首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The prefrontal cortex and nucleus accumbens are primary recipients of medial thalamic inputs, prominently including projections from the thalamic paraventricular nucleus. It is not known if paraventricular neurons collateralize to innervate both the prefrontal cortex and nucleus accumbens. We used dual retrograde tract tracing methods to examine this question. A small population of paraventricular neurons was found to innervate the prefrontal cortex and medial nucleus accumbens. These data suggest that the thalamic paraventricular nucleus may coordinately influence activity in the prefrontal cortex and ventral striatum.  相似文献   

2.
Ascending dopaminergic projections from the dorsal raphe nucleus in the rat   总被引:3,自引:1,他引:2  
The projections of putative dopamine containing cells within the dorsal raphe nucleus (DR) were studied using a combination of tyrosine hydroxylase (TH) immunocytochemistry and fluorescent retrograde tracing. Substantial numbers of TH-immunoreactive cells in the DR were found to project to the nucleus accumbens. Progressively smaller numbers of cells were found to project to the lateral septum and medial prefrontal cortex. Very few TH-immunoreactive cells projected to the dorsal striatum, and none to the substantia nigra. TH-immunoreactive cells did not display serotonin-like immunoreactivity. These findings indicate that the projection pattern of TH-immunoreactive cells within the dorsal raphe more closely resembles that of dopaminergic cells within the ventral tegmental area (VTA) than that of serotonergic cells within the DR.  相似文献   

3.
Hubert GW  Kuhar MJ 《Neuropeptides》2008,42(3):339-343
In order to further test whether or not psychostimulant drugs activate CART peptide-containing cells in the nucleus accumbens, we examined the fraction of CART positive cells that co-immunostained for c-Fos after administration of saline or cocaine (10 and 25 mg/kg i.p.). There was about a 45% increase in the fraction of cells that stained for both CART and c-Fos after administration of cocaine, but there was no change in the fraction after administration of saline. Moreover, the increase was not found 24h after injection and is therefore reversible. These results support the notion that psychostimulant drugs activate CART cells in the nucleus accumbens, even under conditions where it is difficult to show a change in CART levels.  相似文献   

4.
Interactions between central corticotropin-releasing factor (CRF) and serotonergic systems are believed to be important for mediating fear and anxiety behaviors. Recently we demonstrated that infusions of CRF into the rat dorsal raphe nucleus result in a delayed increase in serotonin release within the medial prefrontal cortex that coincided with a reduction in fear behavior. The current studies were designed to study the CRF receptor mechanisms and pathways involved in this serotonergic response. Infusions of CRF (0.5 μg/0.5 μL) were made into the dorsal raphe nucleus of urethane-anesthetized rats following either inactivation of the median raphe nucleus by muscimol (25 ng/0.25 μL) or antagonism of CRF receptor type 1 or CRF receptor type 2 in the dorsal raphe nucleus with antalarmin (25–50 ng/0.5 μL) or antisauvagine-30 (2 μg/0.5 μL), respectively. Medial prefrontal cortex serotonin levels were measured using in-vivo microdialysis and high-performance liquid chromatography with electrochemical detection. Increased medial prefrontal cortex serotonin release elicited by CRF infusion into the dorsal raphe nucleus was abolished by inactivation of the median raphe nucleus. Furthermore, antagonism of CRF receptor type 2 but not CRF receptor type 1 in the dorsal raphe nucleus abolished CRF-induced increases in medial prefrontal cortex serotonin. Follow-up studies involved electrical stimulation of the central nucleus of the amygdala, a source of CRF afferents to the dorsal raphe nucleus. Activation of the central nucleus increased medial prefrontal cortex serotonin release. This response was blocked by CRF receptor type 2 antagonism in the dorsal raphe. Overall, these results highlight complex CRF modulation of medial prefrontal cortex serotonergic activity at the level of the raphe nuclei.  相似文献   

