首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of the dopaminergic innervation of the basal ganglia on the activity in the subthalamic nucleus (STN) evoked by amphetamine and apomorphine in the behaving rat was examined. The aim was to determine the relationship between that neural activity and the movements evoked by the drugs. Bilateral electrolytic lesions of the globus pallidus (GP), superimposed on the earlier unilateral lesion in substantia nigra (SN) with 6-hydroxydopamine (6-OHDA) affected differently the excitatory responses in the STN evoked by amphetamine and apomorphine and the motor responses to the drugs recorded concurrently. Before the GP lesions, the administration of amphetamine, 5 mg/kg, to the unilaterally deafferented rat induced increased activity in the STN and simultaneously increased movement in the animal. After the GP lesions, the excitatory response to amphetamine in the STN was not different from that seen before the GP lesions. The motor response was also unchanged. In contrast, the GP lesions altered the excitatory response to apomorphine, 3 mg/kg. Before these lesions, the administration of apomorphine to the 6-OHDA lesioned animal evoked a robust and long-lasting excitatory response in the STN and, concurrently, a long-lasting motor response. After the GP lesions, both responses to apomorphine were attenuated. These differential effects of the GP lesions on the unit and motor responses to the two drugs are viewed as representing the effects of the damage in the GP on the dopaminergic innervation contributing to the regulation of activity in the STN. In the 6-OHDA animal, the dopamine afferents innervating the basal ganglia had already been dramatically reduced by 6-OHDA. The GP lesions did not significantly add to the number of these afferents previously eliminated; therefore, the excitatory and motor responses to amphetamine were not changed by the GP lesions. But the GP damage served to eliminate the dopamine receptor in the GP and thus reduced the density of the dopamine receptor in the basal ganglia available for binding to apomorphine. Therefore, the excitatory and motor responses to apomorphine were attenuated after the GP lesions compared to the responses before these lesions.  相似文献   

2.
Double immunostaining for Fos and gamma-aminobutyric acid (GABA) was used in a previously established animal model of striatal dysfunction to examine whether GABA-immunoreactive neurons in the globus pallidus (GP) and entopeduncular nucleus (EP) are activated to express Fos immunoreactivity by intraperitoneal injection of amphetamine. Striatal efferent activity was suppressed by intrastriatal infusions of antisense oligodeoxynucleotide targeted to the messenger RNA of the immediate early gene, c-fos. This suppression produced robust rotational behavior and expression of Fos in the ipsilateral GP and EP following amphetamine challenge. The expression of Fos in the ipsilateral GP and EP following amphetamine challenge is not observed in na?ve or control antisense-treated animals. Quantitative analysis revealed that a majority of the amphetamine-activated (Fos-immunoreactive) neurons in the GP and EP express GABA. The present results suggest that inhibitory GABAergic projection neurons within these two nuclei are regulated by inhibitory striatal output and suggests that decreased inhibitory striatal output may contribute to the motor dysfunction observed in patients with Huntington's disease.  相似文献   

3.
Fos expression induced by warming the preoptic area in rats   总被引:1,自引:0,他引:1  
The preoptic area (POA) occupies a crucial position among the structures participating in thermoregulation, but we know little about its efferent projections for controlling various effector responses. In this study, we used an immunohistochemical analysis of Fos expression during local warming of the preoptic area. To avoid the effects of anesthesia or stress, which are known to elicit Fos induction in various brain regions, we used a novel thermode specifically designed for chronic warming of discrete brain structures in freely moving rats. At an ambient temperature of 22 degrees C, local POA warming increased Fos immunoreactivity in the supraoptic nucleus (SON) and the periaqueductal gray matter (PAG). Exposure of animals to an ambient temperature of 5 degrees C induced Fos immunoreactivity in the magnocellular paraventricular nucleus (mPVN) and the dorsomedial region of the hypothalamus (DMH). Concurrent warming of the POA suppressed Fos expression in these areas. These findings suggest that thermal information from the preoptic area sends excitatory signals to the SON and the PAG, and inhibitory signals to the mPVN and the DMH.  相似文献   

