首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunohistochemical and quantitative analyses were used to examine the evolution of neuronal nitric oxide synthase (nNOS) with time in spinal motor neurons of transgenic mice with a G93A mutant Cu/Zn superoxide dismutase (SOD1) gene. Specimens from age-matched non-transgenic wild-type mice served as controls. In the controls, the anterior horn including the anterior horn neurons was not immunostained for nNOS. In the transgenic mice, at the age of 24 weeks (early presymptomatic), when no pathological change was observed in the spinal cord, anterior horn neurons were only occasionally immunostained for nNOS (0.3%). At the age of 28 weeks (late presymptomatic), nNOS-positive anterior horn neurons and their neuronal processes were occasionally observed (7.6%), and at the age of 32 weeks (early symptomatic), nNOS-positive anterior horn cells, including degenerated ones showing central chromatolysis, were frequently demonstrated (27.6%) and nNOS-positive cord-like swollen proximal axons were also observed in the anterior horns. nNOS expression in the anterior horn neurons was almost always observed in the somata. At the age of 35 weeks (end stage), neuronal loss of the anterior horn cells was severe, and nNOS-positive anterior horn neurons and cord-like swollen axons in the anterior horns were less prominent compared to those at the age of 32 weeks (33.8%), but many reactive astrocytes were immunostained for nNOS. Thus, nNOS immunoreactivity in the anterior horn neurons is observed as early as the presymptomatic stage and varies with the progression of the disease. The selective localization of positive nNOS immunoreactivity in the anterior horn neurons and degenerated ones in particular, and swollen proximal axons suggests that nNOS immunoreactivity may be involved in the degeneration of anterior horn neurons in this SOD1 transgenic mouse model.  相似文献   

2.
We have studied microtubule-associated protein 2 (MAP2) expression in anterior horn neurons in the cervical and lumbar spinal cords of 19 cases of adult-onset sporadic amyotrophic lateral scerlosis (ALS) using immunohistochemistry. Specimens from 7 patients without neurological disease served as controls. MAP2 expression decreased in the anterior gray horn of all ALS cases and in the intermediate gray of several ALS cases. Such reduction correlated with the degree of degeneration or neuronal loss in anterior horn cells and with the clinical symptoms of limb weakness. Cytopathologically, the MAP2 immunoreactivity decreased corresponding to the occurrence of individual signs of neuronal degeneration, such as chromatolytic neurons, shrunken neurons and pigmented neurons. MAP2 expression was relatively well preserved in the specimens in which spheroids are conspicuous. The findings of this study demonstrate MAP2 to be an excellent marker for the detection and quantification of anterior horn degeneration in ALS. Received: 20 May 1998 / Revised, accepted: 20 July 1998  相似文献   

3.
Previous experiments have suggested that nitric oxide may play an important role in nociceptive transmission in the spinal cord. To assess the possible roles of neuronal nitric oxide synthase (nNOS) in spinal sensitization after nerve injury, we examined the distribution of nNOS immunoreactivity in dorsal root ganglia (DRGs) and dorsal horn of the corresponding spinal segments. NOS catalytic activity was also determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the lumbar (L4-L6) spinal cord segments and DRGs in rats 21 days after unilateral loose ligation of the sciatic nerve. Behavioral signs of tactile and cold allodynia developed in the nerve-ligated rats within 1 week after surgery and lasted up to 21 days. Immunocytochemical staining revealed a significant increase (approximately 6.7-fold) of nNOS-immunoreactive neurons and fibers in the DRGs L4-L6. No significant changes were detected in the number of nNOS-positive neurons in laminae I-II of the spinal segments L4-L6 ipsilateral to nerve ligation. However, an increased number of large stellate or elongated somata in deep laminae III-V of the L5 segment expressed high nNOS immunoreactivity. The alterations of NOS catalytic activity in the spinal segments L4-L6 and corresponding DRGs closely correlated with nNOS distribution detected by immunocytochemistry. No such changes were detected in the contralateral DRGs or spinal cord of sham-operated rats. The results indicate that marked alterations of nNOS in the DRG cells and in the spinal cord may contribute to spinal sensory processing as well as to the development of neuronal plasticity phenomena in the dorsal horn.  相似文献   

