首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal cell proliferation is one of the processes in shelf outgrowth. Both all-trans retinoic acid (atRA) and transforming growth factor-β3 (TGF-β3) play an important role in mouse embryonic palate mesenchymal (MEPM) cell proliferation. The cellular effects of TGF-β are mediated by Smad-dependent or Smad-independent pathways. In the present study, we demonstrate that atRA promotes TGF-β3 promoter demethylation and protein expression, but can cause depression of mesenchymal cell proliferation, especially at embryonic day 14 (E14). Moreover, the inhibition of MEPM cell proliferation by atRA results in the downregulation of Smad signaling mediated by transforming growth interacting factor (TGIF). We speculate that the effects of atRA on MEPM cell proliferation may be mediated by Smad pathways, which are regulated by TGIF but are not related to TGF-β3 expression. Finally, the cellular effects of TGF-β3 on MEPM cell proliferation may be mediated by Smad-independent pathways.  相似文献   

2.
Cell cycle progression and thus proper cell number is essential for normal development of organs and organisms. Craniofacial tissues including the secondary palate are vulnerable to disruption of cell cycle progression and proliferation by many chemicals including mycotoxin, secalonic acid D (SAD), glucocorticoids, retinoic acid and 2,3,7,8-tetrachlorodibenzodioxin. Induction of cleft palate (CP) by SAD in mice occurs from a reduction in the size of developing palatal shelves. This is associated with an inhibition of proliferation of murine and human embryonic palatal mesenchymal (MEPM and HEPM) cells as well as a G1/S block of cell cycle. In murine embryonic palates and HEPM cells, SAD inhibited G1/S-phase-specific cyclin-dependent kinase (CDK)2 activity, reduced the level of cyclin E and increased the level of the CDK2 inhibitor, p21. These results, together with those from other laboratories, suggest that common cell cycle protein targets (biomarkers), relevant to the pathogenesis of CP by multiple chemical exposures, that can form the basis for the diagnosis and the development of preventive strategies, are likely to exist.  相似文献   

3.
We have previously demonstrated that all-trans retinoic (atRA) induced growth inhibition and apoptosis in mouse embryonic palate mesenchymal cells (MEPM). In the present study, we investigated the molecular mechanisms of atRA-induced apoptosis and its putative action pathway. atRA-induced apoptosis is associated with activation of the initiator caspase-9 and the effector caspase-3, but not of the effector caspase-8. A broad caspase inhibitor (z-VAD-fmk), caspase-9 inhibitor z-LEHD-fmk and caspase-3 inhibitor (z-DEVD-fmk) blocked atRA-induced DNA fragmentation and sub-G1 fraction, but not caspase-8 inhibitor z-IETD-fmk. We further showed that atRA dose-dependently promoted mRNA expression of retinoic acid receptor beta (RAR-beta) and gamma. A weaker increase in RAR-alpha mRNA was seen only at the highest concentration of atRA (5 muM). The pan RAR antagonist, BMS493, completely abrogated atRA-induced DNA fragmentation, Sub-G1 fraction, and caspase-3 activation. Taken together, these findings show that caspase-mediated induction of apoptosis by atRA is an RAR-dependent signaling pathway.  相似文献   

4.
This study investigated the correlation between differentially expressed proteins in amniotic fluid (AF) and cleft palate induced by all-trans retinoic acid (atRA), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. Seven proteins were differentially expressed at embryonic day (E) 16.5 in atRA and control groups as revealed by label-based mouse antibody array. Enzyme-linked immunosorbent assay was further used to detect the expression levels of these proteins in AF from E13.5 to E16.5 in atRA, TCDD, and control groups. The cleft palate groups showed lower concentrations of receptor for advanced glycation end products (RAGE) and epiregulin at E16.5. RAGE immunostaining obviously decreased in palatal tissue sections obtained from E14.5 to E16.5 in the cleft palate groups as revealed by immunohistochemistry. These findings indicate that reduced levels of RAGE and epiregulin in AF are correlated to chemically induced cleft palate in mice.  相似文献   

5.
6.
Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G(1)/S progression of palatal mesenchymal cells through upregulation of p21(Cip1), leading to Rb hypophospholylation. Thus, RA appears to cause G(1) arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.  相似文献   

