首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GH secretagogues (GHSs) act via specific receptors in the hypothalamus and the pituitary gland to release GH. GHSs also stimulate the hypothalamo-pituitary-adrenal (HPA) axis via central mechanisms probably involving CRH or arginine vasopressin (AVP). We studied the effects of hexarelin, CRH, and desmopressin, an AVP analog, on the stimulation of the HPA axis in 15 healthy young male volunteers. Circulating ACTH, cortisol, GH and PRL concentrations were measured for 2 h after the injection of hexarelin, CRH, or desmopressin alone and the combination of hexarelin plus CRH or hexarelin plus desmopressin. Symptoms during the tests were assessed by visual analog scales. Hexarelin significantly increased ACTH and cortisol release (area under the curve, 3,444+/-696 ng/L x 125 min and 45,844+/-2,925 nmol/L x 125 min, respectively), and this effect was augmented by the addition of CRH in a dose that on its own produces maximal stimulation (6,580+/-1,572 ng/mL x 125 min and 63,170+/-2,616 nmol/L x 125 min; P = 0.01 and 0.001, respectively), but was not influenced by the addition of desmopressin (3,540+/-852 ng/mL x 125 min and 35,319+/-3,252 nmol/L x 125 min; not significant). CRH on its own caused similar or slightly higher ACTH and cortisol release than hexarelin alone. Desmopressin given alone elicited a rapid rise in circulating ACTH and cortisol, but its effects were less than those of any other treatment and were not augmented by hexarelin. Hexarelin also caused significant GH and PRL release, but these effects were not influenced by the coadministration of CRH or desmopressin. Visual analog scales showed an acute small increment in appetite with hexarelin. Our data suggest that the effect of GHSs on the HPA axis involve at least in part the stimulation of AVP release. In summary, we have shown that in healthy male volunteers, the effect of hexarelin on the HPA axis does not involve CRH, but may occur through the stimulation of AVP release.  相似文献   

2.
Several studies have shown that GH can enhance cardiac performance in rats after experimental myocardial infarction and in humans with congestive heart failure. In the present study, the hemodynamic effects of hexarelin (Hex), an analog of GH-releasing peptide-6 and a potent GH secretagogue, were compared with the effects of GH. Four weeks after ligation of the left coronary artery male rats were treated sc twice daily with hexarelin [10 microg/kg x day (Hex10) or 100 microg/kg x day (Hex100)], recombinant human GH (2.5 mg/kg x day), or 0.9% NaCl for 2 weeks. Transthoracic echocardiography was performed before and after the treatment period. GH, but not Hex, increased body weight gain. GH and Hex100 decreased total peripheral resistance (P < 0.05) and increased stroke volume (P < 0.05 and P < 0.01, respectively) and stroke volume index (P = 0.06 and P < 0.01, respectively) vs. NaCl. Cardiac output was increased by GH and Hex100 (P < 0.05), and cardiac index was increased by Hex100 with a borderline significance for GH (P = 0.06). In conclusion, Hex improves cardiac function and decreases peripheral resistance to a similar extent as exogenous GH in rats postmyocardial infarction. The mechanisms of these effects are unclear; they could be mediated by GH or a direct effect of Hex on the cardiovascular system.  相似文献   

3.
4.
We have previously reported that hexarelin and some of its analogs, including EP 50885, stimulated GH secretion and feeding after systemic administration in the rat, whereas EP 40904 selectively stimulated food intake and EP 40737 only GH release. The precise mechanism of growth hormone-releasing peptides (GHRPs) actions is still unclear, but the integrity of the arcuate nucleus of the hypothalamus (ARC) appears crucial for their endocrine effects. To better characterize the site(s) and mechanisms(s) of the orexigenic action of GHRPs, we have investigated their effects after infusion into the arcuate, paraventricular, ventromedial and medial preoptic areas of the hypothalamus. Food intake was measured for 60 min following injection of the test compound (2 microg/rat). Hexarelin, EP 40904 and EP 50885 had significant orexigenic effects after injection into the ARC. A specific NPY antagonist significantly inhibited the effect of hexarelin, whereas a GHRH antagonist was ineffective. In the paraventricular nucleus, only EP 50885 stimulated feeding, whereas all peptides were ineffective in the ventromedial nucleus and medial preoptic area. Taken altogether, these results demonstrate that GHRPs are endowed with site-specific orexigenic actions and that endogenous NPY, but not GHRH, mediates these effects. The additional orexigenic action of EP 50885 in the paraventricular nucleus suggests the existence of a GHRP receptor subtype different from the already cloned one.  相似文献   