4.
We investigated the localization and extent of β-amyloid precursor protein (β-APP695) immunoreactivity as a sensitive marker for impairment of fast axonal transport in the spinal cords of 21 patients with amyotrophic lateral sclerosis (ALS), paying special attention to anterior horn neurons. Specimens from 18 patients without neurological disease served as controls. Increased β-APP immunoreactivity was frequently recognized in the anterior horns of the ALS patients with short clinical courses or with mild depletion of anterior horn cells, while no β-APP immunoreactivity was demonstrated in those with severe depletion of anterior horn neurons or with long-standing clinical courses. Increased β-APP immunoreactivity in the anterior horn neurons was mainly confined to the perikarya and no immunoreactivity was recognized in the dendrites or proximal axons directly emanating from the somata, except some spheroids (proximal axonal swellings) which showed increased immunoreactivity of β-APP. Increased β-APP immunoreactivity was spotted or focally aggregated in the perikarya of normal-looking large anterior horn neurons, while it was frequently diffuse in that of degenerative neurons such as central chromatolytic cells and or those with simple atrophy. On the other hand, the controls showed no immunostaining with β-APP in the spinal cord. These findings suggest that increased immunoreactivity of β-APP in neuronal perikarya of the anterior horn cells and in some proximal axonal swellings is an early change of ALS, and may be a response of the increased synthesis of β-APP resulting from neuronal damage, or the impairment of fast axonal transport. Received: 27 August 1998 / Revised, accepted: 4 November 1998  相似文献   

5.
Several studies have suggested that excessive generation of nitric oxide (NO) may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). Recently, a selective induction of the neuronal isoform of nitric oxide synthase (nNOS) in glial cells has been reported in an animal model of familial ALS. We therefore examined in postmortem tissue the expression of nNOS in patients with sporadic ALS and patients without any history of neurological disease. Using immunohistochemistry, we found an up-regulation of nNOS in glial cells of the spinal cord and subcortical white matter in ALS patients compared to controls. The enhanced glial nNOS expression seen in ALS patients could conceivably contribute to motoneuronal degeneration through NO-mediated cytotoxic effects.  相似文献   

6.
The immunocytochemical distribution of the neuronal form of nitric oxide synthase (nNOS) was compared with neuropathological changes and with cell death related DNA damage (as revealed by in situ end labeling, ISEL) in the hippocampal formation and entorhinal cortex of 12 age-matched control subjects and 12 Alzheimer's disease (AD) patients. Unlike controls, numerous nNOS-positive reactive astrocytes were found in AD patients around beta-amyloid plaques in CA1 and subiculum and at the places of clear and overt neuron loss, particularly in the entorhinal cortex layer II and CA4. This is the first evidence of nNOS-like immunoreactivity in reactive astrocytes in AD. In contrast to controls, in all but one AD subject, large numbers of ISEL-positive neuronal nuclei and microglial cells were found in the CA1 and CA4 regions and subiculum. Semiquantitative analysis showed that neuronal DNA fragmentation in AD match with the distribution of nNOS-expressing reactive astroglial cells in CA1 (r = 0.74, P < 0.01) and CA4 (r = 0.58, P < 0.05). A portion of the nNOS-positive CA2/CA3 pyramidal neurons was found to be spared even in the most affected hippocampi. A significant inverse correlation between nNOS expression and immunoreactivity to abnormally phosphorylated tau proteins (as revealed by AT8 monoclonal antibody) in perikarya of these CA2/3 neurons (r = -0.85, P < 0.01) suggests that nNOS expression may provide selective resistance to neuronal degeneration in AD. In conclusion, our results imply that an upregulated production of NO by reactive astrocytes may play a key role in the pathogenesis of AD.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of large motor neurons in the brain and spinal cord. Amyloid precursor protein (APP), the transmembrane precursor of beta-amyloid (A beta), accumulates in the anterior horn motor neurons of ALS patients with mild lesions. APP undergoes an alternative proteolysis mediated by caspase-3, which is activated in motor neurons in a mouse model of ALS. The ALS spinal cord motor neurons also show evidence of increased oxidative damage, which is thought to alter APP processing. We sought to determine whether A beta42, the more pathogenic A beta species, accumulates in the postmortem lumbar spinal cord of ALS patients. While there was little or no A beta42 labeling in control spinal cord tissues, elevated A beta42 immunoreactivity occurred in ALS motor neuronal perikarya and axonal swellings in the anterior horn. A few A beta42-positive neurons exhibited thioflavine S staining. No extracellular A beta42 deposits were found. A beta42 coexisted with the oxidative damage markers malondialdehyde, 8-hydroxydeoxyguanosine, heme oxygenase-1, and nitrotyrosine in abnormal neurons. The neurons with intracellular A beta42 accumulation also displayed robust cleaved caspase-3 immunoreactivity. Very little A beta40 immunoreactivity occurred in motor neurons of both control and ALS. These results suggest that aberrant accumulation of A beta42 in ALS spinal cord motor neurons is associated with oxidative stress, and may play a role in the pathogenesis of neurodegeneration in ALS.  相似文献   

