首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The spine journal》2021,21(8):1387-1398
Background contextLow back pain is commonly attributed to intervertebral disc (IVD) degeneration. IVD resembles articular cartilage in its biochemical and cellular composition in many ways. For articular cartilage, degeneration stage-specific characteristic spatial chondrocyte patterns have recently been described.PurposeThis study addresses how spatial chondrocyte organization in the IVD changes from early embryonic development to end stage degeneration.Study designEx vivo immunohistochemical analysis.MethodsWe immunohistochemically investigated bovine IVD-tissue (n=72) from early embryonic development to early disc degeneration and human adult IVD-tissue (n=25) operated for trauma or degeneration for cellular density and chondrocyte spatial organization. IVD samples were sectioned along the main collagen fiber orientation. Nuclei were stained with DAPI and their number and spatial patterns were analyzed in an area of 250,000 µm² for each tissue category.ResultsThe initially very high cellular density in the early embryonic bovine disc (11,431 cells/mm²) steadily decreases during gestation, growth and maturation to about 71 cell/mm² in the fully grown cattle. Interestingly, in human degenerative discs, a new increase in this figure could be noted (184 cells/mm). The IVD chondrocytes appear to be predominantly present as single cells. Especially in the time after birth, string-formations represent up to 32% of all cells in the anulus fibrosus, although single cells are the predominant spatial pattern (>50%) over the entire time. With increasing degeneration, the relative proportion of single cells in human IVDs continuously decreases (12%). At the same time, the share of cells organized in clusters increases (70%).ConclusionSimilar to articular cartilage, spatial chondrocyte organization appears to be a strong indicator for local tissue degeneration in the IVD.Clinical SignificanceIn the future these findings may be important for the detection and therapy of IVD degeneration in early stages.  相似文献   

2.
Background contextBupivacaine is a local anesthetic commonly used to relieve or control pain in interventional spine procedures. Bupivacaine has been shown to be toxic to articular cartilage, which has similarities to intervertebral disc (IVD) cartilage, raising concern over a potentially negative effect of bupivacaine on the disc.PurposeTo determine bupivacaine's effect on cell viability of IVD cells in vitro and to elucidate whether this is through apoptosis or necrosis.Study designIn vitro controlled study of bupivacaine effect on cell viability in human and rabbit IVD cells.SubjectsRabbit annulus fibrosus (AF) tissue, nucleus pulposus (NP) cells, and knee articular chondrocytes were isolated from New Zealand white rabbits. Human AF and NP cells were isolated from stage 3 to 4 degenerative disc surgical specimens.Outcome measuresCell viability was assessed after exposure to bupivacaine via trypan blue staining or flow cytometry.MethodsAnnulus fibrosus and NP cells were grown in monolayer and alginate beads, respectively, to simulate their physiologic environment. The cells were then exposed to bupivacaine or saline control at 60 and 120 minutes and examined for cell viability.ResultsRabbit NP cell death demonstrated a time and dose dependence in response to bupivacaine. In addition, cell death was greater than that observed for articular chondrocytes. Rabbit AF tissue also demonstrated increased cell death in response to bupivacaine exposure. Human NP cells demonstrated time-dependent cell death, with greater necrosis than apoptosis. Annulus fibrosus cells grown in monolayers also resulted in similar effects, with greater necrosis rather than apoptosis.ConclusionsDespite its pain relieving properties, bupivacaine decreases cell viability in rabbit and human disc cells in a time-dependent manner. In addition, the changes observed are greater than that seen for articular chondrocytes. This increase in cell death appears to be related to an increase in necrosis rather than apoptosis. Whether bupivacaine exerts similar effects in vivo or how this relates to overall clinical outcome remains to be explored.  相似文献   