5.
The principal axons of supragranular pyramidal neurons in the cerebral cortex travel through the white matter and terminate in other cortical areas, whereas their intrinsic axon collaterals course through the gray matter and form both local and long-distance connections within a cortical region. In the monkey prefrontal cortex (PFC), horizontally oriented, intrinsic axon collaterals from supragranular pyramidal neurons form a series of stripe-like clusters of axon terminals (Levitt et al. [1993] J Comp Neurol 338:360-376; Pucak et al. [1996] J Comp Neurol 376:614-630). The present study examined the synaptic targets of the intrinsic axon collaterals arising from supragranular pyramidal neurons within the same stripe (local projections). Approximately 50% of the within-stripe axon terminals in monkey PFC area 9 targeted dendritic spines. In contrast, for both the intrinsic axon collaterals that travel between stripes (long-range projections), and the axon terminals that project to other PFC areas (associational projections), over 92% of the postsynaptic structures were dendritic spines (Melchitzky et al. [1998] J Comp Neurol 390:211-224). The other 50% of the within-stripe terminals synapsed with dendritic shafts. Dual-labeling studies confirmed that these within-stripe terminals contacted gamma-aminobutyric acid-immunoreactive dendritic shafts, including the subpopulation that contains the calcium-binding protein parvalbumin. The functional significance of the differences in synaptic targets between local and long-range intrinsic axon collaterals was supported by whole-cell, patch clamp recordings in an in vitro slice preparation of monkey PFC. Specifically, the small amplitude responses observed in layer 3 pyramidal neurons during long-range, low-intensity stimulation were exclusively excitatory, whereas local stimulation also evoked di/polysynaptic inhibitory responses. These anatomic and electrophysiological findings suggest that intrinsic connections of the PFC differ from other cortical regions and that within the PFC, feedback (within-stripe) inhibition plays a greater role in regulating the activity of supragranular pyramidal neurons than does feedforward inhibition either between stripes or across regions.  相似文献   

6.
The projections from the rat medial prefrontal cortex to the amygdaloid complex were investigated using retrograde transport of fluorescent dyes and anterograde transport of horseradish peroxidase-WGA. The ventral anterior cingulate, prelimbic, infralimbic and medial orbital areas and the taenia tecta were found to project to the amygdaloid complex. The projections from the prelimbic area arose bilaterally. The medial orbital, prelimbic and anterior cingulate areas send convergent projections to the basolateral nucleus. The prelimbic area has additional projections to the posterolateral cortical nucleus and amygdalo-hippocampal area. The infralimbic area does not project to the basolateral nucleus and cortico-amygdaloid projections from this area are focussed on the anterior cortical nucleus and the anterior amygdaloid area. Both prelimbic and infralimbic areas project to an area situated between the central, medial and basomedial nuclei. Based on similar projections, this area appears to be a caudal continuation of the anterior amygdaloid area. The results indicate that the medial prefrontal component of the "basolateral limbic circuit" is restricted to the anterior cingulate and prelimbic areas. No evidence was obtained to support the existence of a medial prefronto-amygdaloid component of the "visceral forebrain".  相似文献   

7.
Studies of human brain indicate that both the ventromedial prefrontal cortex (PFC) and the dorsal raphe nucleus (DRN) may be dysfunctional in major depressive illness, making it important to understand the functional interactions between these brain regions. Anatomical studies have shown that the PFC projects to the DRN, although the synaptic targets of this excitatory pathway have not yet been identified. Electrophysiological investigations in the rat DRN report that most serotonin neurons are inhibited by electrical stimulation of the PFC, suggesting that this pathway is more likely to synapse onto neighboring gamma-aminobutyric acid (GABA) neurons than onto serotonin cells. We tested this hypothesis by electron microscopic examination of DRN sections dually labeled for biotin dextran amine anterogradely transported from the PFC and immunogold-silver labeling for tryptophan hydroxylase (TrH) or for GABA. In the DRN, the majority of PFC axons either synapsed onto unlabeled dendrites or failed to form detectable synapses in single sections. Other PFC axons synapsed onto either TrH- or GABA-immunolabeled processes. Considerably more tissue sampling was necessary to detect PFC synapses onto TrH- than onto GABA-labeled dendrites, suggesting that the latter connections are more common. In other cases, PFC terminals and TrH- or GABA-immunoreactive dendrites either were closely apposed, without forming detectable synapses, or were separated by glial processes. These results provide potential anatomical substrates whereby the PFC can both directly and indirectly regulate the activity of serotonin neurons in the DRN and possibly contribute to the pathophysiology of depression.  相似文献   