8.
Detailed distribution of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase (sGC) was examined in the brain of rainbow trout by in situ hybridization. In addition, distribution of nitric oxide synthase (NOS) was mapped in adjacent parallel sections by neuronal NOS (nNOS) immunocytochemistry and NADPH-diaphorase (NADPHd) histochemistry. Following application of digoxigenin-labeled riboprobes for sGC alpha and beta subunit mRNAs, we found comparatively intense hybridization signals in the telencephalon, preoptic area, thalamus, hypothalamus, pretectum and tegmentum. Both nNOS immunocytochemistry and NADPHd histochemistry showed extensive distribution of nitroxergic neurons in various brain areas, although various degrees of dissociation of nNOS immunoreactivity (ir) and NADPHd staining were detected. In comparison with sGC subunit mRNAs, nNOS signals were more widely distributed in many neurons, including parvocellular neurons in the preoptic area, nucleus anterior tuberis in the hypothalamus, periventricular neurons in the optic tectum, most of the rhombencephalic neurons and pituitary cells. However, wide overlaps of sGC mRNA-containing neurons and nNOS-positive neurons were observed in the olfactory bulb, telencephalon, preoptic area, thalamus, hypothalamus, pretectum, optic tectum, tegmentum and cerebellum. The widespread overlapping in sGC subunit mRNAs and nNOS distribution suggests a role for sGC in various neuronal functions, such as processing of olfactory and visual signals and neuroendocrine function, possibly via NO/cGMP signaling in the brain of rainbow trout.  相似文献   