3.
The notochordal cell (NC) of the nucleus pulposus (NP) is considered a potential NP progenitor cell, and early intervertebral disk (IVD) degeneration involves replacement of NCs by chondrocyte-like cells (CLCs). Wnt/β-catenin signaling plays a crucial role in maintaining the notochordal fate during embryogenesis, but is also involved in tissue degeneration and regeneration. The canine species, which can be subdivided into non-chondrodystrophic and chondrodystrophic breeds, is characterized by differential maintenance of the NC: in non-chondrodystrophic dogs, the NC remains the predominant cell type during the majority of life, with IVD degeneration only occurring at old age; conversely, in chondrodystrophic dogs the NC is lost early in life, with concurrent degeneration of all IVDs. This study investigated Wnt/β-catenin signaling in the healthy, NC-rich NP and early degenerated, CLC-rich NP of both breed types by immunohistochemistry of β-catenin and relative gene expression of brachyury and cytokeratin 8 (notochordal markers) and Wnt targets axin2, cyclin D1, and c-myc. Both NCs and CLCs showed nuclear and cytoplasmic β-catenin protein expression and axin2 gene expression, but β-catenin signal intensity and Wnt target gene expression were higher in the CLC-rich NP. Primary NCs in monolayer culture (normoxic conditions) showed Wnt/β-catenin signaling comparable to the in vivo situation, with increased cyclin D1 and c-myc gene expression. In conclusion, Wnt/β-catenin signaling activity in the NC within the NC-rich NP and in culture supports the role of this cell as a potential progenitor cell; increased Wnt/β-catenin signaling activity in early IVD degeneration may be a reflection of its dual role.  相似文献   

4.
Background contextIntervertebral disc (IVD) cells exhibit diverse biologic responses to compressive stress depending on the compressive stress type, magnitude, duration, and anatomic zone of IVD cell origin. The previous studies mainly focused on the effects of compressive stress on animal IVD tissue. Few studies have investigated the response of human IVD tissue to compressive stress.PurposeTo assess the effect of dynamic cyclic compressive stress on biosynthesis of collagen and glycosaminoglycan of human inner annulus fibrosus (AF) and nucleus pulposus (NP) cells.Study design/settingObservation of moderate and high magnitudes of compressive stress on human IVD cell biosynthesis.Patient sampleHuman IVD of adolescent idiopathic scoliosis case undergoing thoracoscopic discectomy and fusion was collected.Outcome measuresCell morphology, cell proliferation assay, as well as collagen and glycosaminoglycan content were examined in vitro.MethodsIntervertebral discs were cultured under 0.2 or 0.4 MPa of compressive stress at 1 Hz for 2 hours twice a day up to 7 days. These were compared with samples unloaded. The analysis was done via electron microscopy examination, cell proliferation assay, as well as collagen and glycosaminoglycan content analysis.ResultsCollagen and glycosaminoglycan content in the inner AF and NP cells cultured under 0.2 MPa of compressive stress was significantly higher than that in the control cells but was significantly lower than that in the control cells under 0.4 MPa of compressive stress. The number of endoplasmic reticulum in the inner AF and NP cells cultured under 0.2 MPa of compressive stress was significantly higher than that in the control cells but was significantly lower than that in the control cells under 0.4 MPa of compressive stress.ConclusionThese findings imply that biosynthetic characteristics of human inner AF and NP cells may vary under varying degrees of compressive stresses, which may result in varying amounts of extracellular matrix being secreted.  相似文献   

5.
Our hypothesis is that physiological mineralization within the mammalian growth plate is a consequence of communication between cartilage chondrocytes and cells within metaphyseal bone. To test this hypothesis, chondrocytes were isolated from the proliferative region of the fetal ovine physis and co-cultured with cells or conditioned medium from cells characteristic of those in metaphyseal bone. The mineralization potential of chondrocytes alone and in the presence of other cells or conditioned medium was determined by 45calcium incorporation. Co-culture of chondrocytes with a crude cell isolate from metaphyseal bone resulted in a stimulation of 45calcium incorporation of 93% above that observed in the individual cell populations alone. Conditioned medium from metaphyseal bone cultures also stimulated 45calcium incorporation. This response to conditioned medium was dose-dependent and stable to 90°C. Vascular endothelial cells and conditioned medium from chondrocyte and osteoblast cultures did not stimulate 45calcium incorporation by physeal chondrocytes. Thus, cells found in the metaphyseal bone produce a soluble factor, which promote calcium incorporation by physeal chondrocytes. The source of this factor is not chondrocytic, osteoblastic, or endothelial in origin. Received: March 27, 2000 / Accepted: June 5, 2000  相似文献   