8.
Conditions of increased cognitive or emotional demand activate dopamine release in a regionally selective manner. Whereas the brief millisecond response of dopamine neurons to salient stimuli suggests that dopamine's influence on behaviour may be limited to signalling certain cues, the prolonged availability of dopamine in regions such as the prefrontal cortex and nucleus accumbens is consistent with the well described role of dopamine in maintaining motivation states, associative learning and working memory. The behaviourally elicited terminal release of dopamine is generally attributed to increased excitatory drive on dopamine neurons. Our findings here, however, indicate that this increase may involve active removal of a tonic inhibitory control on dopamine neurons exerted by the lateral habenula (LHb). Inhibition of LHb in behaving animals transiently increased dopamine release in the prefrontal cortex, nucleus accumbens and dorsolateral striatum. The inhibitory influence was more pronounced in the nucleus accumbens and striatum than in the prefrontal cortex. This pattern of regional dopamine activation after LHb inhibition mimicked conditions of reward availability but not increased cognitive demand. Electrical or chemical stimulation of LHb produced minimal reduction of extracellular dopamine, suggesting that in an awake brain the inhibition associated with tonic LHb activity represents a near-maximal influence on dopamine neurotransmission. These data indicate that LHb may be critical for functional differences in dopamine neurons by preferentially modulating dopamine neurons that project to the nucleus accumbens over those neurons that primarily project to the prefrontal cortex.  相似文献   

9.
Stimulation of the dorsal raphe nucleus (DRN) alters arterial pressure, heart rate and cerebral blood flow, yet projections from the DRN to medullary autonomic nuclei have not been described. We examined whether serotonergic (5-HT) projections from the DRN terminate in the rostral ventrolateral medulla (RVL) and if so, whether the projection mediates cardiovascular responses to DRN stimulation. Studies were performed in adult male Sprague-Dawley rats. Horseradish peroxidase or choleratoxin B was injected unilaterally or bilaterally into the RVL. Levels of 5-HT, its precursors L-tryptophan and 5-hydroxytryptophan and the metabolite 5-hydroxyindole acetic acid were measured in the ventral medulla by HPLC three weeks following placement of electrolytic lesions in DRN. Serotonin transporter (3H-cyanoimipramine binding) was quantified by autoradiography in DRN-lesioned animals. Horseradish peroxidase or choleratoxin B injections into the medulla at the level of the RVL resulted in retrogradely labeled neurons bilaterally, with ipsilateral predominance, in the DRN. Labeled cells were preponderant in rostral ventrolateral portions of the DRN, but were also observed in the dorsal, lateral and interfascicular DRN subnuclei; fewer neurons were observed in caudal portions of the DRN. Three weeks following placement of electrolytic lesions in the DRN, the concentrations of 5-HT and 5-hydroxyindole acetic acid, but not L-tryptophan or 5-hydroxytryptophan, were reduced in the medulla by 45 and 48%, respectively, compared to sham-operated or unoperated controls. DRN lesions reduced binding to the 5-HT transporter in the RVL by approximately 30% compared to unlesioned controls. Unilateral lesions of the RVL reduced the evoked blood pressure response by 53+/-15%; bilateral RVL lesions reduced the response by 86+/-9%. The increase in cortical blood flow elicited by DRN stimulation was unchanged after unilateral or bilateral RVL lesions. These studies demonstrate that there is a descending serotonergic projection from the DRN to the RVL. This projection may mediate autonomic changes elicited by DRN stimulation.  相似文献   