7.
Penta-acetyl geniposide, (Ac)5-GP, the acetylated compound of geniposide, is able to inhibit the growth of rat C6 glioma cells in culture and in the bearing rats. Our recent data indicated that the induction of cell apoptosis and cell cycle arrest at G0/gap phase 1 (G1) by (Ac)5-GP might be associated with the induction of p53 and c-Myc, and mediated via the apoptosis-related bcl-2 family proteins. In this report, we further investigated the mechanism involved in the cell cycle arrest induced by (Ac)5-GP in C6 glioma cells. The inhibitory effect of (Ac)5-GP on the cell cycle progression of C6 glioma cells which arrested cells at the G0/G1 phase was associated with a marked decrease in the protein expression of cyclin D1, and an induction in the content of cyclin-dependent kinase (cdk) inhibitor p21 protein. This effect was correlated with the elevation in p53 levels. Further immunoprecipitation studies found that, in response to the treatment, the formation of cyclin D1/cdk 4 complex declined, preventing the phosphorylation of retinoblastoma (Rb) and the subsequent dissociation of Rb/E2F complex. These results illustrated that the apoptotic effect of (Ac)5-GP, arresting cells at the G0/G1 phase, was exerted by inducing the expression of p21 that, in turn, repressed the activity of cyclin D1/cdk 4 and the phosphorylation of Rb.  相似文献   

8.
Our previous studies have shown that atRA treatment resulted in cell-cycle block and growth inhibition in mouse embryonic palatal mesenchymal (MEPM). In the current study, gestation day (GD) 13 MEPM cells were used to test the hypothesis that the growth inhibition by atRA is due to apoptosis. The effects of atRA on apoptosis were assessed by performing MTT assay, Cell Death Detection ELISA and flow cytometry, respectively. Data analysis confirmed that atRA treatment induced apoptosis-like cell death, as shown by decreased cell viability and increased fragmented DNA and sub-G1 fraction. atRA-induced apoptosis was associated with upregulation of bcl-2, translocation of bax protein to the mitochondria from the cytosol, activation of caspase-3 and cytochrome c release into cytosol. atRA-induced apoptosis was abrogated by z-DEVD-fmk, a caspase-3 specific inhibitor, and z-VAD-fmk, a general caspase inhibitor, suggesting that the atRA-induced cell death of MEPM cells occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, atRA treatment caused a strong and sustained activation of c-Jun N-terminal kinase (JNK) and p38 kinase (p38), as well as an early but transient activation of extracellular signal-regulated kinase (ERK). Importantly, atRA-induced DNA fragmentation and capase-3 activation were prevented by pretreatment with the JNK inhibitor (SP600125) and the p38 MAPK inhibitor (SB202190), but not by pretreatment with MEK inhibitor (U0126). From these results, we suggest that mitogen-activated protein kinase-dependent pathways is involved in the atRA-induced apoptosis of MEPM cells.  相似文献   

9.
The possibility of vitamin K3 (VK3) as an anticancer agent was assessed. VK3 dose-dependently diminished the cell viability (measured as esterase activity) with IC50 of 13.7 microM and Hill coefficient of 3.1 in Hep G2 cells. It also decreased the population of S phase and arrested cell cycle in the G2/M phase in a dose-dependent manner. G2/M arrest was regulated by the increment of cyclin A/cdk1 and cyclin A/cdk2 complex, and contrasting cyclin B/cdk1 complex decrease. Finally, combined application demonstrated that VK3 significantly enhanced the cytotoxicity of etoposide, a G2 phase-dependent anticancer agent, whereas it reduced the cytotoxic activity of irinotecan, a S phase-dependent agent. These findings suggest that VK3 induces G2/M arrest by inhibition of cyclin B/cdk1 complex formation, and is thus useful as an enhancer of G2 phase-dependent drugs in hepatic cancer chemotherapy.  相似文献   

10.
Hong J  Min HY  Xu GH  Lee JG  Lee SH  Kim YS  Kang SS  Lee SK 《Planta medica》2008,74(2):151-155
Poncirus trifoliata (Rutaceae) extracts have been known to possess anti-allergic, anti-inflammatory and antiviral activities. However, other biological activities, especially, the anticancer potential of extracts of P. trifoliata or its constituents, have not been fully investigated yet. In this study, we have evaluated the antiproliferative effects of a novel triterpenoid, 25-methoxyhispidol A, isolated from the fruit of P. trifoliata against SK-HEP-1 human hepatocellular carcinoma cells. Flow cytometric analysis indicated that 25-methoxyhispidol A arrests the cell cycle in the G1 phase at the earlier time and subsequently induces apoptosis of the cancer cells. Further study revealed that the cell cycle arrest in the G1 phase by 25-methoxyhispidol A correlated well with the inhibition of phosphorylation of the retinoblastoma (Rb) protein, and with the down-regulation of cyclin D1 and cyclin-dependent kinase cdk4 and the induction of cdk inhibitor p21 (WAF1/Cip1) protein. These findings suggest the potential of 25-methoxyhispidol A isolated from the fructus of P. trifoliata as an antitumor agent against human hepatocarcinoma cells by arresting the cell cycle and inducing apoptosis.  相似文献   

