首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tripathi R  McTigue DM 《Glia》2007,55(7):698-711
Oligodendrocyte (OL) loss and axon demyelination occur after spinal cord injury (SCI). OLs may be replaced, however, by proliferating NG2+ progenitor cells. Indeed, new OLs have been noted in ventral white matter after SCI. Since tissue adjacent to lesion cavities is exposed to different mediators compared with outlying spared tissue, the authors used a rat SCI model to compare NG2 cell proliferation and OL genesis adjacent to lesion cavities with that in spared tissue closer to meninges. NG2 cells proliferated throughout the first week postinjury and accumulated along lesion borders, especially within gray matter. By 3 days postinjury (dpi), new OLs were detected throughout the cross-sections; between 4 and 7 dpi, however, oligogenesis was restricted to lesion borders. New OLs derived from cells proliferating during 1-7 dpi increased dramatically by 14 dpi; most were located along lesion borders and in spared gray matter. Oligogenesis continued along lesion borders during the second week postinjury. Overall OL numbers were reduced at 3 dpi in spared tissue, but rebounded to normal levels by 14 dpi. Surprisingly, lesion borders maintained normal OL numbers at 3 dpi, which then rose to exceed preinjury levels at 7 and 14 dpi. These results indicate that oligogenesis is protracted after SCI and leads to increased OL numbers. Most new OLs are formed in regions of greatest NG2 cell proliferation. Thus, the adult spinal cord spontaneously develops a dynamic gliogenic zone along lesion borders.  相似文献   

2.
Oligodendrocytes (OLs) are particularly susceptible to the toxicity of the acute lesion environment after spinal cord injury (SCI). They undergo both necrosis and apoptosis acutely, with apoptosis continuing at chronic time points. Loss of OLs causes demyelination and impairs axon function and survival. In parallel, a rapid and protracted OL progenitor cell proliferative response occurs, especially at the lesion borders. Proliferating and migrating OL progenitor cells differentiate into myelinating OLs, which remyelinate demyelinated axons starting at 2 weeks post-injury. The progression of OL lineage cells into mature OLs in the adult after injury recapitulates development to some degree, owing to the plethora of factors within the injury milieu. Although robust, this endogenous oligogenic response is insufficient against OL loss and demyelination. First, in this review we analyze the major spatial–temporal mechanisms of OL loss, replacement, and myelination, with the purpose of highlighting potential areas of intervention after SCI. We then discuss studies on OL protection and replacement. Growth factors have been used both to boost the endogenous progenitor response, and in conjunction with progenitor transplantation to facilitate survival and OL fate. Considerable progress has been made with embryonic stem cell-derived cells and adult neural progenitor cells. For therapies targeting oligogenesis to be successful, endogenous responses and the effects of the acute and chronic lesion environment on OL lineage cells must be understood in detail, and in relation, the optimal therapeutic window for such strategies must also be determined.  相似文献   

3.
The neurotoxic drug p-chloramphetamine (PCA) causes widespread de-generation offine, unmyelinated serotonergic (5-HT) axons in the forebrain. PCA toxicity is selective for 5-HT axon terminals; preterminal axons and cell bodies are spared. Degeneration is followed by slowly progressive axonal sprouting and partial reinnervation. PCA is injected subcutaneously; this route of administration avoids mechanical disruption of the blood brain barrier. The present study analyzed the response of microglia and astrocytes in rat brain to selective ablation of 5-HT axons by PCA. Several microglial markers were analyzed with immunocytochemical methods. An increase in the number of microglial processes and in immunoreactive staining was observed with antibodies directed against CR-3, MHC-I, CD4, and rat LCA. The microglial response was maximal 3 weeks after PCA treatment, became less evident 6 weeks after treatment, and by 9 weeks no difference was observed between treated and control rats. No change was detected in MHC-II or the macrophage marker ED1, nor in expression of GFAP by astrocytes. Thus, degeneration of 5-HT axon terminals affects only a subset of the micro-glial markers examined; in comparison, retrograde reaction to facial nerve transection causes a robust increase in all of these markers and in GFAP. The microglial response to PCA-induced axon loss is slow in onset and small in magnitude. These findings indicate that CNS microglia are activated by degeneration of fine, unmyelinated 5-HT axon terminals; furthermore, sensitive microglial markers can detect a subtle axonal lesion that provokes no detectable increase in GFAP expression by astrocytes. © 1994 Wiley-Liss, Inc.  相似文献   