10.
Neuronal projections to the dorsal raphe nucleus (DRN) from the medial prefrontal cortex (mPFC) and lateral habenula nucleus (LHb) provide the two key routes by which information processed by mood regulatory, cortico-limbic-striatal circuits input into the 5-HT system. These two projections may converge as it appears that both activate local GABAergic neurons to inhibit 5-HT neurons in the DRN. Here we have tested this hypothesis by measuring the effect of stimulation of the mPFC and LHb on the activity of 5-HT and non-5-HT, putative gamma-amino butyric acid (GABA) neurons in the DRN using extracellular recordings in anaesthetized rats. A total of 119 5-HT neurons (regular, slow firing, broad spike width) and 21 non-5-HT, putative GABA neurons (fast-firing, narrow spike width) were tested. Electrical stimulation of the mPFC or LHb caused a poststimulus inhibition (30 ms latency) of 101/119 5-HT neurons, of which 61 (60%) were inhibited by both the mPFC and LHb. Electrical stimulation of the mPFC or LHb also caused a short latency (12-20 ms) poststimulus facilitation of 10/21 non-5-HT neurons, of which 5 (50%) were activated by both the mPFC and LHb. These data indicate that a significant number of 5-HT neurons and non-5-HT neurons in the DRN are influenced by both the mPFC and LHb. Moreover, the data are compatible with the hypothesis and that there is a convergence of mPFC and LHb inputs on local circuit GABAergic neurons in the DRN which in turn inhibit the activity of 5-HT neurons.  相似文献   

11.
Analysis of constitutive Engrailed (En) null mice previously implicated the two En homeobox paralogs in the development of serotonin (5-HT) neurons. An unresolved question is whether En plays intrinsic roles in these neurons. Here, we show that En1 and En2 are expressed in maturing 5-HT neurons that will form the dorsal raphe nucleus (DRN) and part of the median raphe nucleus. Although En1 expression in 5-HT neurons persists postnatally, En2 expression is extinguished by embryonic day 17.5. To investigate intrinsic serotonergic functions for En1/2, we generated compound conditional En mutants with floxed alleles and a cre recombinase line that becomes active in postmitotic fetal 5-HT neurons. We present evidence in support of a requirement for En1/2 in the maturation of DRN cytoarchitecture. The disruption of DRN cytoarchitecture appears to result from a defect in secondary migration of serotonergic cell bodies toward the midline rather than disruption of their primary ventral migration away from the ventricular zone. Furthermore, En1/2 are required for perinatal maintenance of serotonergic identity and postnatal forebrain 5-HT levels. Increased numbers of caspase-3-expressing cells and loss of significant numbers of 5-HT neuron cell bodies, indicative of apoptosis, occurred after loss of serotonergic identity. Analysis of an allelic series of conditional mutants showed that En1 is the predominant functional En paralog in maturing 5-HT neurons, although a small contribution from En2 was reproducibly detected. Together, our findings reveal complex intrinsic functions for En in maturing 5-HT neurons, hence necessitating a reinterpretation of their roles in 5-HT system development.  相似文献   

12.
The preembedding double immunoreaction method was used to study interrelations of enkephalinergic and GABAergic neuronal elements in the dorsal raphe nucleus of the Wistar albino rat. The enkephalin-like neuronal elements were immunoreacted by the peroxidase-antiperoxidase method and silver-gold intensified, which showed strongly and was specific. The GABA-like immunoreactive neurons were immunoreacted by the peroxidase-antiperoxidase method only. GABA-like neural somata were postsynaptic to both the enkephalin-like immunoreactive and the non-immunoreactive axon terminals. The enkephalin-like immunoreactive axon terminals were also found to synapse GABA-like immunoreactive dendrites. The GABA-like immunoreactive neuronal elements were also found to receive synapses from other non-immunoreactive as well as GABA-like immunoreactive axon terminals. Almost all of the synapses appeared to be asymmetrical. Possible functional activity of interactions among the enkephalinergic, GABAergic, and serotonergic neuronal elements in the dorsal raphe nucleus are discussed.  相似文献   

13.
Circadian rhythms influence cocaine-seeking behavior in rats, and this behavior may be mediated by variability in the rate of extracellular dopamine clearance across the day:night cycle. We used rotating disk electrode voltammetry to examine dopamine clearance and inhibition of clearance by cocaine in the rat medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Rats were housed under light:dark conditions (LD, 12 h:12 h) or in constant darkness (DD), the latter given just prior to the day of sacrifice. Tissue was collected at 4-h intervals under LD and DD conditions. Under LD, dopamine clearance in both brain regions was greatest at 4h after lights on. Under DD, there was a blunted but still rhythmic pattern of dopamine clearance across the 24-h cycle. Cocaine-induced inhibition of dopamine clearance in the mPFC was not different across the day:night cycle in rats under LD. Paradoxically, under DD, dopamine clearance in the mPFC was enhanced by cocaine at ZT16, 4 h into the subjective night, and only minimally inhibited at other times. In the NAc, cocaine inhibition of dopamine clearance was lowest at ZT4 under LD, and did not vary under DD. We conclude that dopamine clearance varies both in a diurnal and possibly in a circadian manner in the mPFC, and in a diurnal manner in the NAc. These results indicate that light itself may be used to manipulate molecules implicated in drug addiction.  相似文献   

