigated by using the patch-clamp technique. The slope conductance of the BK channel was about 295 pS, and the channel was selective to K(+) over Na(+), with a selectivity ratio of about 12.2. The activity of the channel was almost maximally enhanced by 10(-4 )M or more Ca(2+) in the cytoplasmic surface of the patch membrane and was markedly diminished by reducing the cytoplasmic Ca(2+) to 10(-6) M at the membrane potential of about 0 mV. The depolarization of the patch membrane also enhanced the channel activity, and hyperpolarization lowered it. K(+) channel blockers, Ba(2+) (0.1-1 mM), tetraethylammonium (1 mM), and charybdotoxin (100 nM), were effective for the suppression of channel activity. A significant feature of the K(+) channel was that channel activity maintained by 10(-5)-10(-4 )M Ca(2+) in inside-out patches was inhibited by the addition of ATP (1-10 mM) to the bath solution. ATPgammaS, and a nonhydrolyzable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP), also had inhibitory effects on channel activity. However, an inhibitor of ATP-sensitive K(+) channels, glibenclamide (0.1 mM), induced no appreciable change in channel activity from both intra- and extracellular sides. These results suggest that besides the common natures of the BK channel family such as regulation by cytoplasmic Ca(2+) and membrane potential, the BK channel in RPTECs is directly inhibited by intracellular ATP independent of phosphorylation processes and sulfonylurea receptor.  相似文献   

8.
We have previously investigated the effects of extracellular ATP on the concentration of free cytosolic calcium ([Ca2+]i) from rat cultured neurohypophysial astrocytes (pituicytes). We demonstrated that ATP acts via a P2Y receptor to increase [Ca2+]i. In the present study, we examine the effect of ATP on K+ efflux using 86Rb+ as an isotopic tracer, in order to characterize the possible presence of a Ca2+-activated K+ conductance and to establish the implications of pituicytes in the regulation of stimulus-secretion coupling. ATP evoked an increase in 86Rb+ efflux from cultured pituicytes. This effect was Ca2+ dependent, as indicated by the unresponsiveness of cells loaded with BAPTA/AM (20 microM). Furthermore, the effect of ATP was mimicked by 2-methylthio-adenosine-5'-triphosphate (2MeSATP), a P2 purinoceptor agonist, and abolished by Reactive Blue 2 (RB-2), a selective P2Y antagonist, implying a role for the P2Y purinoreceptor. A pharmacological study revealed that Ba2+ and tetraethylammonium (TEA), two inhibitors of K+ channels, both strongly reduced the ATP-stimulated 86Rb+ efflux. In addition, the effect of ATP was modulated by different peptidic toxins. Apamin (100 nM), an inhibitor of the small-conductance Ca2+-activated K+ channels, partly blocked ATP-induced 86Rb+ efflux. Leiurus quinquestriatus hebraeus (LQH) scorpion venom (20 microg/ml) and Buthus tamulus (BT) scorpion venom (20-200 microg/ml) inhibited ATP-induced 86Rb+ efflux. The specificity of the effects of the crude venoms was checked using charybdotoxin (100 nM) and iberiotoxin (1 pM), which are the active toxins extracted from the LQH and BT venoms, respectively. These data indicate the involvement of several types of Ca2+-activated K+ channels in the ATP-dependent K+ efflux, and lead to the proposal that, in the neurohypophysis, extracellular ATP released by nerve terminals may act directly on the pituicytes and induce a K+ efflux via a P2Y purinoreceptor.  相似文献   

9.
The mechanisms by which active neurons, via astrocytes, rapidly signal intracerebral arterioles to dilate remain obscure. Here we show that modest elevation of extracellular potassium (K+) activated inward rectifier K+ (Kir) channels and caused membrane potential hyperpolarization in smooth muscle cells (SMCs) of intracerebral arterioles and, in cortical brain slices, induced Kir-dependent vasodilation and suppression of SMC intracellular calcium (Ca2+) oscillations. Neuronal activation induced a rapid (<2 s latency) vasodilation that was greatly reduced by Kir channel blockade and completely abrogated by concurrent cyclooxygenase inhibition. Astrocytic endfeet exhibited large-conductance, Ca2+-sensitive K+ (BK) channel currents that could be activated by neuronal stimulation. Blocking BK channels or ablating the gene encoding these channels prevented neuronally induced vasodilation and suppression of arteriolar SMC Ca2+, without affecting the astrocytic Ca2+ elevation. These results support the concept of intercellular K+ channel-to-K+ channel signaling, through which neuronal activity in the form of an astrocytic Ca2+ signal is decoded by astrocytic BK channels, which locally release K+ into the perivascular space to activate SMC Kir channels and cause vasodilation.  相似文献   