4.
The goal of this study was to examine the topological specificity of methamphetamine-induced activation of the immediate-early gene proteins, Fos and Zif268, in the nigrostriatal system in a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease with or without intrastriatal grafts of fetal ventral mesencephalon. Methamphetamine (3 mg/kg, i.p.) induced Fos-like immunoreactivity (FLI) dominantly in the striatum and the globus pallidus (GP) on the intact side as well as in the substantia nigra pars reticulata (SNr) on the lesioned side in the 6-OHDA rats. Lower levels of methamphetamine-induced FLI in the striatum and GP on the lesioned side were restored by intrastriatal grafts which could completely suppress the methamphetamine-induced rotation. In the striatum, a similar tendency could be observed between Fos and Zif268 immunoreactivity following methamphetamine. However, sparse immunoreactivity of Zif268 could be detected in the GP and SNr on both sides in the 6-OHDA rats. Intrastriatal grafts had little influence on Zif268 expression in these two regions. The differential expression of Fos and Zif268 was observed among the three regions of the nigrostriatal system following methamphetamine in the 6-OHDA rats. This may suggest that Fos and Zif268 therefore possess gene-specific and region-specific functions in the basal ganglia nuclei.  相似文献   

5.
In animals with a large unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal dopamine (DA) system the traditional “rotational behavior model” states that amphetamine will induce circling behavior towards the denervated striatum (ipsiversive), that is, away from the side where there is greater amphetamine-stimulated DA release and greater DA receptor stimulation. It is puzzling, therefore, why amphetamine induces contraversive rotation in rats tested 4 days after a unilateral 6-OHDA lesion, despite a 90-95% loss of the dopaminergic input to the striatum by this time. Rats reverse their direction of amphetamine-induced rotation by 8 days post-lesion and turn in the ipsiversive direction thereafter. To try and resolve this paradox, bilateral striatal microdialysis was used to estimate the effects of amphetamine on DA neurotransmission on Day 4 and Day 8 following a large unilateral 6-OHDA lesion of the substantia nigra. On Day 4 post-lesion, amphetamine produced a moderate (around 50% of control) increase in the extracellular concentration of DA in the denervated striatum. This amphetamine-releasable pool of DA was exhausted by a single amphetamine challenge, because a second injection of amphetamine given 3 h after the first did not produce a comparable increase in DA. It is suggested that on Day 4 post-lesion the amount of DA released by amphetamine in the denervated striatum is sufficient to produce greater DA receptor stimulation on that side, because of DA receptor supersensitivity, and this leads to contraversive rotation. On Day 8 post-lesion, amphetamine induced DA release in the intact striatum but had no effect on extracellular DA in the denervated striatum (DA was nondetectable). On Day 8, therefore, DA receptor stimulation would be greatest in the intact striatum, leading to ipsiversive rotation. In conclusion, it is suggested that the seemingly paradoxical reversal in the direction of amphetamine-induced rotation that occurs over the first week following a unilateral 6-OHDA lesion is consistent with the traditional rotational model, and is due to time-dependent changes in the ability of amphetamine to release DA in the denervated striatum. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Hepatic vagal afferent fibers have been implicated in the feeding responses initiated by administration of 2,5-anhydro-D-mannitol (2,5-AM; an inhibitor of hepatic metabolism) and methyl palmoxirate (MP; an inhibitor of fat metabolism). 2,5-AM and MP also increase brain Fos expression, an indicator of neural activity, which suggests that Fos expression can reveal the central neural pathways involved in the stimulation of feeding by these agents. To more closely test the hypothesis that brain Fos expression is related to the effects of 2,5-AM and MP on feeding, the vagus was lesioned by application of capsaicin, which destroys afferent fibers, directly to the cervical vagi. Perivagal capsaicin treatment blocked 2,5-AM-induced eating and attenuated MP-induced eating. Although perivagal capsaicin treatment attenuated MP-induced Fos expression, capsaicin treatment did not affect brain Fos expression produced by 2,5-AM. It is concluded that (1) brain Fos expression is not always related to the effects of 2,5-AM on feeding, (2) capsaicin-sensitive hepatic vagal afferent fibers carry the signal that stimulates feeding following 2,5-AM treatment, and (3) MP-induced feeding and brain Fos expression is mediated in part by capsaicin-sensitive fibers.  相似文献   