6.
In an attempt to restore articular cartilage, allogeneic articular chondrocytes embedded in collagen gels were transplanted onto full-thickness defects in rabbit articular cartilage. Within 24 weeks after the transplantation, the defects were filled with hyaline cartilage, specifically synthesizing type II collagen. These chondrocytes were autoradiographically proven to be originated from the originally transplanted chondrocytes. As histologically assessed, success rate was about 80%, a marked improvement over the results (40% success rate) in previous studies reporting chondrocyte transplantation without collagen gels. On the other hand, the defects without chondrocyte transplantation healed with fibrocartilaginous tissue more than 24 weeks after treatment. Immunological enhancement induced by transplanted allogeneic chondrocytes or collagen was not significant for eight weeks after treatment, so far as shown by both direct and indirect blastformation reactions. Thus, allogeneic transplantation of isolated chondrocytes embedded in collagen gels appears to be one of the most promising methods for the restoration of articular cartilage.  相似文献   

7.
Matrix metalloproteinases (MMPs) regulate connective tissue architecture and cell migration through extracellular matrix (ECM) degradation and are associated with both physiological and pathological processes. Although they are known to play a role in skeletal development, little is known about the role of MMPs in intervertebral disc (IVD) development. Sixteen fetal human lumbar spine segments, obtained at autopsy, were compared with five normal, non-fetal L4–L5 IVDs. Intensity and/or localization of immunohistochemical staining for MMP-1, -2, -3 and -14 were evaluated by three independent observers. MMP-2 production and activation was quantified by gelatin zymography. MMP-1 and -14 were abundantly present in the nucleus pulposus (NP) and notochordal (NC) cells of the fetal IVDs. In non-fetal IVDs, MMP-1 and -14 staining was significantly less intense (p = 0.001 and p < 0.001, respectively). MMP-3 was found in almost the entire IVD with no significant difference from non-fetal IVDs. MMP-2 staining in the NC and NP cells of the fetal IVD was moderate, but weak in the non-fetal IVD. Gelatin zymography showed a negative correlation of age with MMP-2 activity (p < 0.001). MMP-14 immunostaining correlated positively with MMP-2 activity (p = 0.001). For the first time, the presence of MMP-1, -2, -3 and -14 in the fetal human IVD is shown and the high levels of MMP-1, -2 and -14 suggest a role in the development of the IVD. In particular, the gradual decrease in MMP-2 activation during gestation pinpoints this enzyme as key player in fetal development, possibly through activation by MMP-1 and -14.  相似文献   

8.
Abstract Injuries to articular cartilage are commonly encountered in orthopedic sports medicine. These lesions can lead to sport invalidity and premature osteoarthritis. The management of chondral and osteochondral lesions represents a challenge to clinicians and scientists. The aim of the therapy has to be the recurrence to former sport levels and the prevention of early osteoarthritis. Today there are different concepts of treatment. One therapy principle is the recruitment of mesenchymal stem cells. These procedures lead at best to fibrocartilaginous repair tissue that is functionally inferior to normal hyaline cartilage. Another group of procedures is the transplantation of autologous osteochondral grafts, which provide repair with a hyaline cartilage matrix and show good clinical medium-term results. But osteochondral grafts are limited and there is a potential donor-site morbidity. Finally, the transplantation of autologous chondrocytes is used. However, this kind of transplantation repairs the chondral injury only by fibrocartilaginous repair tissue, too. Therefore, new techniques for the treatment of articular cartilage injuries have to be established. The most promising field today is the combination of tissue-engineering and gene therapeutic methods for the treatment of the chondral and osteochondral lesions.  相似文献   