10.
Y Oshimi  S Miyazaki    S Oda 《Immunology》1999,98(2):220-227
The activation of macrophages by various stimuli leading to chemotactic migration and phagocytosis is known to be mediated by an increase in intracellular Ca2+ concentration ([Ca2+]i). We measured changes in [Ca2+]i using a Ca2+ imaging method in individual human macrophages differentiated from freshly prepared peripheral blood monocytes during culture of 1-2 days. A transient rise in [Ca2+]i (duration 3-4 min) occurred in 10-15 macrophages in the vicinity of a single tumour cell that was attacked and permeabilized by a natural killer cell in a dish. Similar Ca2+ transients were produced in 90% of macrophages by application of supernatant obtained after inducing the lysis of tumour cells with hypo-osmotic treatment. Ca2+ transients were also evoked by ATP in a dose-dependent manner between 0.1 and 100 microm. The ATP-induced [Ca2+]i rise was reduced to less than one-quarter in Ca2+-free medium, indicating that it is mainly due to Ca2+ entry and partly due to intracellular Ca2+ release. UTP (P2U purinoceptor agonist) was more potent than ATP or 2-chloro-ATP (P2Y agonist). Oxidized ATP (P2Z antagonist) had no inhibitory effect. Both cell lysate- and ATP-induced Ca2+ responses were inhibited by Reactive Blue 2 (P2Y and P2U antagonist) to the same extent, but were not affected by PPADS (P2X antagonist). Sequential stimuli by cell lysate and ATP underwent long-lasting desensitization in the Ca2+ response to the second stimulation. The present study supports the view that macrophages respond to signal messengers discharged from damaged or dying cells to be ingested, and ATP is at least one of the messengers and causes a [Ca2+]i rise via P2U and P2Y receptors.  相似文献   

11.
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K+, acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca2+ entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca2+ (CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca2+ that modulates catecholamine release. Targeted aequorins with different Ca2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+ transients, upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]c microdomains in which the local subplasmalemmal [Ca2+]c rises abruptly from 0.1 to approximately 50 microM, triggering CICR, mitochondrial Ca2+ uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca2+ uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca2+ redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca2+ release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca2+]c that regulate the early and late steps of exocytosis.  相似文献   

12.
Calcium signaling mediated by P2Y receptors in mouse taste cells   总被引:3,自引:0,他引:3  
Evidence implicates a number of neuroactive substances and their receptors in mediating complex cell-to-cell communications in the taste bud. Recently, we found that ATP, a ubiquitous neurotransmitter/neuromodulator, mobilizes intracellular Ca2+ in taste cells by activating P2Y receptors. Here, P2Y receptor-cellular response coupling was characterized in detail using single cell ratio photometry and the inhibitory analysis. The sequence of underlying events was shown to include ATP-dependent activation of PLC, IP3 production, and IP3 receptor-mediated Ca2+ release followed by Ca2+ influx. Data obtained favor SOC channels rather than receptor-operated channels as a pathway for Ca2+ influx that accompanies Ca2+ release. Intracellular Ca2+ mobilized by ATP is apparently extruded by the plasma membrane Ca2+-ATPase, while a contribution of the Na+/Ca2+ exchange and other mechanisms of Ca2+ clearance is negligible. Cyclic AMP-dependent phosphorylation is likely to control a gain of the phosphoinositide cascade involved in ATP transduction. ATP-responsive taste cells are abundant in circumvallate, foliate, and fungiform papillae. Taken together, our observations point to a putative role for ATP as a neurotransmitter operative in the taste bud.  相似文献   

13.
The present study presents the first evidence for P2Y-type adenosine 5'-triphosphate (ATP) receptors on the basolateral membranes of frog skin epithelial cells. Cytosolic calcium ([Ca2+]i) was measured with fura-2 and Calcium-Green-1 using epifluorescence microscopy and confocal laser scanning microscopy respectively. In the presence of Ca2+ in the solutions ATP increased [Ca2+]i. The increase in [Ca2+]i was due to the agonist activity of ATP and not to the activity of the potential products of ATP metabolism, i.e. adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) or adenosine, as shown by a comparison of the magnitude of the increases in [Ca2+]i caused by the various compounds. The rise in [Ca2+]i was predominantly monophasic at low ATP concentrations (below 100 microM). At higher concentrations the initial spike was followed by a plateau phase. In the absence of Ca2+ in the extracellular solution ATP caused Ca2+ release from intracellular stores. This could be inhibited by pre-treatment of the tissue with 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum calcium ATPase. The nucleotide uridine 5'-triphosphate (UTP) had similar effects on [Ca2+]i although the plateau level of the [Ca2+]i response was higher with this P2Y agonist. Confocal laser scanning microscopy showed that all cell layers of the epithelium responded to ATP. Our data indicates that serosal ATP acts on serosal P2Y-type receptors in frog skin epithelium. This is the first evidence of a phospholipase C-coupled receptor in this tissue.  相似文献   