7.
Corticofugal fibres from the prefrontal, prelimibic and anterior sensorimotor cortices were transected by a wide coronal knife-cut through the forceps minor. The cut was performed on the dopamine-depleted side of unilaterally 6-hydroxydopamine-lesioned rats, or on either the right or the left side of intact rats. Sham-lesioned controls received a superficial cortical cut at the same level. Seven days after surgery, apomorphine (0.25 mg/kg s.c.) was administered to 6-hydroxydopamine-lesioned animals and D-amphetamine (5 mg/kg i.p.) was administered to the non-dopamine-denervated ones. Two hours later, the animals were perfusion-fixed for the immunohistochemical detection of the nuclear protein Fos. A computerized image analysis technique was used to quantify, bilaterally, striatal Fos expression in 11 areas of the striatum. The frontocortical transection reduced both apomorphine- and amphetamine-induced Fos expression by 33 – 66% within the ipsilateral caudate-putamen. The effect was observed throughout the rostral portion of the striatal complex, where the lesioned cortical fibres terminate most densely. A separate batch of unilaterally 6-hydroxydopamine-lesioned rats was used to test the effect of frontocortical transection on amphetamine-and apomorphine-induced turning behaviour. Two groups of rats, showing similar rates of contralateral turning (7 – 8 turns/min) in response to apomorphine (0.25 mg/kg s.c.), were subjected to either a complete frontocortical transection or a sham lesion on the dopamine-denervated side. An additional two groups, showing comparable rates of ipsilateral turning (15 turns/min) in response to amphetamine (5 mg/kg i. p.), received similar lesions, but now on the side ipsilateral to the intact dopaminergic innervation. The frontocortical transection reduced both apomorphine- and amphetamine-induced turning by, on average, 40%, while the sham lesion had no effect. The present findings suggest that the full expression of dopamine-receptor-induced Fos activation and turning behaviour depends on an intact glutamatergic corticostriatal input.  相似文献   

8.
This study used intracerebral microdialysis to monitor the outputs of excitatory amino acids in the entopeduncular nucleus (EPN) of conscious or halothane-anaesthetized rats, in an attempt to obtain direct biochemical evidence for the theory that neuronal inputs to the EPN by the indirect striatal output pathway are glutamatergic and regulated primarily by dopamine D2 receptors in the striatum. In dopamine-intact animals, both glutamate and asparate were readily detectable in EPN dialysates. Recoveries of both amino acids were increased bilaterally by local perfusion with veratridine (100 μM, given under halothane anaesthesia), pretreatment with reserpine (4 mg/kg, i.p., 24 h beforehand), unilateral pretreatment of the medial forebrain bundle with 6-OHDA (8 μg/4 μl), and by the systemic (1 mg/kg, i.p.) or bilateral intrastriatal (7 μg/0.5 μl under halothane anaesthesia) administration of the dopamine D2 receptor antagonist haloperidol, but not raclopride (2 mg/kg, i.p.). The dopamine D1 receptor antagonist SCH 23390 was ineffective both systemically (0.25 mg/kg, i.p.) and intrastriatally (0.125 μg/0.5 μl/side), as also were control intrastriatal injections of saline (0.5 μl/side). By contrast, the dopamine D2/3 receptor agonist quinpirole (4 mg/kg, i.p.) lowered the outputs of glutamate and aspartate in the EPN of reserpine-treated and normal individuals, whilst the dopamine D1 receptor agonist SKF 38393 (30 mg/kg, i.p.) was inactive; however, both drugs caused behavioural arousal. The dopamine D2/3 receptor agonist RU 24213 reversed reserpine-induced akinesia, yet paradoxically increased glutamate (not aspartate) output in the EPN still further. The combination of benserazide (30 mg/kg, i.p.) and l-DOPA (50 mg/kg, i.p.) evoked intense contraversive circling in unilaterally 6-OHDA-lesioned rats, together with a drop in EPN glutamate (but not aspartate) output in the intact but not lesioned hemisphere. These results offer biochemical support for the hypothesis that excitatory neurones innervating the EPN via the indirect striatal output pathway, may utilise glutamate and/or aspartate as their neurotransmitter. They further endorse the view that the EPN receives information from striatal D2 and not D1 receptors via excitatory synapses, which become hyperactive following dopamine depletion or inactivation, and which are subject to control by the contralateral as well as by the ipsilateral hemisphere. The results obtained with RU 24213 and l-DOPA, however, indicate that dopaminergic behaviours can also occur independently of glutamate or aspartate release in the EPN. ©1997 Elsevier Science B.V. All rights reserved.  相似文献   