11.
新型维甲酸衍生物诱导NB4细胞分化的初步研究   总被引:4,自引:0,他引:4  
目的:本研究探讨10种新型维甲酸衍生物对白血病细胞株NB4的抑制增殖和诱导分化活性。方法:维甲酸类衍生物作用于NB4细胞后,通过MTT法检测细胞的增殖。瑞氏染色法在倒置相差显微镜下观察加药处理前后细胞形态学变化。NBT还原实验法分析细胞的分化指标。FCM检测分析细胞周期和细胞表面分化抗原变化。结果:维甲酸衍生物作用3 d后,抑制细胞增殖作用呈剂量依赖效应。10种维甲酸衍生物(10-5mol/L)的诱导分化活性表现在油镜下观察NB4细胞向粒系分化成熟的改变,NBT阳性细胞率增加,细胞表面分化抗原CD11b表达量增加,CD13表达则减少。通过对细胞周期的分析,发现G0/G1期细胞表达量增加,呈G1期阻滞。结论:维甲酸衍生物2a-03,4a-02和5a-02显示有较强的诱导NB4细胞分化的活性。  相似文献   

12.
13.
p70S6K/p85S6K and cdc2/cdk1 are members of the serine/threonine protein kinase family. p70S6K/p85S6K is one of the downstream effectors of the PI3K/Akt/mTOR signal transduction pathway. It phosphorylates S6 protein of 40S ribosomal subunit and thus functions in protein synthesis and cell growth. cdc2/cdk1 is a cyclin-dependent protein kinase that controls the cell cycle entry from G2 to M phase. Overexpression of phospho-p70S6K and cdc2/cdk1 has recently been identified in the majority of diffuse large B-cell lymphoma (DLBCL) specimens. Combination of small molecules that target phosphorylation of p70S6K and cdc2/cdk1 synergistically induced cell apoptosis and cell cycle G1 and G2 arrest, suggesting that they are potential molecular targets for DLBCL therapy. This review will summarize recent advances in the study of phospho-p70S6K and cdc2/cdk1 as molecular markers and therapeutic targets for DLBCL. We propose that multilevel inhibition of the PI3K/Akt/mTOR pathway and double brake at the G1 and G2 phases of the cell cycle progression are effective strategies in treating DLBCL that overexpress phospho-p70S6K and cdc2/cdk1.  相似文献   

14.
In a series of colorectal cancer cell lines, both necrosis and apoptosis were induced upon exposure to oxaliplatin, and enhanced by co-administration of the Hsp90 inhibitor 17-AAG. We analyzed the effects of these interventions on the cell cycle, and found that oxaliplatin treatment caused G1 and G2 arrest in HCT116 cells, and S-phase accumulation in two p53-deficient cell lines (HT29 and DLD1). Addition of 17-AAG enhanced cell cycle effects of oxaliplatin in HCT116, and induced G1 arrest and decrease in S-phase population in the other cell lines. Analysis of cell cycle proteins revealed that the major difference between the cell lines was that in HCT116, 17-AAG resulted in profound inhibition of expression and phosphorylation of late G1 proteins cyclin E and cdk2, with no effect on p21/WAF1 induction. Consistent with these, an HCT116 p53(-/-) line, lacking p21, showed resistance to oxaliplatin, failure to enter apoptosis, and an accumulation of cells in S-phase. Introduction of p21 in these cells caused reversal of that phenotype, including restoration of the G1 block and re-sensitization to oxaliplatin. Inhibition of G1/S progression using cdk2 inhibitor also enhanced oxaliplatin cytotoxicity. We conclude that in colon cancer cells with impaired p53 function, interventions directed to cycle arrest in G1 may potentiate oxaliplatin activity.  相似文献   

15.
16.
9-顺-维甲酸对肺癌细胞周期及周期因子表达的影响   总被引:7,自引:0,他引:7  
目的探讨9-顺-维甲酸对肺癌细胞周期及周期因子cyclin D1和cdk4表达的影响。方法用9-顺-维甲酸处理细胞24 h后,在观察细胞生长、流式细胞仪分析细胞周期的基础上,用RT-PCR方法分析细胞周期因子cyclin D1和cdk4表达的变化。结果9-顺-维甲酸作用于肺癌细胞24 h以后,细胞增殖减慢,G0/G1期细胞明显增多,S期细胞减少;PG,SPC-A1和L78细胞的cyclin D1表达下降显著;PG,A549和L78细胞的cdk4表达下降显著。结论9-顺-维甲酸可以显著地抑制肺癌细胞增殖和肺癌细胞周期因子cyclin D1和cdk4的表达。  相似文献   