9.
Background contextIntervertebral disc (IVD) degeneration often causes back pain. Current treatments for disc degeneration, including both surgical and nonsurgical approaches, tend to compromise the disc movement and cannot fully restore functions of the IVD. Instead, cell-based IVD tissue engineering seems promising as an ultimate therapy for IVD degeneration.PurposeTo tissue-engineer an IVD ex vivo as a biological substitute to replace degenerative IVD.Study designAn extracellular matrix (ECM) structure-mimetic scaffold, cocultured human IVD cells and human mesenchymal stem cells (hMSCs), and mechanical stimulation were used to biofabricate a tissue-engineered IVD.MethodsAn optimal ratio of human annulus fibrosus (hAF) cells to hMSCs for AF generation within aligned nanofibers, and that of human nucleus pulposus (hNP) cells to hMSCs for NP generation within hydrogels were first determined after comparing different coculture ratios of hAF or hNP cells to hMSCs. Nanofibrous strips seeded with cocultured hAF cells/hMSCs were constructed into multilayer concentric rings, enclosing an inner core of hydrogel seeded with hNP cells/hMSCs. A piece of nonwoven nanofibrous mat seeded with hMSC-derived osteoblasts was assembled on the top of the cellular nanofiber/hydrogel assembly, as an interface layer between the cartilagenous end plate and vertebral body. The final assembled construct was then maintained in an osteochondral cocktail medium and stimulated with compressive loading to further enhance the hAF and hNP cells differentiation and increase the IVD ECM production.ResultsAmong all cocultured groups, hAF cells and hMSCs in the ratio of 2:1 cultured in nanofibers showed the closest mRNA expression levels of AF-related markers to positive control hAF cells, whereas hNP cells and hMSCs in the ratio of 1:2 cultured in hydrogels showed the closest expression levels of NP-related markers to positive control hNP cells. The effects of compressive loading on chondrogenesis of hAF or hNP cell and hMSC coculture were dependent on the scaffold structure; the expression of cartilage-related markers in AF nanofibers was downregulated, whereas that in NP hydrogel was upregulated. Interestingly, we found that hMSC-derived osteogenic cells in the interface layer were turned into chondrogenic lineage cells, with decreased expression of osteogenic markers and increased expression of chondrogenic markers.ConclusionsWe demonstrate a unique approach using a biomimetic scaffold, IVD and stem cell coculture, and mechanical stimulation to tissue-engineer a biological IVD substitute. The results show that our approach provides both favorable physical and chemical cues through cell-matrix and cell-cell interactions and mechanobiological induction to enhance IVD generation ex vivo. Our findings may lead to viable tissue engineering applications of generating a functional biological IVD for the treatment of disc degeneration.  相似文献   

10.
Intervertebral disc (IVD) degeneration is the most common cause of low back pain, which affect 80% of the population during their lives, with heavy economic burden. Many factors have been demonstrated to participate in IVD degeneration. In this study, we investigated the role of short stature homeobox 2 (SHOX2) in the development of IVD degeneration. First, we detected the expression of SHOX2 in different stages of human IVD degeneration; then explored the role of SHOX2 on nucleus pulposus (NP) cells proliferation and apoptosis, finally we evaluated the effect of SHOX2 on the production of extracellular matrix in NP cells. Results showed that the expression of SHOX2 is mainly in NP compared with AF tissues, its expression decreased with the severity of human IVD degeneration. TNF‐α treatment led to dose‐ and time‐dependent decrease in SHOX2 mRNA, protein expression and promoter activity in NP cells. The silencing of SHOX2 inhibited NP cells proliferation and induced NP cells apoptosis. Finally, SHOX2 silencing led to decreased aggrecan and collagen II expression, along with increased ECM degrading enzymes MMP3 and ADAMTS‐5 in NP cells. In summary, our results indicated that SHOX2 plays an important role in the process of IVD degeneration, and might be a protective factor for IVD degeneration. Further studies are required to confirm its exact role, and clarify the mechanism. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1047–1057, 2017.
  相似文献   