9.
Learned behaviors require coordination of diverse sensory inputs with motivational and motor systems. Although mechanisms underlying vocal learning in songbirds have focused primarily on auditory inputs, it is likely that sensory inputs from vocal effectors also provide essential feedback. We investigated the role of somatosensory and respiratory inputs from vocal effectors of juvenile zebra finches (Taeniopygia guttata) during the stage of sensorimotor integration when they are learning to imitate a previously memorized tutor song. We report that song production induced expression of the immediate early gene product Fos in trigeminal regions that receive hypoglossal afferents from the tongue and syrinx (the main vocal organ). Furthermore, unilateral lesion of hypoglossal afferents greatly diminished singing-induced Fos expression on the side ipsilateral to the lesion, but not on the intact control side. In addition, unilateral lesion of the vagus reduced Fos expression in the ipsilateral nucleus of the solitary tract in singing birds. Lesion of the hypoglossal nerve to the syrinx greatly disrupted vocal behavior, whereas lesion of the hypoglossal nerve to the tongue exerted no obvious disruption and lesions of the vagus caused some alterations to song behavior. These results provide the first functional evidence that somatosensory and respiratory feedback from peripheral effectors is activated during vocal production and conveyed to brainstem regions. Such feedback is likely to play an important role in vocal learning during sensorimotor integration in juvenile birds and in maintaining stereotyped vocal behavior in adults.  相似文献   

10.
The present study tested the hypothesis that lesion to the rat globus pallidus (GP) can "normalize" the functioning of the basal ganglia-thalamocortical circuits in striatal-lesioned rats by assessing the functional connectivity of these regions using functional magnetic resonance imaging (fMRI). Changes in brain activation following systemic administration of amphetamine were assessed in (1) rats sustaining a unilateral lesion to the striatum, (2) rats sustaining a combined striatal and pallidal lesion, and (3) control rats. Striatal-lesioned rats showed attenuated cortical activation following amphetamine administration and lower correlations between the responses to amphetamine in different brain regions compared to control rats. Although the addition of an excitotoxic GP lesion failed to prevent striatal lesion-induced attenuation of cortical activation by amphetamine, it was effective in "normalizing" the correlations between the responses to amphetamine in the different areas. These results suggest that, although the GP lesion is ineffective in correcting the global changes in activity caused by the striatal lesion, it may have the capacity to partially restore alterations in functional connectivity resulting from the striatal lesion. These results are further discussed in view of our previous demonstration that lesions to the GP can reverse several behavioral deficits produced by a striatal lesion.  相似文献   

11.
Cancer chemotherapy drugs, such as cisplatin, are extremely potent for producing nausea and vomiting. The acute effects of these treatments are partly controlled using anti-emetic drugs, but the delayed effects (>24 h), especially nausea, are much more difficult to treat. Furthermore, cisplatin induces a long-term (up to 48 h) increase in pica in rats. Pica is manifested as an increase in consumption of kaolin (clay) and is used as a measure of visceral sickness. It is unknown what brain pathways might be responsible for this sickness associated behavior. As a first attempt to define this neural system, rats were injected (i.p.) with 3, 6, or 10 mg/kg cisplatin (doses reported to produce pica) and sacrificed at 6, 24, or 48 h to determine brain Fos expression. The primary results indicate: 1) increasing the dose of cisplatin increased the magnitude and duration of brain Fos expression, 2) most excitatory effects on hindbrain nucleus of the solitary tract (NTS) and area postrema (AP) Fos expression occurred within 24 h after cisplatin injection, 3) 6 and 10 mg/kg cisplatin treatment produced large increases in Fos expression in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST), including 48 h after injection, and 4) cisplatin treatment produced little effect on Fos expression in the paraventricular and supraoptic nuclei of the hypothalamus. These results indicate that cisplatin activates a neural system that includes the dorsal vagal complex (NTS and AP), CeA, and BNST.  相似文献   