9.
The spinal cord of 20 patients with amyotrophic lateral sclerosis (ALS) and 5 patients with lower motor neuron disease (LMND) were investigated immunohistochemically using anti-human excitatory amino acid transporter 1 (EAAT1) and EAAT2 antibodies which are the astrocytic transporters. The purpose of the study was to examine relationships between EAAT1 and EAAT2 immunoreactivity and degeneration of anterior horn neurons. Specimens from 20 patients without any neurological disease served as controls. In controls, spinal cord gray matter was densely immunostained by antibodies, whereas the white matter was generally not immunostained. In motor neuron disease (MND) patients, EAAT1 immunoreactivity was relatively well preserved in the gray matter despite neuronal loss of anterior horn cells. On the other hand, EAAT2 immunoreactivity in anterior horns correlated with the degree of neuronal loss of anterior horn cells: in the patients with mild neuronal depletion, anterior horns were densely immunostained by the antibody, whereas in the patients with severe neuronal loss, EAAT2 expression was markedly reduced. Degenerated anterior horn cells frequently showed a much denser EAAT1 and EAAT2 immunoreactivity around the surface of the neurons and their neuronal processes than that observed in normal-appearing neurons. There was no difference in the expression of EAAT1 and EAAT2 immunoreactivity between LMND and ALS patients. These findings suggest that in the early stage of degeneration of anterior horn cells, EAAT1 and EAAT2 immunoreactivity is preserved in the astrocytic foot directly attached to normal-appearing neurons, whereas levels of EAAT1 and EAAT2 protein rather increase in the astrocytic foot directly attached to degenerated anterior horn neurons; the latter effect most probably reduces the elevated glutamate level, compensates for the reduced function of astroglial glutamate transporters, or represents a condensation of EAAT1 and EAAT2 immunoreactivity secondary to loss of neurites and greater condensation of astrocytic processes. Thus, we demonstrate a difference in EAAT1 and EAAT2 immunoreactivity in different stages of progression in ALS, as a feature of the pathomechanism of this disease. Received: 8 September 1999 / Revised, accepted: 28 October 1999  相似文献   

10.
The pathogenesis of amyotrophic lateral sclerosis (ALS) is poorly understood. Increased levels of free radicals derived from nitric oxide (NO), the product of nitric oxide synthase (NOS), may damage mitochondrial function leading to motor neurone death. Previous studies demonstrated a specific impairment of mitochondrial function in skeletal muscle of ALS patients. In order to verify a pathogenetic relationship between neuronal NOS (nNOS) and mitochondrial function, we studied nNOS expression by Western blot and mitochondrial enzyme activity by spectrophotometric assays in muscle biopsies of 16 sporadic ALS patients and 16 controls subjects. We observed a reduced activity of respiratory chain complexes with mitochondrial encoded subunits and a lower nNOS amount in ALS muscles. There was a direct correlation between levels of nNOS and values of mitochondrial enzymes function. In ALS muscles we found normal levels of manganese superoxide dismutase (SOD2) that is assumed as related to mitochondrial DNA abnormalities. Our data suggest a beneficial role for NO to mitochondrial function and lead to the hypothesis of a common oxidative damage in motor neurones and skeletal muscle in sporadic ALS patients.  相似文献   

11.
The authors investigated for a correlation between the expression of nitric oxide synthases (NOSs) with the severity of motor neuronal loss in the anterior horns of patients with amyotrophic lateral sclerosis (ALS). Spinal cords from six patients with ALS and from three normal controls were examined. The sections of cervical, lumbar, and sacral cord including Onuf's nucleus, which are seldom degenerated until the late stage, were stained with three antibodies against NOSs (anti-n-NOS, anti-e-NOS, and anti-i-NOS) using ABC methods. Perikarya of motor neurons in ALS, but not in controls, were immunoreactive against anti-n-NOS and e-NOS. Anti-i-NOS did not recognize the motor neurons of ALS or of controls. The immunoreactivity for n- and e-NOSs was approximately the same in the sections of cervical, lumbar, and sacral cord in ALS. No significant differences in immunoreactivity were observed among the patients with ALS. These results suggest that the expression of NOSs does not immediately affect neuronal loss in ALS.  相似文献   

12.
The pathogenesis of neuronal degeneration in both sporadic and familial amyotrophic lateral sclerosis (ALS) associated with mutations in superoxide dismutase may involve oxidative stress. A leading candidate as a mediator of oxidative stress is peroxynitrite, which is formed by the reaction of superoxide with nitric oxide. 3-Nitrotyrosine is a relatively specific marker for oxidative damage mediated by peroxynitrite. In the present study, biochemical measurements showed increased concentrations of 3-nitrotyrosine and 3-nitro-4-hydroxyphenylacetic acid in the lumbar and thoracic spinal cord of ALS patients. Increased 3-nitrotyrosine immunoreactivity was observed in motor neurons of both sporadic and familial ALS patients. Neurologic control patients with cerebral ischemia also showed increased 3-nitrotyrosine immunoreactivity. These findings suggest that peroxynitrite-mediated oxidative damage may play a role in the pathogenesis of both sporadic and familial ALS.  相似文献   