14.
Airway mucociliary clearance is subject to the autocrine/paracrine regulation of extracellular nucleotides released from the airway epithelial cells. The present study was performed in pursuit of effective modulators of ATP release under physiologic conditions in polarized human airway epithelial cells (Calu-3). Neither isoproterenol, forskolin, nor ionomycin augmented extracellular ATP release detected by luciferase assay. However, direct activation of the human intermediate conductance, Ca(2+)-activated K(+) channel (hIK-1) by 1-ethyl-2-benzimdazolinone (1-EBIO, 1 mM) and chlorzoxazone (CZ, 1 mM) increased ATP release predominantly in the apical compartment. Measurement of fluo-3 signals revealed that 1-EBIO- and CZ-stimulated cytosolic Ca(2+) mobilization was suppressed by the presence of MRS-2179, a specific P2Y(1) receptor antagonist. The hIK-1-mediated ATP release was inhibited by a hIK-1 blocker (charybdotoxin), and an Na(+)-K(+)-2Cl(-) cotransport blocker (bumetanide) without interruption by GdCl(3), an inhibitor of stretch-activated nonselective cation (SA) channels, or glybenclamide, a blocker of the cystic fibrosis transmembrane conductance regulator (CFTR). These results suggest that a cell volume decrease via the hIK-1-mediated KCl loss and the resultant induction of a regulatory volume increase via the Na(+)-K(+)-2Cl(-) transporter may trigger release of ATP, which causes P2Y(1)-mediated Ca(2+) mobilization, through mechanisms unrelated to the CFTR and SA channels.  相似文献   

15.
BK channels in human glioma cells   总被引:4,自引:0,他引:4  
Ion channels in inexcitable cells are involved in proliferation and volume regulation. Glioma cells robustly proliferate and undergo shape and volume changes during invasive migration. We investigated ion channel expression in two human glioma cell lines (D54MG and STTG-1). With low [Ca2+]i, both cell types displayed voltage-dependent currents that activated at positive voltages (more than +50 mV). Current density was sensitive to intracellular cation replacement with the following rank order; K+ > Cs+ approximately = Li+ > Na+. Currents were >80% inhibited by iberiotoxin (33 nM), charybdotoxin (50 nM), quinine (1 mM), tetrandrine (30 microM), and tetraethylammonium ion (TEA; 1 mM). Extracellular phloretin (100 microM), an activator of BK(Ca2+) channels, and elevated intracellular Ca2+ negatively shifted the I-V curve of whole cell currents. With 0, 0.1, and 1 microM [Ca2+]i, the half-maximal voltages, V(0.5), for whole cell current activation were +150, +65, and +12 mV, respectively. Elevating [K+]o potentiated whole cell currents in a fashion proportional to the square-root of [K+]o. Recording from cell-attached patches revealed large conductance channels (150-200 pS) with similar voltage dependence and activation kinetics as whole cell currents. These data indicate that human glioma cells express large-conductance, Ca2+ activated K+ (BK) channels. In amphotericin-perforated patches bradykinin (1 microM) activated TEA-sensitive currents that were abolished by preincubation with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM). The BK channels described here may influence the responses of glioma cells to stimuli that increase [Ca2+]i.  相似文献   

16.
AIM: Thyrotropin-releasing hormone (TRH) induces biphasic changes in the electrical activity, the cytosolic free Ca2+ concentration ([Ca2+]i), and prolactin secretion from both GH cells and native lactotrophs. It is well established that inhibition of erg channels contributes to the second phase of the TRH response. We have investigated if BK channels are also involved. RESULTS: The BK channels may be active at the resting membrane potential (open probability, Po=0.01) in clonal rat anterior pituitary cells (GH4), which makes it possible that inhibition of these channels may contribute to the reduced K+ conductance during the TRH response. The specific BK channel blocker iberiotoxin (IbTx, 100 nm) had no effect on the resting conductance at holding potentials negative to -40 mV, but significantly reduced the conductance at shallower membrane potentials. This corresponds to the voltage dependency of the sustained [Ca2+]i. Furthermore, IbTx increased the action potential frequency by 36% in spontaneously firing cells. During the second phase of the TRH response, the action potential frequency increased by 34%, concomitantly with 61% reduction of the Po of single BK channels. The protein kinase C (PKC)-activating phorbol ester TPA had no significant effect on BK channel Po within the normal range of the resting potential. CONCLUSION: The BK channels may contribute to the resting membrane conductance, and they are partially inhibited by TRH during the second phase. This modulation seems not to depend on PKC. We propose that inhibition of erg and BK channels acts in concert to enhance the cell excitability during the second phase of the response to TRH.  相似文献   

