首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel combinations of mitochondrial DNA (CO1) and internal transcribed spacers of nuclear ribosomal DNA (ITS) were detected among Gyrodactylus parasites on brown trout (Salmo trutta L.), rainbow trout (Oncorhynchus mykiss (Walbaum)), and Ohrid trout (Salmo letnica (Karaman)) from salmonid farms in Poland and Macedonia. Some clones differed from standard ITS only by ≤ 4 nucleotides, but they belonged to a mtDNA clade that differed from the Northern European lineages of G. salaris by d MCL = 0.266 ± 0.108 (maximum composite likelihood distance). The divergence of d MCL = 0.013 ± 0.005 within the alien mtDNA clade suggested introgression from an unknown maternal ancestor into the G. salaris Malmberg genome 137 to 57 kyr ago (or, less probably, repeated introgression). A comparable modern hybrid was detected based on permanently heterozygous ITS (28 bp/1264 = 2.2%) in a clone that is widespread throughout Finnish rainbow trout farms. This was a F1 hybrid of maternal G. pomeraniae Kuusela, Ziętara et Lumme (on roach, Rutilus rutilus (L.)) and G. lavareti Malmberg (on whitefish, Coregonus lavaretus (L.)). The mtDNA of the parental species differed by d MCL = 0.290 ± 0.130. The observations emphasize that both nuclear and maternally-inherited DNA markers are necessary to characterize sexually-produced lineages or clones of Gyrodactylus. The hybridization events demonstrated predict incongruence of mitochondrial vs. nuclear gene trees, i.e., reticulate evolution in species trees.  相似文献   

2.
Summary A 1.27 kb DNA fragment of the 15 kb DNA of Chlamydomonas reinhardtii has been cloned and sequenced. A 906 bp long open reading frame was found showing homology with the URF2 genes of mammals and insects. This homology is functional evidence for Chlamydomonas reinhardtii 15 kb DNA representing indeed mitochondrial DNA. This is the first report of an URF2 gene in mitochondria of a photosynthetic organism. The absence of a TGA codon within the gene suggests that it is used as stop codon like in higher plants and not as tryptophan like in animal and fungal mitochondria.  相似文献   

3.
Summary A physical map of the mitochondrial genome of the aquatic phycomycete Allomyces macrogynus strain Burma 3–35 (35°C) has previously been published (Borkhardt and Delius 1983). This map has been extended in this study by locating 37 additional recognition sites for five new restriction enzymes in the mitochondrial genome. Homologous regions for the genes coding for cytochrome oxidase subunits 1, 2, and 3, apocytochrome b, ATPase subunits 6 and 9, the small and large ribosomal RNA, URF1, URF5, and perhaps urfa, a presumptive gene hitherto found only in the mitochondrial genome of the fission yeast Schizosaccharomyces pombe, were located in the mitochondrial genome of A. macrogynus by heterologous hybridizations with specific, mitochondria) gene probes from Saccharomyces cerevisiae, Aspergillus nidulans, Neurospora crassa, and S. pombe. The mitochondrial gene order in A. macrogynus was found to be identical to that of A. arbuscula; a gene order hitherto found only among members of the family Blastocladiaceae. Spontaneous insertion mutations have been found to occur quite frequently in the mitochondrial genome of A. macrogynus. In all mutated mitochondrial genomes so far studied, insertions have been located in a specific region located between the genes coding for the ATPase subunit 9 and the large ribosomal RNA. In two of the mutated mitochondrial genomes the insertional event(s) resulted in the presence of mitochondrial DNA molecules differing in size by multiples of approximately 70 base pairs.  相似文献   

4.
Summary The relative abundance of a cloned 4.5 kilobase (kb) pair mitochondrial DNA sequence in two suspension cultures of tobacco (Nicotiana tabacum cv Turkish samsun and Nicotiana tabacum NT-1) has been examined. This sequence is 70-fold reduced in NT-1 relative to Turkish samsun; the reduction is correlated with an increase in supercoiled mitochondrial DNA. This sequence does not hybridize with mitochondrial DNA from watermelon, maize, or Saccharomyces cerevisiae, nor with several cloned mitochondrial genes and is thus probably not a gene. It may represent most of the plant mitochondria) genome thought to be non-essential for mitochondrial function. The sequence complexity of supercoiled mitochondrial DNA from NT-1 cells is about one-third that found for the entire mitochondrial genome and does not include the cytochrome oxidase subunit II gene.  相似文献   