11.
Background contextThe population of senescent disc cells has been shown to increase in degenerated or herniated discs. However, the mechanism and signaling pathway involved in the senescence of nucleus pulposus (NP) chondrocytes are unknown.PurposeTo demonstrate the mechanisms involved in the senescence of NP chondrocytes.Study design/settingSenescence-related markers were assessed in the surgically obtained human NP specimens.Patient sampleNP specimens remaining in the central region of the intervertebral disc were obtained from 25 patients (mean: 49 years, range: 20–75 years) undergoing discectomy. Based on the preoperative magnetic resonance images, there were 3 patients with Grade II degeneration, 17 patients with Grade III degeneration, and 5 patients with Grade IV degeneration.Outcome measuresWe examined cell senescence markers (senescence-associated β-galactosidase [SA-β-gal], telomere length, telomerase activity, p53, p21, pRB, and p16) and the hydrogen peroxide (H2O2) content as a marker for an oxidative stress in the human NP specimens.MethodsSA-β-gal expression, telomere length, telomerase activity, and H2O2 content as well as their relationships with age and degeneration grades were analyzed. For the mechanism involved in the senescence of NP chondrocytes, expressions of p53, p21, pRB, and p16 in these cells were assessed with immunohistochemistry and Western blotting.ResultsThe percentages of SA-β-gal-positive NP chondrocytes increased with age (r=.82, p<.001), whereas the telomere length and telomerase activity declined (r=?.41, p=.045; r=?.52, p=.008, respectively) However, there was no significant correlation between age and H2O2 contents (p=.18). The NP specimens with Grade III or Grade IV degeneration showed significantly higher percentages of SA-β-gal-positive NP chondrocytes than those with Grade II degeneration (p=.01 and p=.025, respectively). Immunohistochemistry showed that the senescent NP chondrocytes in all the specimens expressed p53, p21, and pRB, but a few NP chondrocytes in only two specimens expressed p16. Western blotting showed that the expressions of p53, p21, and pRB displayed a corresponding pattern, that is, a strong p53 expression led to strong p21 and pRB expressions and vice versa.ConclusionsOur in vivo study demonstrated that senescent NP chondrocytes increased or accumulated in the NP with increasing age and advancing disc degeneration. The NP chondrocytes in the aging discs exhibited characteristic senescent features such as an increased SA-β-gal expression, shortened telomeres, and decreased telomerase activity. We further demonstrated that the telomere-based p53-p21-pRB pathway, rather than the stress-based p16-pRB pathway, plays a more important role in the senescence of NP chondrocytes in an in vivo condition. Our results suggest that prevention or reversal of the senescence of NP chondrocytes can be a novel therapeutic target for human disc degeneration.  相似文献   

12.
There is a need to develop mechanically active culture systems to better understand the role of mechanical stresses in intervertebral disc (IVD) degeneration. Motion segment cultures that preserve the native IVD structure and adjacent vertebral bodies are preferred as model systems, but rapid ex vivo tissue degeneration limits their usefulness. The stability of rat and rabbit IVDs is of particular interest, as their small size makes them otherwise suitable for motion segment culture. The goal of this study was to determine if there are substantial differences in the susceptibility of rat and rabbit IVDs to culture‐induced degeneration. Lumbar IVD motion segments were harvested from young adult male Sprague–Dawley rats and New Zealand White rabbits and cultured under standard conditions for 14 days. Biochemical assays and safranin‐O histology showed that while glycosaminoglycan (GAG) loss was minimal in rabbit IVDs, it was progressive and severe in rat IVDs. In the rat IVD, GAG loss was concomitant with the loss of notochordal cells and the migration of endplate (EP) cells into the nucleus pulposus (NP). None of these changes were evident in the rabbit IVDs. Compared to rabbit IVDs, rat IVDs also showed increased matrix metalloproteinase‐3 (MMP‐3) and sharply decreased collagen type I and II collagen expression. Together these data indicated that the rabbit IVD was dramatically more stable than the rat IVD, which showed culture‐related degenerative changes. Based on these findings we conclude that the rabbit motion segments are a superior model for mechanobiologic studies. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 838–846, 2013  相似文献   