12.
Fos immunohistochemistry was used to map the distribution of pontine neurons excited by activation of the medial preoptic area (MPO). Although we have previously shown that Barrington's nucleus receives a very dense focal input from the MPO, electrical stimulation of the preoptic area unexpectedly induced very little Fos expression in Barrington's neurons. These results suggest that the MPO→Barrington's projection utilizes a transmitter(s) that does not involve transduction of the Fos protein; alternatively, MPO afferents to Barrington's nucleus may be inhibitory in nature. As Barrington's nucleus plays a critical role in micturition, MPO projections to Barrington's nucleus may regulate voiding reflexes during sexual behavior. Interestingly, while the locus coeruleus (LC) proper receives only a sparse projection from the MPO, extensive Fos expression was present in LC. The finding of Fos immunoreactive LC neurons suggests that the excitatory influence of MPO may regulate LC neuronal activity and NE release during reproductive behaviors.  相似文献   

13.
The activity of neurons in the subthalamic nucleus (STN) of the behaving rat, before and after a unilateral 6-OHDA lesion of the substantia nigra, was recorded with the extracellular technique to determine whether it was altered following systemic amphetamine, 5 mg/kg, apomorphine, 3 mg/kg, and apomorphine, 0.3 mg/kg, and whether in cases of altered activity, it was related to the drug-induced motor response expressed concurrently. Activity in the STN of intact rats increased dramatically after amphetamine, 5 mg/kg. This excitatory response had the same latency, similar magnitude, and the same duration as the motor response expressed in terms of locomotion and oral stereotypy. Motor and unit responses were also induced by amphetamine after the lesion with 6-hydroxydopamine (6-OHDA), but now the excitatory response was attenuated while the motor response was not. The effects of the 6-OHDA lesion were the same in all animals with loss of the nigra dopamine neurons, regardless of whether they were rotators or non-rotators. Activity in the STN of intact rats also increased after apomorphine, 3 mg/kg, and again, this increase was correlated with the increase in motor behavior, but both responses were of shorter duration than the responses to amphetamine. The increases in unit activity and motor behavior induced by apomorphine in the 6-OHDA-lesioned rats had the same magnitude but lasted longer than in the intact rats. Treatment with apomorphine, 0.3 mg/kg, of the intact rats produced small and very brief increases in the activity of the STN and in motor behavior. The same treatment given the 6-OHDA-lesioned rats produced responses of larger magnitude but no change in duration. These findings demonstrate a role for STN neurons in the mediation of the motor behaviors induced by stimulation of the dopamine receptor. The results also show that a unilateral lesion of the substantia nigra with 6-OHDA did not block these responses but altered them in a manner consistent with a dopaminergic deafferentation of the basal ganglia. The increased activity in the STN during the expression of dopamine-dependent motor behavior conflicts with the current model of basal ganglia function that assumes prejudicial effects of excessive STN activity on the expression of motor behavior. An explanation for this conflict suggests that it is more apparent than real.  相似文献   

14.
Catecholamine-containing projections from the medulla have been implicated in the mediation of activational responses of the paraventricular nucleus of the hypothalamus (PVH) provoked by moderate doses of interleukin-1 (IL-1). To test the generality of this mechanism, rats bearing unilateral transections of aminergic projections were challenged with intravenous IL-1 (2 microg/kg), bacterial lipopolysaccharide (LPS; 0.1, 2.0, or 100 microg/kg), or saline and perfused 3 hours later; their brains were then prepared for quantitative analysis of Fos induction and relative levels of corticotropin-releasing factor (CRF) mRNA. LPS provoked a robust and dose-related increase in Fos expression within the PVH on the intact side of the brain at all doses tested; the response to IL-1 approximated that to the lowest LPS dose. On the lesioned side, Fos induction was significantly reduced at all dosage levels but was eliminated only at the lowest dosage. The percentage reduction was greatest (75%) in IL-1-challenged rats and was progressively less in animals treated with increasing LPS doses (67, 59, and 46%, respectively). Specificity of aminergic involvement was tested by using intra-PVH administration of the axonally transported catecholamine immunotoxin, antiDBH-saporin. This treatment abolished IL-1-induced elevations of Fos-ir and CRF mRNA in the PVH but left intact comparable responses to restraint stress. These data support a specific involvement of ascending catecholaminergic projections in mediating PVH responses to IL-1 and LPS. Residual Fos induction seen in lesioned animals in response to higher doses of LPS provides a basis for probing additional circuits that may be recruited in a hierarchical manner in response to more strenuous or complex immune insults.  相似文献   