4.
5.
6.
Spinal cord injury (SCI) is a devastating condition characterized by disruption of axonal connections, failure of axonal regeneration, and loss of motor and sensory function. The therapeutic promise of neural stem cells has been focused on cell replacement, but many obstacles remain in obtaining neuronal integration following transplantation into the injured CNS. This study investigated the neurotransmitter identity and axonal growth potential of neural progenitors following grafting into adult rats with a dorsal column lesion. We found that using a combination of neuronal and glial restricted progenitors (NRP and GRP) produced graft‐derived glutamatergic and GABAergic neurons within the injury site, with minimal axonal extension. Administration of brain‐derived neurotrophic factor (BDNF) with the graft promoted modest axonal growth from grafted cells. In contrast, injecting a lentiviral vector expressing BDNF rostral into the injured area generated a neurotrophin gradient and promoted directional growth of axons for up to 9 mm. Animals injected with BDNF lentivirus (at 2.5 and 5.0 mm) showed significantly more axons and significantly longer axons than control animals injected with GFP lentivirus. However, only the 5.0‐mm‐BDNF group showed a preference for extension in the rostral direction. We concluded that NRP/GRP grafts can be used to produce excitatory and inhibitory neurons, and neurotrophin gradients can guide axonal growth from graft‐derived neurons toward putative targets. Together they can serve as a building block for neuronal cell replacement of local circuits and formation of neuronal relays. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Reactive gliosis, demyelination and proliferation of NG2+ oligodendrocyte precursor cells (OPC) are common responses to spinal cord injury (SCI). We previously reported that short-term progesterone treatment stimulates OPC proliferation whereas chronic treatment enhances OPC differentiation after SCI. Presently, we further studied the proliferation/differentiation of glial cells involved in inflammation and remyelination in male rats with SCI subjected to acute (3 days) or chronic (21 days) progesterone administration. Rats received several pulses of bromodeoyuridine (BrdU) 48 and 72 h post-SCI, and sacrificed 3 or 21 days post-SCI. Double colocalization of BrdU and specific cell markers showed that 3 days of SCI induced a strong proliferation of S100β+ astrocytes, OX-42+ microglia/macrophages and NG2+ cells. At this stage, the intense GFAP+ astrogliosis was BrdU negative. Twenty one days of SCI enhanced maturation of S100β+ cells into GFAP+ astrocytes, but decreased the number of CC1+ oligodendrocytes. Progesterone treatment inhibited astrocyte and microglia /macrophage proliferation and activation in the 3-day SCI group, and inhibited activation in the 21-day SCI group. BrdU/NG2 double labeled cells were increased by progesterone at 3 days, indicating a proliferation stimulus, but decreased them at 21 days. However, progesterone-enhancement of CC1+/BrdU+ oligodendrocyte density, suggest differentiation of OPC into mature oligondendrocytes. We conclude that progesterone effects after SCI involves: a) inhibition of astrocyte proliferation and activation; b) anti-inflammatory effects by preventing microglial activation and proliferation, and c) early proliferation of NG2+ progenitors and late remyelination. Thus, progesterone behaves as a glioactive factor favoring remyelination and inhibiting reactive gliosis.  相似文献   