13.
《The spine journal》2020,20(9):1480-1491
BACKGROUND CONTEXTNonphysiological mechanical loading and inflammation are both critically involved in intervertebral disc (IVD) degeneration, which is characterized by an increase in cytokines and matrix metalloproteases (MMPs) in the nucleus pulposus (NP). This process is known to be mediated by the NF-κB pathway.CLINICAL SIGNIFICANCECurrent clinical treatments for IVD degeneration focus on the alleviation of symptoms rather than targeting the underlying mechanism. Injection of an NF-κB inhibitor may attenuate the progression of IVD degeneration.PURPOSETo investigate the ability of the NF-κB inhibitor, NEMO binding domain peptide (NBD), to alter IVD degeneration processes by reducing IL-1β- and mechanically-induced cytokine and MMP levels in human nucleus pulposus cells in vitro, and by attenuating IVD degeneration in an in vivo rat model for disc degeneration.STUDY DESIGNExperimental in vitro and animal model.PATIENT SAMPLEDiscarded specimens of lumbar disc from 21 patients, and 12 Sprague Dawley rats.OUTCOME MEASURESGene and protein expression, cell viability, µMRI and histology.METHODSIL-1β-prestimulated human nucleus pulposus cells embedded into fibrin constructs were loaded in the Flexcell FX-5000 compression system at 5 kPa and 1 Hz for 48 hours in the presence and absence of NBD. Unloaded hNPC/fibrin constructs served as controls. Cell viability in loaded and unloaded constructs was quantified, and gene and protein expression levels determined. For in vivo testing, a rat needle disc puncture model was employed. Experimental groups included injured discs with and without NBD injection and uninjured controls. Levels of disc degeneration were determined via µMRI, qPCR and histology. Funding sources include $48,874 NASS Young Investigator Research Grant and $119,174 NIH 5K01AR071512-02. There were no applicable financial relationships or conflicts of interest.RESULTSMechanical compression of hNPC/fibrin constructs resulted in upregulation of MMP-3 and IL-8. Supplementation of media with 10 μM NBD during loading increased cell viability, and decreased MMP-3 gene and protein levels. IVD injury in rat resulted in an increase in MMP-3, IL-1β and IL-6 gene expression. Injections of 250 µg of NBD during disc injury resulted in decreased IL-6 gene expression. µMRI analysis demonstrated a reduction of disc hydration in response to disc needle injury, which was attenuated in NBD-treated IVDs. Histological evaluation showed NP and AF lesion in injured discs, which was attenuated by NBD injection.CONCLUSIONSThe results of this study show NBD peptide's capacity to reduce IL-1β- and loading-induced MMP-3 levels in hNPC/fibrin constructs while increasing the cells’ viability, and to attenuate IVD degeneration in rat, involving downregulation of IL-6. Therefore, NBD may be a potential therapeutic agent to treat IVD degeneration.  相似文献   

14.
Background contextIt has been shown that bupivacaine, the most commonly used local anesthetic to relieve or control pain in interventional spine procedures, is cytotoxic to intervertebral disc (IVD) cells in vitro. However, some other common local anesthetics, such as ropivacaine and lidocaine, are also frequently used in the treatment of spine-related pain, and the potential effects of these agents remain unclear.PurposeThe purpose of this study was to evaluate the effect of various local anesthetics on rabbit IVD cells in vitro and further compare the cytotoxicity of ropivacaine, bupivacaine, lidocaine, and saline solution control.Study designControlled laboratory study.SubjectsRabbit annulus fibrosus (AF) and nucleus pulposus (NP) cells were isolated from Japanese white rabbits.MethodsBoth AF and NP cells at the second generation maintained in monolayer were exposed to various concentrations of local anesthetics (eg, bupivacaine) or different durations of exposure and evaluated for cell viability by use of cell counting kit-8 (CCK-8). In addition, to compare the cytotoxicity of ropivacaine, bupivacaine, lidocaine, and saline solution control in commercial concentration, the viability was analyzed by flow cytometry after 60-minute exposure, and the morphologic changes were observed by the phase-contrast microscopy. Apoptosis and necrosis of IVD cells were confirmed by using fluorescence microscopy with double staining of Hoechst 33342 and propidium iodide.ResultsRabbit IVD cell death demonstrated a time and dose dependence in response to bupivacaine and lidocaine. However, ropivacaine only exerted a significant time-dependent effect on IVD cells. There was no significant difference in IVD viability after treatment with different doses of ropivacaine. In addition, the results showed that lidocaine was the most toxic of the three local anesthetics and that ropivacaine presented less cytotoxicity than lidocaine and bupivacaine. Fluorescence microscopy also confirmed that the short-term toxic effect of local anesthetics on both AF and NP cells was mainly caused by necrosis rather than apoptosis.ConclusionsResults show that bupivacaine and lidocaine decrease cell viability in rabbit IVD cells in a dose- and time-dependent manner. All local anesthetics should be avoided if at all possible. Ropivacaine may be a choice if necessary, but it is also toxic. The increase in cell death is more related with cell necrosis rather than cell apoptosis. If these results can be corroborated in tissue explant models or animal studies, caution regarding diagnosing, treating, and controlling spine-related pain with local anesthetics is prompted.  相似文献   

15.