15.
After fasting, satiety is observed within 2 h after reintroducing food, accompanied by activation of anorexigenic, pro‐opiomelanocortin (POMC)‐synthesising neurones in the arcuate nucleus (ARC), indicative of the critical role that α‐melanocyte‐stimulating hormone has in the regulation of meal size during refeeding. To determine whether refeeding‐induced activation of POMC neurones in the arcuate is dependent upon the vagus nerve and/or ascending brainstem pathways, bilateral subdiaphragmatic vagotomy or transection of the afferent brainstem input to one side of the ARC was performed. One day after vagotomy or 2 weeks after brain surgery, animals were fasted and then refed for 2 h. Sections containing the ARC from vagotomised animals or animals with effective transection were immunostained for c‐Fos and POMC to detect refeeding‐induced activation of POMC neurones. Quantitative analyses of double‐labelled preparations demonstrated that sham‐operated and vagotomised animals markedly increased the number of c‐Fos‐immunoreactive (‐IR) POMC neurones with refeeding. Furthermore, transection of the ascending brainstem pathway had no effect on diminishing c‐Fos‐immunoreactivity in POMC neurones on either side of the ARC, although it did diminish activation in a separate, subpopulation of neurones in the dorsomedial posterior ARC (dmpARC) on the transected side. We conclude that inputs mediated via the vagus nerve and/or arising from the brainstem do not have a primary role in refeeding‐induced activation of POMC neurones in the ARC, and propose that these neurones may be activated solely by direct effects of circulating hormones/metabolites during refeeding. Activation of the dmpARC by refeeding indicates a previously unrecognised role for these neurones in appetite regulation in the rat.  相似文献   

16.
Visceral inputs to the brain make their initial synapses within the nucleus of the solitary tract (NTS), where information is relayed to other brain regions. These inputs relate to markedly different physiological functions and provide a tool for investigating the topography of visceral processing in brainstem nuclei. Therefore, Fos immunoreactivity was used to determine whether a gastric stimulus affects neurones within different or similar parts of the NTS, ventrolateral medulla (VLM) and parabrachial nucleus (PBN), compared to a baroreceptive stimulus. The contribution of catecholaminergic neurones in these areas was studied by combining Fos and tyrosine hydroxylase (TH) immunoreactivity. Conscious male rats received either cholecystokinin (CCK) intraperitoneally to activate gastrointestinal afferents, or were made hypertensive by intravenous infusion of phenylephrine (PE) to activate baroreceptors. Tissue sections were processed immunocytochemically for Fos and/or TH. Phenylephrine infusion and CCK injection elicited Fos expression in distinct and in overlapping regions of the NTS and the VLM. Cholecystokinin injections increased the number of Fos-immunoreactive neurones in the area postrema (AP) and throughout the rostral-caudal extent of the NTS, including commissural neurones and the medial subnuclei. Some reactive neurones in NTS were also positive for TH, but most were not, and most of the TH-positive NTS neurones were not Fos-positive. In contrast, PE infusion produced a more restricted distribution of Fos-positive neurones in the NTS, with most neurones confined to a dorsolateral strip containing few TH-positive neurones. The medial NTS at the level of the AP and the AP itself were largely unresponsive, but rostral to the AP the medial NTS was labelled, including some TH-positive neurones. Both treatments produced labelling in the caudal and mid-VLM, but PE infusion had a stronger effect in the rostral VLM. In the PBN, CCK elevated Fos expression in several subregions, whereas PE infusion failed to specifically alter any subdivision. The results suggest that stimulation of baroreceptor and gastric afferents evoke both overlapping and cytoarchitectonically distinct pathways in the brainstem.  相似文献   