8.
Transplanted bone marrow stromal cells (BMSC) promote functional recovery after spinal cord injury (SCI) through multiple mechanisms. A Rho kinase inhibitor, Fasudil also enhances axonal regeneration. This study was aimed to evaluate whether combination therapy of BMSC transplantation and Fasudil further enhances axonal regeneration and functional recovery in rats subjected to SCI. Fasudil or vehicle was injected for 2 weeks. BMSC or vehicle transplantation into the rostral site of SCI was performed at 7 days after injury. Neurological symptoms were assessed throughout the experiments. Fluoro‐Ruby was injected into the dorsal funiculus of the rostral site of SCI at 63 days after injury. The fate of the transplanted BMSC was examined using immunohistochemistry. BMSC transplantation significantly increased the number of Fluoro‐Ruby ‐labeled fibers of the dorsal corticospinal tracts at the caudal site of SCI, enhancing functional recovery of the hind limbs. Some of the engrafted BMSC were positive for Fluoro‐Ruby, neuronal specific nuclear protein and microtubule‐associated protein‐2, suggesting that they acquired neuronal phenotypes and built synaptic connection with the host's neural circuits. Fasudil treatment also improved axonal continuity, but did not promote functional recovery. Combination therapy dramatically increased the number of Fluoro‐Ruby‐labeled fibers of the dorsal corticospinal tracts at the caudal site of SCI, but did not further boost the therapeutic effects on locomotor function by BMSC transplantation. The findings suggest that BMSC transplantation and Fasudil provide synergistic effects on axon regeneration after SCI, although further studies would be necessary to further enhance functional recovery.  相似文献   

9.
The dual role of microglia in cytotoxicity and neuroprotection is believed to depend on the specific, temporal expression of microglial-related genes. To better clarify this issue, we used high-density oligonucleotide microarrays to examine microglial gene expression after spinal cord injury (SCI) in rats. We compared expression changes at the lesion site, as well as in rostral and caudal regions after mild, moderate, or severe SCI. Using microglial-associated anchor genes, we identified two clusters with different temporal profiles. The first, induced by 4 h postinjury to peak between 4 and 24 h, included interleukin-1beta, interleukin-6, osteopontin, and calgranulin, among others. The second was induced 24 h after SCI, and peaked between 72 h and 7 days; it included C1qB, Galectin-3, and p22(phox). These two clusters showed similar expression profiles regardless of injury severity, albeit with slight decreases in expression in mild or severe injury vs. moderate injury. Expression was also decreased rostral and caudal to the lesion site. We validated the expression of selected cluster members at the mRNA and protein levels. In addition, we demonstrated that stimulation of purified microglia in culture induces expression of C1qB, Galectin-3, and p22(phox). Finally, inhibition of p22(phox) activity within microglial cultures significantly suppressed proliferation in response to stimulation, confirming that this gene is involved in microglial activation. Because microglial-related factors have been implicated both in secondary injury and recovery, identification of temporally distinct clusters of genes related to microglial activation may suggest distinct roles for these groups of factors.  相似文献   

10.
The major determinant of poor outcome in Guillain-Barré syndrome (GBS) is axonal degeneration. Pathways leading to primary axonal injury in the motor axonal variant are well established, whereas mechanisms of secondary axonal injury in acute inflammatory demyelinating polyneuropathy (AIDP) are unknown. We recently developed an autoantibody-and complement-mediated model of murine AIDP, in which prominent injury to glial membranes at the node of Ranvier results in severe disruption to paranodal components. Acutely, axonal integrity was maintained, but over time secondary axonal degeneration occurred. Herein, we describe the differential mechanisms underlying acute glial membrane injury and secondary axonal injury in this model. Ex vivo nerve-muscle explants were injured for either acute or extended periods with an autoantibody-and complement-mediated injury to glial paranodal membranes. This model was used to test several possible mechanisms of axon degeneration including calpain activation, and to monitor live axonal calcium signalling. Glial calpains induced acute disruption of paranodal membrane proteins in the absence of discernible axonal injury. Over time, we observed progressive axonal degeneration which was markedly attenuated by axon-specific calpain inhibition. Injury was unaffected by all other tested methods of protection. Trans-axolemmal diffusion of fluorescent proteins  and live calcium imaging studies indirectly demonstrated the presence of nanoruptures in the axon membrane. This study outlines one mechanism by which secondary axonal degeneration arises in the AIDP variant of GBS where acute paranodal loop injury is prominent. The data also support the development of calpain inhibitors to attenuate both primary and secondary axonal degeneration in GBS.  相似文献   