5.
GH secretagogues (GHS) are synthetic ghrelin receptor agonists that stimulate GH secretion. It is not clear whether they act predominantly by stimulating the secretion of hypothalamic growth hormone-releasing hormone (GHRH), or directly on the somatotrope cells. In addition, it is not known whether combined treatment with GHRH and GHS has synergistic effects on growth. To address these questions, we used the GH-deficient GHRH knock out (GHRHKO) mouse model, which has severe somatotrope cell hypoplasia. We treated GHRHKO mice for 5 weeks (from week 1 to week 6 of age) with the GHRH analogue JI-38 alone, or in combination with a GHS (GHRP-2), and at the end of the treatment we examined their response to an acute stimulus with GHRP-2 or GHRP-2 plus JI-38. We used placebo-treated GHRHKO mice and animals heterozygous for the GHRHKO allele as controls. Animals treated with JI-38+GHRP-2 reached higher body length and weight than animals treated with JI-38 alone. All the animals receiving JI-38 (with or without GHRP-2) showed similar correction of somatotrope cell hypoplasia. None of the GHRHKO animals showed a serum GH response to the acute stimulation with GHRP-2 alone, while both treated groups responded to the combined test with JI-38 + GHRP-2. These data demonstrate that in GHRHKO mice, GHRP-2 has a growth-stimulating effect that augments the response induced by JI-38. In addition, the presence of GHRH seems necessary for the stimulation of GH secretion by GHRP-2.  相似文献   

6.
7.
OBJECTIVE Hexarelin is a synthetic six-amino-acid compound capable of releasing GH in animals and in man. Its mechanism of action is not understood and little is known about the GH response after repeated administration. The aim of this study was to determine the GH response to the administration of two intravenous boluses of hexarelin, growth hormone releasing hormone (GHRH) or hexarelin with GHRH. DESIGN Single boluses of hexarelin (1 μg/kg), GHRH-(1–29)-NH2 (1 μg/kg) or hexarelin with GHRH-(1–29)-NH2 were administered intravenously. Each study was performed on two further occasions, with a second bolus being administered 60 or 120 minutes after the first. A control study was performed giving saline intravenously. Studies were performed in a random order. SUBJECTS Six healthy adult males (25.4–34.1 years) were studied. MEASUREMENTS Serum GH was measured by radioimmunoassay. GH secretion rates were derived from the measured serum GH concentrations using the technique of deconvolution analysis. RESULTS The peak GH secretion rate following the first intravenous bolus of hexarelin was greater than that following the first bolus of GHRH-(1–29)-NH2 (P < 0.001), and was greatest following the administration of hexarelin with GHRH-(1–29)-NH2 (P < 0.001). The coadministration of the two secretagogues resulted in peak GH secretion rates significantly greater than the arithmetic sum of those following their isolated administration (P = 0.001), demonstrating synergism. Compared to saline, the administration of a second bolus of hexarelin, GHRH-(1–29)-NH2 or both resulted in significant further GH secretion (P = 0.02, P = 0.002, P = 0.03, respectively). The administration of a second bolus of hexarelin or hexarelin with GHRH-(1–29)-NH2 120 minutes after the first bolus resulted in lower peak GH secretion rates (P = 0.03). The reductions in peak GH secretion rates following the 60-minute boluses were not statistically significant. The peak GH secretion rates following the first GHRH-(1–29)-NH2 boluses were similar to those following the 60 and 120-minute GHRH-(1–29)-NH2 boluses (P = NS). Irrespective of the interval between the boluses of hexarelin with GHRH-(1–29)-NH2, the peak GH secretion rates following the second boluses were not significantly different from the arithmetic sum of those following the administration of the second boluses of hexarelin or GHRH-(1–29)-NH2, indicating loss of synergism on repeated administration. CONCLUSIONS This study shows that hexarelin is a potent GH secretagogue active after two successive doses; the magnitude of the GH response to the second dose was influenced by the dosing interval. Hexarelin and GHRH-(1–29)-NH2 are synergistic, a property which is lost after repeated administration. These findings may help our understanding of GHRPs and may have implications for the potential use of hexarelin and other GHRPs as therapeutic agents.  相似文献   