14.
We examined whether repeated exposure to the noncompetitive NMDA receptor antagonist phencyclidine (PCP) produces enduring changes in dendritic structure in a manner similar to the stimulants cocaine and amphetamine. Adult rats were treated with i.p. injections of PCP (5 mg/kg) or saline, twice a day, for 5 consecutive days, for a total of 4 weeks. One month after the last injection, their brains were removed and processed for Golgi-Cox staining. Prior exposure to PCP increased dendritic spine density in the mPFC and NAcc core, but not in the parietal cortex. These findings, which are similar to those observed after chronic treatment with cocaine and amphetamine, raise the possibility that, despite differences in their mechanisms of action, PCP and stimulant drugs may induce some of their enduring effects via common processes.  相似文献   

15.
We have studied the laminar origins of local long-range connections within rat primary visual cortex (area 17), by using retrograde tracing of nerve cell bodies with fluorescent markers. Injections throughout the thickness of cortex produce distinct laminar labeling patterns which indicate that a substantial number of cells in layers 2/3, 5, and 6 have wide local axon collateral arbors, while the local arbors of layer 4 cells are much narrower. Double labeling experiments which combined area 17 injections with injections into different projection targets of area 17 (opposite area 17, area 18a, and area 18b) show that many cortico-cortically projecting cells make widespread projections within area 17. In contrast, the overwhelming majority of subcortically projecting cells have narrow collateral arbors within area 17. Anterograde tracing of local projections within areas 17 with the lectin Phaseolus vulgaris leucoagglutinin shows an extensive system of horizontally running fibers which terminate in distinct 0.15-0.25 mm wide clusters up to 1.8 mm from the injection site. On horizontal sections the termination pattern resembles a closely spaced lattice. The results indicate that cortico-cortically projecting cells provide for long-range interactions between distant points of the visuotopic map, while subcortically projecting cells mediate information within a cortical column. Interestingly, subcortically projecting cells differ functionally from cortico-cortically projecting cells in that they are not orientation selective (Klein et al., Neurosci. 17:57-78, '86; Mangini and Pearlman, J. Comp. Neurol. 193:203-222, '80; Simmons and Pearlman, J. Neurophysiol. 50:838-848, '83). We therefore suggest that cortico-cortically projecting cells with wide collateral arbors are orientation selective and that clustered long-range projections within area 17 connect columns with similar functional specificity.  相似文献   

16.
Substance P (SP) modulates serotonin neurotransmission via neurokinin-1 receptors (NK1rs), and exerts regulatory effects on mood through habenular afferents to the dorsal raphe nucleus (DRN). We have previously demonstrated that, in the caudal DRN of rat, some serotonin neurons are endowed with NK1rs that are mostly cytoplasmic, whereas these receptors are mostly membrane bound in non-serotonin neurons. Here, we first examined by double-labeling immunocytochemistry the relationships between SP axon terminals and these two categories of DRN neurons. Almost half of the SP terminals were synaptic and many were in close contact with serotonin dendrites, but never with non-serotonin dendrites. In additional double-immunolabeling experiments, most if not all dendrites bearing membranous NK1rs appeared to be GABAergic. Treatment with the selective neurokinin-1 antagonist RP67580 modified the subcellular distribution of NK1rs in serotonin neurons. At 1 h after administration of a single dose, the receptor distribution was unchanged in both dendritic types but, after daily administration for 7 or 21 days, the plasma membrane and cytoplasmic density of NK1rs were increased in serotonin dendrites, without any change in non-serotonin dendrites. These treatments also increased NK1r gene expression in the caudal DRN. Lastly, a marked increase in the membrane (but not cytoplasmic) density of NK1rs was measured in serotonin dendrites after bilateral habenular lesion. These results suggest that the trafficking of NK1rs represents a cellular mechanism in control of the modulation of serotonin neuron activity by SP in DRN.  相似文献   