5.
Summary The extranuclearly-inherited ragged growth phenotype (Rgd) of Aspergillus amstelodami is always accompanied by excision and head-to-tail amplification of mtDNA sequences. In one mutant strain (Rgd1) the amplified mtDNA segment (rgd1 DNA, monomeric length 0.9 kb) maps downstream of the large subunit ribosomal RNA gene (Region 1), whereas in all other strains analyzed the amplified sequences (rdg3-7DNA) are located in Region 2 between genes coding for cytochrome b and ATPase subunit 6. The various region 2 sequences differ in lengths (1.5 to 2.7 kb) but have in common a 215 bp sequence mapping between an. unidentified protein gene (corresponding to URF4 of human mtDNA) and an arginine tRNA gene. This common sequence may contain an origin of replication, because a looped-out hairpin structure similar to that of yeast and human mitochondrial origin sequences can be formed. Furthermore, Region 2 DNA suppresses replication of Region 1 DNA, indicating that the former group of molecules contains the more efficient origin. The nucleotide sequence of the rgd6 repeat unit starts and ends within protein genes of mtDNA, and no homologies were found between heads and tails or their flanking sequences.Abbreviations mtDNA DNA isolated from DNase — treated mitochondria - Rgd ragged mutant strain - rgdDNA highly-reiterated DNA sequences isolated simultaneously with the wild-type genome from mitochondria of ragged mutants - bp base pairs - kb kilobase pairs - URF unassigned reading frame  相似文献   

6.
Reaching for the ring: the study of mitochondrial genome structure   总被引:1,自引:0,他引:1  
The linear molecules that comprise most of the mitochondrial DNA (mtDNA) isolated from most organisms result from the artifactual degradation of circular genomes that exist within mitochondria. This view has been adopted by most investigators and is based on DNA fragment mapping data as well as analogy to the genomesized circular mtDNA molecules obtained in high yield from animals. The alternative view that linear molecules actually represent the major form of DNA within mitochondria is supported by two observations: (1) over a 1000-fold range of genome size among fungi and plants we find the same size distribution of linear mtDNA molecules, and (2) linear mtDNA molecules much larger than genome size can be found for some fungi and plants. The circles that represent only a small fraction of the mtDNA obtained from most eukaryotes could be optional sequence forms unimportant for mitochondrial function; they may also participate in mtDNA replication. The circles might result from incidental recombination events between directly repeated sequences within or between tandemly arrayed genome units on linear mtDNA molecules.  相似文献   

7.
Summary Nuclear sequences homologous to the plasmid-like DNA, B4, were analyzed in the Japonica rice variety, Fujiminori. Homologous sequences existed at several positions in the nuclear genome, but each contained only a portion of the B4 sequence. It was impossible to reconstruct the entire sequence of B4 even by collating all the homologous sequences. Overlaps between some of the B4 sequences present in the nuclear genome resulted in parts of the sequence being represented more than once. These features indicate that nuclear sequences homologous to B4 are not the origin of B4 and that they have been transferred from mitochondria and integrated into the nuclear genome. Five other foreign sequences originating in the chloroplast or mitochondrial genome were found within 1 kb of the B4-homologous sequences. Structural analysis is consistent with the hypothesis that the DNA sequences were transfered via RNA.  相似文献   

8.
Summary Physical characterization of the mitochondrial genome derived from the obligate mosquito parasite, Romanomermis culicivorax has generated some surprising physical properties regarding the molecular structure of nematode mitochondrial DNA (mtDNA). Restriction enzyme analysis of this mtDNA has revealed a mitochondrial genome size of approximately 26 kb, the largest metazoan mtDNA reported to date. Isofemale lineages are monomorphic for one of three size variants, differing by 500-1,000 base pairs, present in our original field population. Cloned hybridization probes derived from a single region exhibiting a 600 by size polymorphism share strong homology with several spatially separated sites distributed about the mtDNA. This suggests that the homology is a result of repeated DNA sequence elements contained within this mitochondrial genome that contribute to mtDNA size polymorphism.  相似文献   