13.
Neurofilament metabolism in sporadic amyotrophic lateral sclerosis.   总被引:6,自引:0,他引:6  
Although the role of intraneuronal neurofilamentous aggregates in the pathogenesis of ALS is unknown, their presence forms a key neuropathological hallmark of the disease process. Conversely, the experimental induction of neurofilamentous aggregates in either neurotoxic or transgenic mice gives rise to motor system degeneration. To determine whether alterations in the physiochemical properties of NF are present in sporadic ALS, we purified NF subunit proteins from cervical spinal cord of ALS and age-matched control patients. The cytoskeleton-enriched, Triton X-100 insoluble fraction was further separated into individual NF subunits using hydroxyapatite HPLC. We observed no differences between control and ALS in the characteristics of NFH, including migration patterns on 2D-IEF, sensitivity to E. coli, alkaline phosphatase mediated dephosphorylation, peptide mapping, or proteolysis (calpain, calpain/calmodulin mediated, phosphorylated or dephosphorylated NFH). NFL showed no differences in 2D-IEF migration patterns, peptide mapping, or the extent of NFL nitrotyrosine immunoreactivity in either the Triton soluble or insoluble fractions. The latter observation demonstrated that NFL nitration is a ubiquitous occurrence in neurons and suggests that NFL might function as a sink for free reactive nitrating species. In contrast to the lack of differences in the post-translational processing of NF in ALS, we did observe a selective suppression of NFL steady state mRNA levels in the limb innervating lateral motor neuron column of ALS. This occurred in the absence of modifications in NFH, NFM or neuronal nitric oxide synthase (Type I NOS; nNOS) steady state mRNA levels. Coupled with previous observations of nNOS immunoreactivity co-localizing with NF aggregates in ALS motor neurons, this suggests activation of the nNOS enzyme complex in ALS, which would be predicted to contribute directly to the generation of reactive nitrating species. Given this, the isolated suppression of NFL steady state mRNA levels in ALS may indicate that ALS motor neurons are at an intrinsic deficit in the ability to buffer free reactive nitrating species.  相似文献   

14.
This report concerns a comparative study of alterations of anterior horn presynaptic terminals in post-poliomyelitis and sporadic amyotrophic lateral sclerosis (S-ALS). Synaptophysin (SP) served as a marker for presynaptic terminals; immunohistochemical techniques were used throughout. Spinal cords from six individuals without neurological disease served as controls. Localized and well-delineated anterior horn neuropil areas with decreased SP immunoreactivity were observed in the five cases of post-poliomyelitis studied. These areas had few remaining neurons but had pronounced reactive gliosis which corresponded to those areas in which typical poliomyelitis lesions were present. Normal neuronal SP expression was preserved in the adjacent, non-affected areas. However, a small region with increased SP levels was observed in one case. By comparison, the decrease in anterior horn SP immunoreactivity was diffuse in the four S-ALS patients studied. The present data suggest that presynaptic terminals ending at the somata and processes of affected anterior horn neurons located in the area of the acute infection are degenerate in post-poliomyelitis. By contrast, in S-ALS the terminals ending at distal dendrite portions tend to be severely degenerate, while those terminating at the proximal portions of the neuron are relatively well preserved. Our results thus provide additional evidence that the pathogenesis of the post-poliomyelitis state differs from that of ALS. Received: 29 August 1995 / Revised, accepted: 28 February 1996  相似文献   