17.
We examined the synaptic targets of large non-gamma-aminobutyric acid (GABA)-ergic profiles that contain round vesicles and dark mitochondria (RLD profiles) in the perigeniculate nucleus (PGN) and the dorsal lateral geniculate nucleus (dLGN). RLD profiles can provisionally be identified as the collaterals of thalamocortical axons, because their ultrastrucure is distinct from all other previously described dLGN inputs. We also found that RLD profiles are larger than cholinergic terminals and contain the type 2 vesicular glutamate transporter. RLD profiles are distributed throughout the PGN and are concentrated within the interlaminar zones (IZs) of the dLGN, regions distinguished by dense binding of Wisteria floribunda agglutinin (WFA). To determine the synaptic targets of thalamocortical axon collaterals, we examined RLD profiles in the PGN and dLGN in tissue stained for GABA. For the PGN, we found that all RLD profiles make synaptic contacts with GABAergic PGN somata, dendrites, and spines. In the dLGN, RLD profiles primarily synapse with GABAergic dendrites that contain vesicles (F2 profiles) and non-GABAergic dendrites in glomerular arrangements that include triads. Occasional synapses on GABAergic somata and proximal dendrites were also observed in the dLGN. These results suggest that correlated dLGN activity may be enhanced via direct synaptic contacts between thalamocortical cells, whereas noncorrelated activity (such as that occurring during binocular rivalry) could be suppressed via thalamocortical collateral input to PGN cells and dLGN interneurons.  相似文献   

18.
Hubert GW  Kuhar MJ 《Neuropeptides》2006,40(6):409-415
CART peptide is a peptidergic neurotransmitter that is expressed in brain regions involved in critical biological processes such as feeding and stress, and in areas associated with drug reward and abuse including the dopamine-rich nucleus accumbens (NAcc), which can be considered part of the basal ganglia. Because CART has been shown to colocalize with substance P, a marker of the basal ganglia direct pathway, we now test for colocalization with other markers of the direct pathway to determine if CART colocalizes with dynorphin and dopamine D1 receptors. In the NAcc, CART peptide immunoreactivity (IR) was colocalized with prodynorphin-IR in neurons. Approximately 80.1% of CART-IR cells colocalized with prodynorphin-IR, while only 27.6% of prodynorphin-IR neurons contained CART-IR, suggesting that CART cells are a subset of dynorphin cells. In contrast, only about 25% of CART-IR cell bodies demonstrated dopamine D1 receptor-IR. Because dynorphin and D1 receptors are markers for the basal ganglia direct pathway, from the NAcc to the basal ganglia output nuclei, and because CART significantly colocalizes with these markers, some CART neurons are part of the direct pathway or some comparable pathway in the accumbens. The presence of CART in NAcc neurons and the fact that NAcc projection neurons have extensive local collaterals suggest that CART may have effects in both terminal and cell body regions of the accumbens and may therefore affect information processing in the NAcc by modulating accumbal neurons.  相似文献   

19.
Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable. In addition, an initial experience with a controllable stressor can block the behavioral and neural responses to a later uncontrollable stressor. The serotonergic (5-HT) dorsal raphe nucleus (DRN) has come to be viewed as a critical structure in mediating the behavioral effects of uncontrollable stress. Recent work suggests that the buffering effects of behavioral control on the DRN-dependent behavioral outcomes of uncontrollable stress require ventral medial prefrontal cortex (mPFCv) activation at the time of behavioral control. The present studies were conducted to directly determine whether or not controllable stress selectively activates DRN-projecting neurons within the mPFCv. To examine this possibility in the rat, we combined retrograde tracing (fluorogold iontophoresed into the DRN) with Fos immunohistochemistry, a marker for neural activation. Exposure to controllable, relative to uncontrollable, stress increased Fos expression in fluorogold-labeled neurons in the prelimbic region (PL) of the mPFCv. Furthermore, in a separate experiment, a prior experience with controllable stress led to potentiation of Fos expression in retrogradely labeled PL neurons in response to an uncontrollable stressor 1 week later. These results suggest that the PL selectively responds to behavioral control and utilizes such information to regulate the brainstem response to ongoing and subsequent stressors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号