17.
Terbutaline (10 microm) induced a triphasic volume change in alveolar type II (AT-II) cells: an initial shrinkage (initial phase) followed by cell swelling (second phase) and a gradual shrinkage (third phase). The present study demonstrated that the initial and the third phases are evoked by the activation of K+ and Cl- channels and the second phase is evoked by the activation of Na+ and Cl- channels. Ouabain blocked the third phase, although it did not block the initial and second phases. This suggests that the third phase is triggered by the Na+-K+ pump. Tetraethylammonium (TEA, a K+ channel blocker) decreased the volume of AT-II cells and enhanced the terbutaline-stimulated third phase, although quinidine, another K+ channel blocker, increased the volume of AT-II cells. The TEA-induced cell shrinkage was inhibited by ouabain, suggesting that TEA increases Na+-K+ pump activity. Ba2+, 2,3-diaminopyridine and a high [K+]o (30 mm) similarly decreased the volume of AT-II cells. These findings suggest that depolarization induced by TEA increases Na+-K+ pump activity, which increases [K+]i. This [K+]i increase, in turn, hyperpolarizes membrane potential. Valinomycin (a K+ ionophore), which induces hyperpolarization, decreased the volume of AT-II cells and enhanced the third phase in these cells. In conclusion, in terbutaline-stimulated AT-II cells, an increase in Na+-K+ pump activity hyperpolarizes the membrane potential and triggers the third phase by switching net ion transport from NaCl entry to KCl release.  相似文献   

18.
The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current.Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.  相似文献   

19.
Apical uridine triphosphate (UTP) stimulation was shown to increase short circuit current (I(sc)) in immortalized porcine endometrial gland epithelial monolayers. Pretreatment with the bee venom toxin apamin enhanced this response. Voltage-clamp experiments using amphotericin B-permeablized monolayers revealed that the apamin-sensitive current increased immediately after UTP stimulation and was K(+) dependent. The current-voltage relationship was slightly inwardly rectifying with a reversal potential of -52 +/- 2 mV, and the P(K)/P(Na) ratio was 14, indicating high selectivity for K(+). Concentration-response relationships for apamin and dequalinium had IC(50) values of 0.5 nm and 1.8 microm, respectively, consistent with data previously reported for SK3 channels in excitable cells and hepatocytes. Treatment of monolayers with 50 microm BAPTA-AM completely blocked the effects of UTP on K(+) channel activation, indicating that the apamin-sensitive current was also Ca(2+) dependent. Moreover, channel activation was blocked by calmidazolium (IC(50) = 5 microm), suggesting a role for calmodulin in Ca(2+)-dependent regulation of channel activity. RT-PCR experiments demonstrated expression of mRNA for the SK1 and SK3 channels, but not SK2 channels. Treatment of monolayers with 20 nm oestradiol-17beta produced a 2-fold increase in SK3 mRNA, a 2-fold decrease in SK1 mRNA, but no change in GAPDH mRNA expression. This result correlated with a 2.5-fold increase in apamin-sensitive K(+) channel activity in the apical membrane. We speculate that SK channels provide a mechanism for rapidly sensing changes in intracellular Ca(2+) near the apical membrane, evoking immediate hyperpolarization necessary for increasing the driving force for anion efflux following P2Y receptor activation.  相似文献   

20.
Activation of large conductance Ca2+-activated K+ channels (BK channels) in intact clonal rat pituitary cells (GH4 cells) was investigated using the cell-attached patch-clamp configuration. This method prevents loss of intracellular factors which might influence channel activity. BK channels are generally considered to be inactive at the resting membrane potential in excitable cells. However, at the resting potential (0 mV pipette potential), 40% of the cell-attached patches displayed spontaneously active BK channels, which remained active even at 20 mV hyperpolarization. The peptide thyroliberin (TRH) elevates the cytosolic Ca2+ concentration ([ Ca2+]i) in GH cells by IP3-induced release of Ca2+ from intracellular stores. This rise in [Ca2+]i occurs concomitantly with membrane hyperpolarization. TRH stimulation caused activation of BK channels in nine out of 30 silent cell-attached patches, and caused enhanced channel activity in seven out of 29 cell-attached patches containing spontaneously active BK channels. The Ca2+ ionophore ionomycin activated silent BK channels in three out of 10 cell-attached patches, and increased the activity of spontaneously active BK channels in seven out of 16 cell-attached patches. The pipette potential was clamped to 0 mV in all these experiments. We conclude that the BK channels in GH4 cells may be active at the resting membrane potential and more negative membrane potentials. The channels may also be activated further by physiological elevations of [Ca2+]i in the same potential range. Our results point towards new possible physiological roles for the BK channels in GH4 cells. This is in agreement with the emerging picture of BK channels highly sensitive to [Ca2+]i in a wide variety of cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号