9.
Summary In the ascomycete Podospora anserina strain ageing (senescence) is caused by a mitochondrial plasmid. In juvenile mycelia it is an integral part of the mtDNA and becomes liberated during ageing. The nucleotide sequence of this plasmid and of its flanking regions was determined. It consists of 2,539 by and contains an un identified reading frame (URF) originating in the adjacent mtDNA upstream of excision point 1. Within the URF a putative 48 by autonomously replicating sequence (ars) was identified. At both excision sites of the plasmid there are two short nonidentical interrupted palindromes and a few base pairs apart from these palindromes, both upstream and downstream, two short inverted repeats are localised. The experimental data make it evident that the mt plasmid is an intron of the cytochrome c oxidase gene (subunit I) which may be excised at the DNA level and thus become the mobile infective agent causing senescence. The concept of this mobile intron and current hypotheses concerning the relationship between introns and transposons are stressed.  相似文献   

10.
Evidence for the existence of an NADPH oxidase-like enzyme in rainbow trout macrophages is given. Reduced-minus-oxidised difference spectroscopy revealed the presence of a cytochrome b with three absorbance peaks, at 430, 533, and 558 nm. The low midpoint potential of the latter peak suggests this cytochrome is the same as the terminal component of NADPH oxidase (i.e., cytochrome b-245). Subcellular fractionation of macrophages revealed two peaks of cytochrome b activity, in accord with the concept of a plasma membrane localisation of cytochrome b activity in addition to a mitochondrial localisation. Finally, that the rainbow trout oxidase is a multicomponent enzyme was suggested by inhibitor studies, where specific inhibitors of the flavin and cytochrome b-245 components of NADPH oxidase induced significant reduction in superoxide anion production.  相似文献   

11.
12.
13.
Summary In contrast to animal mitochondrial DNA, intraspecific variation in chloroplast DNA is thought to be very rare. This presumption has prevented the application to plant population biology of the diversity of molecular genetic techniques now well established for animal mitochondrial DNA. In Trifolium pratense, however, extensive intrapopulational variation does exist. In two paper I report a characterization of unprecedented restriction fragment profile variation within single populations. Populations typically contain a common genotype and many rare ones; often the rare genotypes differ from population to population. While both nucleon and nucleotide diversity, as well as estimates of Wright's F ST, indicate a large within-population component and relatively little diversity among populations, the distribution of plastid genotype frequencies in each population is not homogeneous. Estimates of migration rate based on chloroplast DNA genotypes suggest a moderate number of migrants per generation. The unusually high level of genetic variation in Trifolium chloroplast DNA provides the first opportunity to use the plastid genome of plants to study population differentiation. Furthermore, it suggests that the plastid genome may not be as invariant as previously believed, but may instead exhibit high levels of genetic diversity at the population level.  相似文献   

14.
Translational control of the GCN4 gene of Saccharomyces cerevisiae requires at least two of the four short upstream open reading frames (URFs) in the leader of GCN4 mRNA. URF4 is a strong negative element that is sufficient for repression of GCN4 expression in normal growth conditions. URF1 is approximately 30-fold less effective as a translational barrier when it is the single URF present in the mRNA leader and is required upstream from URF4 for efficient derepression of GCN4 expression under amino acid starvation conditions. We show that the last codon plus 10 bp immediately after the stop codon of URF4 are sufficient to convert URF1 into a strong translational barrier when it is present as a solitary URF. This result suggests that the characteristics of translation termination at URF4 are responsible largely for its strong inhibitory effect on translation initiation at the GCN4 AUG codon. Introduction of the same URF4 sequences at URF1 also reduces GCN4 expression under derepressing conditions when URF1 is upstream from URF4. This fact suggests that URF1 translation normally is compatible with efficient scanning and initiation downstream and that this property is required for its ability to overcome the translational barrier at URF4. These findings are consistent with the idea that ribosomes must first translate URF1 and then resume scanning in order to traverse URF4 sequences under starvation conditions. Our results indicate that nucleotides located 3' to the stop codon can be as important as those located 5' to the start site in determining the inhibitory effect of an URF on translation initiation downstream.  相似文献   

15.
Clinical mitochondrial genetics   总被引:19,自引:0,他引:19       下载免费PDF全文
The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling  相似文献   