8.
9.
The effects of bovine growth hormone (bGH) and triiodothyronine (T3), alone and in combination, were studied on urinary-EGF (U-EGF) in newborn mice. All three treatments significantly augmented the concentration of U-EGF. The effect was far greater for T3 than for bGH. No EGF response was seen in submandibular gland or kidney tissues suggesting that, in newborn animals, these hormones selectively modulate U-EGF.  相似文献   

10.
OBJECTIVE: Little is known of the usefulness of GH secretagogues (GHSs) in GH-deficient (GHD) adults. The objective of this study was to determine the number of responders to treatment with NN703 in GHD adults. DESIGN: A multicentre, randomized, double-blind, and placebo-controlled study. PATIENTS: Ninety-seven GHD adults were included. MEASUREMENTS: The GH response before and after 1 week of oral treatment with NN703 (n = 83) or placebo (n = 14) was determined. The first and last dose of NN703 was 3 mg/kg, whereas the dose of NN703 was 1.5 mg/kg/day during the 6 days between the first and last doses. Furthermore, all 97 patients received 1 micro g/kg GH-releasing hormone (GHRH) 3 weeks after the last dose of NN703. RESULTS: Serum GH peak and area under curve (AUC) values after the first NN703 administration were greater than those after placebo administration (P < 0.05). However, after correction for the lower body mass index (BMI) in the NN703 group, this difference lost statistical significance. After 1 week of therapy, GH peak and AUC values were similar following the final doses of NN703 and placebo. Serum peak and AUC values of other anterior pituitary hormones were similar between the NN703 and placebo groups both after the first and last administration of study drug. Nine of the 83 patients (11%) responded with a serum peak GH concentration >or= 5 micro g/l after the first and/or last NN703 administration, whereas no patient responded after placebo administration. Serum IGF-I was unaffected by 1-week NN703 treatment, whereas serum IGFBP-3 was increased (P < 0.05 vs. placebo) also after correction for BMI. Mean serum peak GH concentration after GHRH administration was 2.1 micro g/l (+/-0.3, SEM), which was higher than that after the first NN703 administration (1.32 +/- 0.3, P < 0.05). CONCLUSION: NN703 administration was generally well tolerated. Eleven per cent of the GHD adult patients responded with a peak GH response >or= 5 micro g/l after the first and/or last administration of oral NN703. Although a majority of GHD adults will not respond to NN703, the present results suggest that oral NN703 treatment could be useful in some adult patients with moderately severe GHD. These patients may be identified by a test dose of GHS.  相似文献   

11.
Growth hormone secretagogues (GHSs) are synthetic compounds that induce GH release in several species, including man. The aim of the current study was to identify hypothalamic GHS receptor (GHS-R) agonists. This led to the discovery of adenosine as a GHS-R agonist. We demonstrate that adenosine as well as the A1 adenosine receptor agonist N6-R-phenylisopropyladenosine (R-PIA) induce calcium responses, with EC50 values of 50 nM and 0.5 nM, respectively, in cells which express recombinant human GHS-R. However, neither compound induces a calcium response in nontransfected cells. Binding experiments show that adenosine and the GHS compound MK-0677 bind to membranes from GHS-R expressing cells with nearly identical Bmax values (2.6 +/- 0.1 x 10(-10) mol/mg protein for adenosine and 2.0 +/- 0.3 x 10(-10) mol/mg protein for MK-0677). However, no binding to membranes from nontransfected cells could be detected. Furthermore, we show that the IC50 values for inhibition of the adenosine, R-PIA, and GHS induced calcium responses by the GHS-R antagonist [D-Arg1, D-Phe5, D-Trp7,9, D-Leu11]-substance P are similar. These findings strongly suggest that adenosine and R-PIA are agonists of the GHS-R. Interestingly, neither adenosine nor R-PIA were able to induce GH release from rat pituitary cells in vitro. The implications of the latter finding is discussed.  相似文献   