17.
This study examines the dorsal nucleus of the lateral lemniscus (DNLL) and its afferent and efferent connections. In Nissl-stained material, DNLL has three parts: dorsal, ventral, and lateral. Although each part contains neurons with similar Nissl patterns, the subdivisions may be distinguished by the size, shape, and orientation of the cells. The lateral DNLL contains a mixture of DNLL neurons and cells from the sagulum. Afferent connections to DNLL were investigated with anterograde axonal transport techniques. Bilateral inputs to DNLL arise from the anteroventral cochlear nucleus and lateral superior olive, while unilateral inputs are provided by the ipsilateral medial superior olive and the contralateral DNLL. The inputs appear to have a tonotopic organization. Afferent fibers to DNLL form horizontal bands that are continuous both mediolaterally and rostrocaudally. All parts of DNLL do not share the same inputs, and a medial-to-lateral gradient in the labeling of some pathways is evident. To study the efferent connections of DNLL, both retrograde and anterograde axonal transport techniques were used. The DNLL projects to the inferior colliculus and the contralateral DNLL. The topography of these projections suggests that areas of similar tonotopic organization are connected. In the inferior colliculus, the projection is heaviest to the central nucleus and extends to the adjacent dorsal and caudal cortex, the rostral pole nucleus, and the ventrolateral nucleus. Axons from DNLL terminate along the fibrodendritic laminae of the central nucleus as bands that are prominent on the contralateral side, whereas those on the ipsilateral colliculus are more diffuse. The afferent and efferent connections of DNLL constitute a multisynaptic pathway, parallel to the other ascending pathways to the inferior colliculus. The other ascending pathways include the direct pathways from the cochlear nucleus to the inferior colliculus and the indirect pathways via the superior olivary complex. Ascending pathways are discussed as to their relationship to the subdivisions of the inferior colliculus, the laterality of their projections, and their banding patterns in the central nucleus. In contrast to the excitatory pathways to the inferior colliculus, the neurons in DNLL may use GABA as a neurotransmitter. Axons from the DNLL terminate in the inferior colliculus as bands that could have a unique inhibitory function. Thus, the multisynaptic, DNLL pathway may provide feed-forward inhibitory inputs to the inferior colliculus, bilaterally, and to the contralateral DNLL.  相似文献   

18.
A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress.  相似文献   

19.
In adult rats, combined lesions of the striatum and globus pallidus (GP) cause transsynaptic cell death of neurons in the substantia nigra pars reticulata (SNr) which becomes apparent 1–2 weeks after the lesions. This delayed cell death of SNr neurons has been explained to be caused by over-excitation of SNr neurons which results from an imbalance between excitatory and inhibitory inputs due to two simultaneous events: acceleration of the excitatory input from the disinhibited subthalamic nucleus (STN) and deprivation of the inhibitory input from the striatum. To examine whether the transsynaptic neuronal death in SNr is caused by the same lesions in developing rats, we destroyed the striatum and GP in rats on postnatal days 10 (P10), P15, P20, P25, P30, P35 and P60 by injecting ibotenic acid. We found that cell death did not occur in SNr neurons in rats younger than P20 and that Fos expression induced in STN neurons after these striatopallidal lesions in P10 and P20 rats was lower than that in P30 or P60 rats. These findings suggest that excitation of STN neurons is not enough to cause cell death of SNr neurons in rats younger than P20. Immature functional connection between the cerebral cortex and STN in the early developing animals may contribute to the resistivity of SNr neurons to transsynaptic delayed cell death.  相似文献   

20.
Transmission through the thalamus activates circuits involving the GABAergic neurons of the thalamic reticular nucleus (TRN). TRN cells receive excitatory inputs from thalamocortical and corticothalamic cells and send inhibitory projections to thalamocortical cells. The inhibitory output of TRN neurons largely depends on the level of excitatory drive to these cells but may also be partly under the control of mechanisms intrinsic to the TRN. We examined two such possible mechanisms, short-term plasticity at glutamatergic synapses in the TRN and intra-TRN inhibition. In rat brain slices, responses of TRN neurons to brief trains of stimuli applied to glutamatergic inputs were recorded in voltage- or current-clamp mode. In voltage clamp, TRN cells showed no change in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory postsynaptic current amplitudes to stimulation at non-gamma frequencies (< 30 Hz), simulating background activity, but exhibited short-term depression in these amplitudes to stimulation at gamma frequencies (> 30 Hz), simulating sensory transmission. In current clamp, TRN cells increased their spike outputs in burst and tonic firing modes to increasing stimulus-train frequencies. These increases in spike output were most likely due to temporal summation of excitatory postsynaptic potentials. However, the frequency-dependent increase in tonic firing was attenuated at gamma stimulus frequencies, indicating that the synaptic depression selectively observed in this frequency range acts to suppress TRN cell output. In contrast, intra-TRN inhibition reduced spike output selectively at non-gamma stimulus frequencies. Thus, our data indicate that two intrinsic mechanisms play a role in controlling the tonic spike output of TRN neurons and these mechanisms are differentially related to two physiologically meaningful stimulus frequency ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号