Purpose

To investigate the effects on evoked thalamic neuronal activity of application of notochordal cells and chondrocyte-like cells derived from nucleus pulposus (NP) onto a dorsal root ganglion (DRG) and to compare these effects with a previously reported increased thalamic activity induced by NP.

Methods

Nucleus pulposus was harvested from tail discs of adult rats and the disc cells were separated into two cell populations, notochordal cells and chondrocyte-like cells. The two cell populations were applied separately, or in combination, to the L4 DRG of anaesthetised female Sprague–Dawley rats during acute electrophysiological experiments. In control experiments, cell suspension medium was applied on the DRG. Recordings from the contralateral thalamus were sampled for 40 min while electrically stimulating the ipsilateral sciatic nerve at above Aδ-fibre thresholds.

Results

Application of notochordal cells resulted in a decrease in evoked thalamic activity within 10 min while chondrocyte-like cells did not induce any changes during the 40 min of recording. The difference in evoked thalamic activity 40 min after notochordal and chondrocyte-like cell application, respectively, was statistically significant. Neither an increased concentration of chondrocyte-like cells alone nor a combination of the two cell populations induced any changes in thalamic activity.

Conclusions

Separate exposure of the DRG to the two NP-derived cell populations induced different effects on evoked thalamic activity, but none of the tested cell samples induced an increase in neuronal activity similar to that previously observed with NP. This indicates a high complexity of the interaction between NP and nervous tissue.  相似文献   

16.
Background contextThe intervertebral disc (IVD) possesses a minimal capability for self-repair and regeneration. Changes in the differentiation of resident progenitor cells can represent diminished tissue regeneration and a loss of homeostasis. We previously showed that progenitor cells reside in the nucleus pulposus (NP). The effect of the degenerative process on these cells remains unclear.PurposeWe sought to explore the effect of IVD degeneration on the abundance of resident progenitor cells in the NP, their differentiation potential, and their ability to give rise to NP-like cells. We hypothesize that disc degeneration affects those properties.Study designNucleus pulposus cells derived from healthy and degenerated discs were methodically compared for proliferation, differentiation potential, and ability to generate NP-like cells.MethodsIntervertebral disc degeneration was induced in 10 skeletally, mature mini pigs using annular injury approach. Degeneration was induced in three target discs, whereas intact adjacent discs served as controls. The disc degeneration was monitored using magnetic resonance imaging for 6 to 8 weeks. After there was a clear evidence of degeneration, we isolated and compared cells from degenerated discs (D-NP cells [NP-derived cells from porcine degenerated discs]) with cells isolated from healthy discs (H-NP cells) obtained from the same animal.ResultsThe comparison showed that D-NP cells had a significantly higher colony-forming unit rate and a higher proliferation rate in vitro. Our data also indicate that although both cell types are able to differentiate into mesenchymal lineages, H-NP cells exhibit significantly greater differentiation toward the chondrogenic lineage and NP-like cells than D-NP cells, displaying greater production of glycosaminoglycans and higher gene expression of aggrecan and collagen IIa.ConclusionsBased on these findings, we conclude that IVD degeneration has a meaningful effect on the cells in the NP. D-NP cells clearly go through the regenerative process; however, this process is not powerful enough to facilitate full regeneration of the disc and reverse the degenerative course. These findings facilitate deeper understanding of the IVD degeneration process and trigger further studies that will contribute to development of novel therapies for IVD degeneration.  相似文献   