12.
Growth hormone secretagogues (GHSs) increase the activity of hypothalamic arcuate nucleus neurons thought to be involved in controlling the release of growth hormone (GH). The GHS receptor is also found in hypothalamic regions not associated with the release of GH, suggesting that GHSs may influence other hypothalamic systems. This study utilized double-labeling immunocytochemical techniques to examine the hypothalamic actions of a novel nonpeptide GHS, GHS-25. In common with other GHSs, GHS-25 induced significant amounts of Fos immunoreactivity in the arcuate nucleus of conscious male rats. However, unlike other GHSs, GHS-25 also induced Fos immunoreactivity in the supraoptic nucleus. Double labeling revealed that approx 66% of supraoptic nucleus cells that were Fos positive after the administration of GHS-25 were also immunoreactive for oxytocin. Thus, in addition to its actions on the GH axis, GHS-25 may influence the release of neurohypophyseal hormone.  相似文献   

13.
Synthetic agonists of the growth hormone secretagogue receptor (GHSR) rejuvenate the pulsatile pattern of GH-release in the elderly, and increase lean but not fat mass in obese subjects. Screening of tissue extracts in a cell line engineered to overexpress the GHSR led to the identification of a natural agonist called ghrelin. Paradoxically, this hormone was linked to obesity. However, it had not been directly shown that the GHSR is a physiologically relevant ghrelin receptor. Furthermore, ghrelin's structure is significantly different from the synthetic agonist (MK-0677) used to expression-clone the GHSR. To address whether the GHSR mediates ghrelin's stimulatory effects on GH release and appetite, we generated Ghsr-null mice. In contrast to wild-type mice, acute treatment of Ghsr-null mice with ghrelin stimulated neither GH release nor food intake, showing that the GHSR is a biologically relevant ghrelin receptor. Nevertheless, Ghsr-null mice are not dwarfs; their appetite and body composition are comparable to that of wild-type littermates. Furthermore, in contrast to suggestions that ghrelin regulates leptin and insulin secretion, fasting-induced changes in serum levels of leptin and insulin are identical in wild-type and null mice. Serum insulin-like growth factor 1 levels and body weights of mature Ghsr-null mice are modestly reduced compared to wild-type littermates, which is consistent with ghrelin's property as an amplifier of GH pulsatility and its speculated role in establishing an insulin-like growth factor 1 set-point for maintaining anabolic metabolism. Our results suggest that chronic treatment with ghrelin antagonists will have little effect on growth or appetite.  相似文献   