16.
Summary In order to study the mechanism responsible for the uniparental transmission of the mitochondrial genome in crosses between Chlamydomonas reinhardtii and C. smithii, we have analyzed the fate of mitochondrial DNA during gametogenesis, zygospore differentiation and sporulation by hybridization experiments. Both mt + and mt gametes contain the same amount of mitochondrial DNA and the two parental genomes persist for several days in the zygotes. The DNA of mt + origin is slowly eliminated during the period of zygote maturation. Light is required for total elimination of mt + mitochondrial DNA in the zygospores. Using appropriate restriction enzymes, we have been unable to detect methylation of the mitochondrial DNA during gametogenesis or zygospore formation. The possibility that the mt + mitochondria themselves are specifically eliminated in the course of zygote maturation is discussed.  相似文献   

17.
Summary Southern blot analysis of AvaI-digested total cellular DNA from the interfertile species Chlamydomonas eugametos and Chlamydomonas moewusii with a coxI mitochondrial gene probe from Chlamydomonas reinhardtii revealed single hybridizing fragments of 5.0 and 3.5 kb, respectively. The transmission of these mitochondrial DNA physical markers along with that of chloroplast genetic markers for resistance to streptomycin and resistance to erythromycin was studied in the fourth backcrosses of F1 hybrids to one or the other parent. Viability in these backcrosses is high in contrast to the cross C. eugametos x C. moewusii and its reciprocal which are associated with considerable meiotic product lethality. The resulting zygospores were found to transmit the mitochondrial and chloroplast genome markers uniparentally or preferentially from the mating-type-plus parent. Thus the species pair C. eugametos and C. moewusii differs from the pair Chlamydomonas reinhardtii and Chlamydomonas smithii in which mitochondrial genome markers are transmitted uniparentally by the mating-type minus parent, while the chloroplast genome markers are transmitted uniparentally by the opposite parental mating-type (Boynton et al. 1987).  相似文献   

18.
目的研究家族性乳腺癌线粒体基因组控制区(D-loop区)突变的情况。方法用PCR技术,对来自21个家系的23例家族性乳腺癌患者和18名正常对照者线粒体DNA(mitochondrial DNA,mtDNA)的D-loop区进行扩增并基因测序,分析突变。结果在23例乳腺癌患者mtDNA的D-loop区共发现126个突变位点,4个为新发现的突变;37个突变分别发生在所有23例患者D-loop区的突变热点D310区;在所有突变中,第310位点的T→C,311~312位点的TC插入,522~523位点的CA缺失和527位点的C→G是高发突变位点;同一家系中乳腺癌患者D310区的突变与正常对照不同。结论家族性乳腺癌患者D310区的突变可能提高了其对乳腺癌的易感性。  相似文献   

19.
We compared the Y-chromosome linkage maps for four salmonid species (Arctic charr, Salvelinus alpinus; Atlantic salmon, Salmo salar; brown trout, Salmo trutta; and rainbow trout, Oncorhynchus mykiss) and a putative Y-linked marker from lake trout (Salvelinus namaycush). These species represent the three major genera within the subfamily Salmoninae of the Salmonidae. The data clearly demonstrate that different Y-chromosomes have evolved in each of the species. Arrangements of markers proximal to the sex-determining locus are preserved on homologous, but different, autosomal linkage groups across the four species studied in detail. This indicates that a small region of DNA has been involved in the rearrangement of the sex-determining region. Placement of the sex-determining region appears telomeric in brown trout, Atlantic salmon, and Arctic charr, whereas an intercalary location for SEX may exist in rainbow trout. Three hypotheses are proposed to account for the relocation: translocation of a small chromosome arm; transposition of the sex-determining gene; or differential activation of a primary sex-determining gene region among the species.  相似文献   

20.
Complement-mediated killing of pathogens through the lytic pathway is an important effector mechanism of the innate immune response. C8 is one of the components of the lytic pathway and is composed of an alpha, beta, and gamma subunit. In the present study we report the cloning and characterization of the primary structure of the C8beta subunit in the rainbow trout (Oncorhynchus mykiss). The deduced amino acid sequence of trout C8beta shows 72 and 47% identity with that of Japanese flounder and human, respectively. It also contains many of the same structural motifs as those found in mammalian lytic components. The C8beta gene appears to exists as a single copy in the trout genome and is expressed primarily in the liver. The protein encoded by the gene was identified by Western blotting using an anti-peptide antibody and was approximately 65kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号