15.
Summary Immunohistochemical studies with an antibody to ubiquitin revealed the presence of filamentous inclusions in spinal anterior horn cells in all of six patients with Guamanian amyotrophic lateral sclerosis (ALS) and one of six cases of parkinsonism-dementia complex (PD) on Guam. Similar ubiquitin-reactive filamentous inclusions were found in all of seven non-Guamanian sporadic ALS patients examined. No similar inclusions were seen in six normal controls or in non-ALS patients who had chromatolytic neurons. The filamentous inclusions differed from spinal neurofibrillary tangles, a characteristic feature of Guamanian ALS and PD, since they were restricted to anterior horn cells and did not react with anti-tau antibody. The chromatolytic neurons of non-ALS patients occasionally had weak diffuse immunoreactivity, but no focal inclusions were detected. These results suggest that ubiquitin-reactive focal filamentous inclusions may reflect a characteristic degenerative process of anterior horn cells of motor neuron disease.  相似文献   

16.
To clarify the trophic mechanism of residual anterior horn cells affected by sporadic amyotrophic lateral sclerosis (SALS) and familial ALS (FALS) with superoxide dismutase 1 (SOD1) mutations, we investigated the immunohistochemical expression of hepatocyte growth factor (HGF), a novel neurotrophic factor, and its receptor, c-Met. In normal subjects, immunoreactivity to both anti-HGF and anti-c-Met antibodies was observed in almost all anterior horn cells, whereas no significant immunoreactivity was observed in astrocytes and oligodendrocytes. Histologically, the number of spinal anterior horn cells in ALS patients decreased along with disease progression. Immunohistochemically, the number of neurons negative for HGF and c-Met increased with ALS disease progression. However, throughout the course of the disease, certain residual anterior horn cells co-expressed both HGF and c-Met with the same, or even stronger intensity in comparison with those of normal subjects, irrespective of the reduction in the number of immunopositive cells. Western blot analysis revealed that c-Met was induced in the spinal cord of a patient with SALS after a clinical course of 2.5 years, whereas the level decreased in a SALS patient after a clinical course of 11 years 5 months. These results suggest that the autocrine and/or paracrine trophic support of the HGF-c-Met system contributes to the attenuation of the degeneration of residual anterior horn cells in ALS, while disruption of the neuronal HGF-c-Met system at an advanced disease stage accelerates cellular degeneration and/or the process of cell death. In SOD1-mutated FALS patients, Lewy body-like hyaline inclusions (LBHIs) in some residual anterior horn cells exhibited co-aggregation of both HGF and c-Met, although the cytoplasmic staining intensity for HGF and c-Met in the LBHI-bearing neurons was either weak or negative. Such sequestration of HGF and c-Met in LBHIs may suggest partial disruption of the HGF-c-Met system, thereby contributing to the acceleration of neuronal degeneration in FALS patients.  相似文献   

17.
Nuclear factor κ B (NF-κB) is involved in the pathogenesis of a number of neurodegenerative disorders with neuroinflammation. In order to clarify the role of NF-κB in ALS, immunohistochemical studies with an antibody that recognizes the p65 subunit of NF-κB were performed on the spinal anterior horn of 4 patients with sporadic ALS (sALS), 1 patient with optineurin-mutated ALS (OPTN-ALS), and 3 normal controls (NC). In patients with sALS or OPTN-ALS, the expression pattern of NF-κB was altered when compared to that of NC; NF-κB immunoreactivity tended to be absent from neuronal nucleus and was increased in microglia. The down-regulation of NF-κB in neuronal nucleus might contribute to a loss of neuroprotection, or neurons with nuclear NF-κB might be lost immediately after its activation. The microglial induction of NF-κB might contribute to neuroinflammation. In conclusion, NF-κB signaling pathway could have a key role in the pathomechanism of ALS.  相似文献   