17.
Background contextDegeneration of the intervertebral disc (IVD) involves structural changes in the annulus fibrosus (AF), which could alter the mechanical forces imposed on the nucleus pulposus (NP) tissue. This could contribute to degenerative changes that occur in the NP.PurposeThe purpose of the study was to determine whether circumferential constraint affects anabolic and catabolic gene expression, biochemical composition, and mechanical properties of NP tissue.Study designNucleus pulposus cells were isolated from bovine caudal IVD and allowed to form tissue for a period of two weeks. The effect of no, intermediate, or high circumferential constraint on biochemical composition (cellularity and proteoglycan and collagen synthesis), gene expression, and compressive mechanical properties was evaluated.ResultsIncreasing the rigidity of circumferential constraint surrounding in vitro formed NP tissue resulted in decreased gene expression of aggrecan and type II collagen and increased expression of MMP-1 and ADAMTS-5. This was associated with decreased accumulation of extracellular matrix and a deterioration of the compressive mechanical properties of the tissue.ConclusionsAs increased circumferential constraint can have a significant negative effect on the composition and quality of NP tissue and this raises the possibility that the AF may contribute to the degenerative or age-related alterations that occur in the NP. Further study in a functional spinal unit is required to validate this.  相似文献   

18.
《The spine journal》2020,20(9):1492-1502
BACKGROUND CONTEXTAbnormal Wnt signaling in intervertebral discs (IVDs) progresses degenerative disc disease (DDD) pathogenesis by impairing nucleus pulposus cell function, decreasing matrix deposition, and accelerating fibrosis.PURPOSEThis study was conducted to evaluate the effects of lorecivivint (LOR; SM04690), a small-molecule Wnt pathway inhibitor, on IVD cells and in an animal model of DDD.STUDY DESIGNWe used in vitro assays and a rat model of DDD to test the effects of LOR on nucleus pulposus cell senescence and viability, annulus fibrosus (AF) cell fibrosis, and cartilage regeneration and protection.METHODSWnt pathway gene expression was measured in human NP and AF cell cultures treated with LOR or DMSO (vehicle). Chondrocyte-like differentiation of rat and human NP cells, NP cell senescence and protection, and AF cell fibrosis were assessed using gene expression and immunocytochemistry. Disc and plasma pharmacokinetics were analyzed following intradiscal LOR injection in rats. In vivo effects of LOR and vehicle on AF integrity, AF/NP junction, NP cellularity and matrix, and disc height were compared using histopathology and radiography in a rat coccygeal IVD needle-puncture model of DDD.RESULTSIn NP and AF cell cultures, LOR-inhibited Wnt pathway gene expression compared with vehicle. In NP cells, LOR inhibited senescence, decreased catabolism, and induced differentiation into chondrocyte-like cells; in AF cells, LOR decreased catabolism and inhibited fibrosis. A single intradiscal LOR injection in rats resulted in therapeutic disc concentrations (~30 nM) for >180 days and minimal systemic exposure. DDD-model rats receiving LOR qualitatively demonstrated increased cartilage matrix and reduced AF lamellar disorganization and fragmentation with significantly (p<.05) improved histology scores and increased disc height compared with vehicle.CONCLUSIONSLOR showed beneficial effects on IVD cells in vitro and reduced disease progression in a rat model of DDD compared with vehicle, suggesting that LOR may have disease-modifying therapeutic potential.CLINICAL SIGNIFICANCEThe current therapeutic options for DDD are pain management and surgical intervention; there are no approved therapies that alter the progression of DDD. Our data support advancing LOR into clinical development as an injectable, small-molecule, potential disease-modifying treatment for DDD in humans.  相似文献   

19.
目的:研究京尼平苷(Geniposide)对硝普钠(SNP)诱导软骨细胞凋亡与细胞周期的影响.方法:3周龄SD大鼠,用于分离培养软骨细胞.将第Ⅱ代软骨细胞进行分组,噻唑兰染色(MTT)法检测细胞增殖,流式细胞仪检测细胞周期及凋亡率,硝酸还原酶法检测培养液中NO含量.结果:京尼平苷干预SNP诱导软骨细胞凋亡后,细胞处于GO/G1期的百分比减少,S及G2/M期的细胞百分比增加;同时显著降低软骨细胞凋亡率及培养液中NO含量(r=0.917,P<0.01).结论:京尼平苷干预SNP诱导软骨细胞凋亡,可降低培养液中NO含量,促进细胞增殖,这可能是京尼平苷治疗骨性关节炎的作用机制之一.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号