14.
15.
An endogenous ligand for the GH secretagogue-receptor (GHS-receptor) has recently been isolated, from both the rat and the human stomach, and named ghrelin. It is a 28-amino-acid peptide showing a unique structure with an n-octanoyl ester at its third serine residue, which is essential for its potent stimulatory activity on somatotroph secretion. In fact, it has been demonstrated that ghrelin specifically stimulates GH secretion from both rat pituitary cells in culture and rats in vivo. The aim of the present study was to test the GH-releasing activity of ghrelin in humans and to compare it with that of GHRH and hexarelin (HEX), a nonnatural peptidyl GHS, which possesses strong GH-releasing activity but also significantly stimulates PRL, ACTH, and cortisol secretion. To clarify the mechanisms of action underlying the GH-releasing activity of ghrelin in humans, its interaction with GHRH and HEX was also studied. Seven normal young volunteers (7 men; 24-32 yr old; body mass index, 20-24 kg/m(2)) were studied. All subjects underwent the administration of ghrelin, HEX, and GHRH-29 (1.0 microg/kg i.v. at 0 min) as well as placebo (2 mL isotonic saline i.v. at 0 min). Six subjects also underwent the combined administration of ghrelin and GHRH or HEX. Blood samples were taken every 15 min from -15 up to +180 min. GH levels were assayed at each time point in all sessions; PRL, ACTH, cortisol, and aldosterone levels were also assayed after administration of ghrelin and/or HEX. Ghrelin administration induced a prompt and marked increase in circulating GH levels (Cmax, mean +/- SEM, 92.1 +/- 16.7 microg/L; area under the curve, 1894.9 +/- 347.8 microg/L.h). The GH response to ghrelin was clearly higher (P < 0.01) than the one recorded after GHRH (26.7 +/- 8.7 microg/L; 619.6 +/- 174.4 microg/L.h) and even significantly higher (P < 0.05) than after HEX (68.4 +/- 14.7 microg/L; 1546.9 +/- 380.0 microg/L x h). Ghrelin administration also induced an increase in PRL, ACTH, and cortisol levels; these responses were higher (P < 0.05) than those elicited by HEX. A significant increase in aldosterone levels was recorded after ghrelin but not after HEX. The endocrine responses to ghrelin were not modified by the coadministration of HEX. On the other hand, the coadministration of ghrelin and GHRH had a real synergistical effect (P < 0.05) on GH secretion (133.6 +/- 22.5 microg/L; 3374.3 +/- 617.3 microg/L x h). In conclusion, ghrelin, a natural ligand of GHS-receptor, exerts a strong stimulatory effect on GH secretion in humans, releasing more GH than GHRH and even more than a nonnatural GHS such as HEX. Ghrelin, as well as HEX, also stimulates lactotroph and corticotroph secretion. Ghrelin shows no interaction with HEX, whereas it has a synergistical effect with GHRH on GH secretion. Thus, ghrelin is a new hormone playing a major role in the control of somatotroph secretion in humans, and its effects are imitated by nonnatural GHS.  相似文献   

16.
Ghrelin, the recently identified hormone with GH-secreting and appetite-inducing effects, acts on the GH secretagogue receptor (GHS-R). GHS-R belongs to the G protein-coupled 7 transmembrane domain receptors and activates the phospholipase C pathway; it then leads to the release of GH from somatotroph cells via an elevation of intracellular calcium concentration. Both in vivo and in vitro studies demonstrated that the effect of GH secretagogues (GHS) could be desensitised similar to most receptor stimulation systems. We have studied whether acute desensitisation of the GHS-R occurs in response to the GHS hexarelin in vitro in terms of intracellular calcium concentration. Chinese hamster ovary cells were transiently transfected with cDNA encoding the human type 1a GHS-R. The presence of messenger RNA was confirmed with RT-PCR, while no GHS-R was observed in mock-transfected cells. Calcium responses to the peptide GHS analogue hexarelin were measured using the fluorescent indicator fura-2. Cells were stimulated with the peptide GHS, hexarelin, at concentrations between 10(-10) and 10(-7) M. Cells transfected with the GHS-R cDNA demonstrated a significant and specific calcium response to hexarelin that was not observed in mock-transfected cells. Marked desensitisation of the calcium response to hexarelin was observed 2-5 min after the first dose of hexarelin (10(-7) M) was administered. These data show directly for the first time the desensitisation of the GHS receptor signal at the second messenger level. The desensitisation of the receptor may play a major role in the regulation of effect of circulating or locally produced ghrelin both in the GH and in the appetite-regulating system or in other systems where ghrelin has been shown to be active, such as the cardiovascular system or cell proliferation.  相似文献   