18.
In neurodegenerative diseases, an increased number of neuronal nitric oxide synthase (nNOS)-positive neurons was reported, but nothing is known on which are the neurons induced to express nNOS. Argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and nNOS act in the L-arginine-NO-L-citrulline cycle permitting a correct NO production. In the brain, nNOS-positive neurons co-expressing ASS were known, while those co-expressing ASL were not demonstrated. We investigated by immunohistochemistry the presence of these types of neurons in the rat striatum to verify whether there was a correlation between their changes due to neurotoxic insults and animal survival. Transient ischemia, a neurodegenerative insult model, was induced in rat brain by 2 h of middle cerebral artery occlusion. The striatum, the core of ischemia, was examined at 24, 72 and 144 h after reperfusion and compared with that of rats in normal condition. ASS, ASL and nNOS-positive neurons, some of the latter also expressing ASS and ASL, were present both in normal and ischemic conditions. At 24 h after reperfusion, the number of the nNOS-positive neurons and the percentage of those co-expressing ASS and ASL were significantly increased in the animals with a longer survival and at 144 h after ischemia there was an almost complete restore of the number and/or percentage of these neurons. We hypothesize that the neurons induced to express nNOS were the ASS- and ASL-positive ones and that the neurons co-expressing nNOS, ASS and ASL, since having the enzymes necessary to maintain a correct NO production, might protect from neurotoxic insults.  相似文献   

19.
We performed a prospective, longitudinal immunohistochemical study of the spinal cords of transgenic mice with a G93A mutant SOD1 gene at 4 fixed points in time, using antibodies to inducible nitric oxide synthase (iNOS) and nitrotyrosine. The purpose of this study was to characterize the temporal and topographic distribution of iNOS and nitrotyrosine immunoreactivity in the spinal cord over a certain period, thus illuminating the possible role of increased oxidative damage to the motor system in the neurodegenerative process in this animal model. Specimens from age-matched non-transgenic wild-type mice served as controls. The control mice showed no positive iNOS or nitrotyrosine immuunoreactivity in the somata of anterior horn neurons or their neuronal processes at any age. On the other hand, the transgenic mice demonstrated a common immunostaining pattern of iNOS and nitrotyrosine in the anterior horn neurons. When the mice reached the age of 24 wk (early presymptomatic stage), the anterior horn neurons and their neuronal processes were occasionally immunostained for iNOS and nitrotyrosine; at 28 wk (late presymptomatic stage), the anterior horn neurons were not uncommonly immunostained; at 32 wk (early symptomatic stage) and 35 wk (end-stage), positive iNOS and nitrotyrosine immunoreactivity was frequently observed in proliferated reactive astrocytes as well as in the somata of the anterior horn cells. The selective localization of positive iNOS and nitrotyrosine immunoreactivity in the anterior horn neurons suggests that oxidative stress may be involved in the pathomechanism of degeneration of motor neurons in this transgenic animal model.  相似文献   

20.
Neuronal nitric oxide synthase (nNOS)-containing neurons and axon terminals were examined in the rat somatosensory and temporal neocortex, in the CA3/a-c areas of Ammon's horn and in the hippocampal dentate gyrus. In these areas, only nonpyramidal neurons were labeled with the antibody against nNOS. Previous observations suggested that all nNOS-positive nonpyramidal cells are GABAergic local circuit neurons, which form exclusively symmetric synapses. In agreement with this, nNOS-positive axon terminals in the hippocampal formation formed symmetric synapses exclusively with dendritic shafts. In the neocortex, in contrast, in addition to the nNOS-positive axon terminals that formed synapses with unlabeled spiny and aspiny dendrites and with nNOS-positive aspiny dendrites, a small proportion of the nNOS-positive axon terminals formed symmetric synapses with dendritic spines. These results suggest that nNOS-positive local circuit neurons form a distinct group of axo-dendritic cells displaying slightly different domain specificity in the archi- and neocortex. However, nNOS-positive cells show no target selectivity, because they innervate principal cells and local circuit neurons. Afferents to the NOS-positive cells display neither domain nor target selectivity, because small unlabeled terminals formed synapses with both the soma or dendrites of nNOS-positive neurons and an adjacent unlabeled dendrite or spine in both the hippocampal formation and in neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号