17.
Kim JY  Lee KW  Kim SH  Wee JJ  Kim YS  Lee HJ 《Planta medica》2002,68(2):119-122
Panaxytriol, a polyacetylenic compound, isolated from red ginseng (Panax ginseng C.A. Meyer), was studied to determine its effects on the growth and cell cycle of tumor cell lines. The compound showed both significant cytotoxicity and inhibition of DNA syntheses in various tumor cells tested. For P388D1, a mouse lymphoma cell line, IC50 values for cytotoxicity and inhibition of DNA synthesis were 3.1 and 0.7 microg/ml, respectively. The cytotoxic effect of panaxytriol was both time- and dose-dependent. It also induced the cell cycle arrest of P388D1 at the G2/M phase, which was measured through flow cytometry. Particularly, the proportion of cells in the G2/M phase of the cell cycle increased from 9 % to 26 and 48 %, respectively, after 24 and 36 h exposure to panaxytriol at 5 microg/ml. There were corresponding decreases in the proportion of cells at the G0/G1 phase. The S phase also decreased during the 36-h treatment.  相似文献   

18.
Cellular effects of ethanol in YD-15 tongue carcinoma cells were assessed by MTT assay, caspase activity assay, Western blotting and flow cytometry. Ethanol inhibited the growth and proliferation of YD-15 cells in a dose- and time-dependent manner in an MTT assay. The effects of ethanol on cell cycle control at low percent range of ethanol concentration (0 to 1.5%), the condition not inducing YD-15 cell death, was investigated after exposing cells to alcohol for a certain period of time. Western blotting on the expression of cell cycle inhibitors showed that p21 and p27 was up-regulated as ethanol concentration increases from 0 to 1.5% whilst the cell cycle regulators, cdk1, cdk2, and cdk4 as well as Cyclin A, Cyclin B1 and Cyclin E1, were gradually down-regulated. Flow cytometric analysis of cell cycle distribution revealed that YD-15 cells exposed to 1.5% ethanol for 24 h was mainly arrested at G2/M phase. However, ethanol induced apoptosis in YD-15 cells exposed to 2.5% or higher percent of ethanol. The cleaved PARP, a marker of caspase-3 mediated apoptosis, and the activation of caspase-3 and -7 were detected by caspase activity assay or Western blotting. Our results suggest that ethanol elicits inhibitory effect on the growth and proliferation of YD-15 tongue carcinoma cells by mediating cell cycle arrest at G2/M at low concentration range and ultimately induces apoptosis under the condition of high concentration.  相似文献   

19.
The mechanisms of action of three C-10 non-acetal trioxane dimers (TDs) were examined in human (LNCaP) and mouse (TRAMP-C1A and -C2H) prostate cancer cell lines. 1 (AJM3/23), 2 (GHP-TM-III-07w), and 3 (GHP-KB-06) inhibited cell growth with 3 being the most potent in C1A (GI50 = 18.0 nM), C2H (GI50 = 17.0 nM), and LNCaP (GI50 = 17.9 nM) cells. In comparison to a standard cytotoxic agent such as doxorubicin (GI50 = 45.3 nM), 3 (GI50 = 17.9 nM) inhibited LNCaP cell growth more potently. TDs induced G0/G1 cell cycle arrest in LNCaP cells and decreased cells in the S phase. These changes correlated with modulation of G1 phase cell cycle proteins including decreased cyclin D1, cyclin E, and cdk2 and increased p21waf1 and p27Kip1. TDs also promoted apoptosis in LNCaP cells with increased expression of proapoptotic bax. These results demonstrate that TDs are potentially useful agents that warrant further preclinical development for treatment of prostate cancer.  相似文献   

20.
The antiproliferative activity of a fungal lectin (VVL) isolated from the mushroom, Volvariella volvacea, was studied using a battery of cultured tumor cell lines. It was revealed that [(3)H]thymidine incorporation into the cell lines was markedly reduced at 0.32 microM VVL. When S180 mouse sarcoma cells were incubated for 48 hr with doses of VVL ranging from 0.32 to 0.8 microM, prominent blebs on the cell surface and large vacuoles in the cytoplasm, but not apoptotic bodies, were observed under a fluorescence microscopy. VVL did not exert ribosome-inactivating activity or induce any changes in the expression of cyclins A, D1, and E. However, it did activate the expression of cyclin kinase inhibitors, namely p21, p27, p53, and Rb, in a dose-dependent manner. Flow cytometric analysis demonstrated an accumulation of cells in the G2/M phase in a time- and dose-dependent manner, indicating that VVL arrested cell proliferation by blocking cell cycle progression in the G2/M phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号