17.
18.
19.
Chicken ghrelin has recently been isolated as a hormone which stimulates growth hormone and corticosterone secretion in chicken. Ghrelin mediates these actions in mammals by binding to the growth hormone secretagogue receptor (GHS-R). In this study, we describe the partial cloning of two chicken GHS-R (cGHS-R) isoforms: cGHS-R1a and cGHS-R1c. cGHS-R1a and cGHS-R1c cDNA show, respectively, 81 and 78% homology with the corresponding parts of the human GHS-R1a cDNA. In contrast to the human GHS-R1b isoform, which is truncated after transmembrane domain 5 (TM-5), the chicken GHS-R1c isoform lacks 16 amino acids in TM-6 suggesting that this isoform is not active in ghrelin signal transduction. The cystein residues, N-linked glycosylation sites and potential phosphorylation sites, found in the human GHS-R1a, were also conserved in both chicken isoforms. RT-PCR analysis demonstrated cGHS-R1a and cGHS-R1c mRNA expression in all tissues tested, except liver and pancreas, with highest levels in the pituitary and the hypothalamus. Intermediate levels of expression were detected, in descending order, in the ovary, telencephalon, heart, adrenal gland, cerebellum, and optic lobes whereas low expression was detected in the brainstem, lung, kidney, proventriculus, duodenum, and colon. Very low expression was found in skin, stomach, and muscle. cGHS-R1c was expressed in lower amounts than cGHS-R1a in all analysed tissues. Administration of 1 microM chicken ghrelin to pituitaries in vitro resulted in a down-regulation of both cGHS-R isoforms within 15 min, whereas after 1h levels returned to control values. Growth hormone and corticosterone down-regulated cGHS-R1a and cGHS-R1c mRNA expression within 60 min of exposure, whereas growth hormone-releasing factor 1-29 (1 microM) only reduced cGHS-R1a mRNA expression after 60min. Thyrotropin-releasing hormone (1 microM) did not alter cGHS-R expression.  相似文献   

20.
Anabolic steroids are frequently taken by athletes and bodybuilders together with recombinant human GH (rhGH), though there is some scientific evidence that the use of anabolic steroids reverses the rhGH-induced effects. Recently, we have shown that treatment with rhGH (0.2 IU/kg s.c., daily x 12 days) in the dog markedly reduced the canine GH (cGH) responses stimulated by EP51216, a GH secretagogue (GHS), evaluated after 3 and 5 daily rhGH injections, and that the inhibition was still present a few days after rhGH discontinuation. The aim of the present study was to evaluate in the dog the GH response to EP51216 (125 mug/kg i.v.) in a condition of enhanced androgenic function (i.e. acute injection or 15-day treatment with testosterone at the dose of 2 mg/kg i.m. on alternate days), and in the hypophysectomized rat the hypothalamic and hippocampal expression of ghrelin, the receptor of GHSs (GHS-R), GH-releasing hormone (GHRH) and somatostatin (SS) after specific hormonal replacement therapies (testosterone, 1 mg/kg/day s.c.; hydrocortisone, 500 mug/kg/day s.c.; rhGH, 400 mug/kg/day s.c.; 0.9% saline 0.1 ml/kg/day s.c.; x11 days). In the dog experiments, under baseline conditions, a single injection of EP51216 elicited an abrupt rise of plasma cGH. Twenty-four hours from the acute bolus injection of testosterone, C(max) and AUC(0-90) of the GHS-stimulated cGH response were significantly lower than baseline cGH response; 5 days later, there was still a significant decrease of either parameter versus the original values. Short-term treatment with testosterone markedly reduced the GHS-stimulated cGH responses evaluated during (5th bolus) and at the end (8th bolus) of testosterone treatment. Four and 8 days after testosterone withdrawal, the EP51216-stimulated cGH response was still significantly reduced when compared with that under baseline conditions. Plasma concentrations of insulin-like growth factor 1 (IGF-1) were stable until the 5th bolus of testosterone and decreased progressively in the remaining time of the testosterone treatment; 4 and 8 days from treatment withdrawal, IGF-1 levels were still suppressed. In rat studies, hypothalamic mRNA levels of GHS-R were significantly reduced by treatments with testosterone and hydrocortisone, whereas hippocampal expressions of ghrelin, GHRH and SS were reduced by rhGH replacement therapy. In conclusion, these studies show that a single administration of testosterone can abrogate the cGH response ensuing acute stimulation by a GHS; the inhibitory effect of testosterone on the cGH response to GHS is present during and even 8 days after termination of a short-lived treatment with testosterone; these events occur via a Copyright (c) 2006 S. Karger AG, Basel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号