11.
We have examined the glial cell response, the possible expression of compounds associated with the complement cascade, including the putative complement inhibitor clusterin, and their cellular association during Wallerian degeneration in the central nervous system. Examination of the proliferation pattern revealed an overall greater mitotic activity after rhizotomy, an exclusive involvement of microglia in this proliferation after peripheral nerve injury, but, in addition, a small fraction of proliferating astrocytes after rhizotomy. Immunostaining with the phagocytic cell marker ED1 gradually became very prominent after rhizotomy, possibly reflecting a response to the extensive nerve fiber disintegration. Lumbar dorsal rhizotomy did not induce endogenous immunoglobulin G (IgG) deposition or complement expression in the spinal cord dorsal horn, dorsal funiculus, or gracile nucleus. This is in marked contrast to the situation after peripheral nerve injury, which appears to activate the entire complement cascade in the vicinity of the central sensory processes. Clusterin, a multifunctional protein with complement inhibitory effects, was markedly upregulated in the dorsal funiculus in astrocytes. In addition, there was an intense induction of clusterin expression in the degenerating white matter in oligodendrocytes, possibly reflecting a degeneration process in these cells. The findings suggest that 1) complement expression by microglial cells is intimately associated with IgG deposition; 2) axotomized neuronal perikarya, but not degenerating central fibers, undergo changes which induce such deposition; and 3) clusterin is not related to complement expression following neuronal injury but participates in regulating the state of oligodendrocytes during Wallerian degeneration. GLIA 23:221–238, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Summary Stereotaxic lesioning of the entorhinal cortex leads to an anterograde axonal degeneration in the molecular layer of the dentate gyrus. As revealed by immunocytochemical and histochemical methods, lesion of the entorhinal cortex induced a proliferation of microglia and an increased expression of established microglial activation markers within the deafferented zone. Reactive microglial cells were detected as early as 24 h after the lesion. The microglial reaction showed a maximum around day 3 post-lesion and disappeared by day 8 post-lesion. Reactive microglia were strongly positive for the B4-isolectin from Griffonia simplicifolia (GSI-B4), expressed high levels of CR3 complement receptor and 5-nucleotidase, but lacked CD4 and MHC class I and II antigens. In addition, microglial cells were identified using MUC 102, a new monoclonal antibody against rat microglia. At the ultrastructural level, reactive microglial cells were consistently seen to phagocytose degenerating terminals. Our data suggest that (1) axonal degeneration represents a sufficient stimulus for inducing microglial activation and proliferation in the deafferented dentate gyrus; (2) these activated microglial cells are characterized by immunophenotypes different from those observed in other types of CNS injury; (3) the early microglial reaction precedes the well-documented astrocyte reaction in the dentate gyrus; and (4) the timed interaction of microglia and astrocytes could be important for regulating regenerative sprouting processes in the mature CNS.  相似文献   

13.
We have demonstrated that overcoming matrix metalloproteinase (MMP)-mediated suppression of glial proliferation stimulates axonal regeneration in the peripheral nervous system. The regenerative capacity of the adult CNS in response to injury and demyelination depends on the ability of multipotent glial NG2+ progenitor cells to proliferate and mature, mainly into oligodendrocytes. Herein, we have established the important role of MMPs, specifically MMP-9, in regulation of NG2+ cell proliferation in injured spinal cord. Targeting transiently induced MMP-9 using acute MMP-9/2 inhibitor (SB-3CT) therapy for two days after T9-10 spinal cord dorsal hemisection produced a significant increase in mitosis (assessed by bromodeoxyuridine incorporation) of NG2+ cells but not GFAP + astrocytes and Iba-1+ microglia and/or macrophages. Acute MMP-9/2 blockade reduced the shedding of the NG2 proteoglycan and of the NR1 subunit of the N-methyl D-aspartate (NMDA) receptor, whose decline is believed to accompany NG2+ cell maturation into OLs. Increase in post-mitotic oligodendrocytes during remyelination and improved myelin neuropathology in the hemisected spinal cord were accompanied by locomotion and somatosensory recovery after acute MMP-9/2 inhibition. Collectively, these data establish a novel role for MMPs in regulation of NG2+ cell proliferation in the damaged CNS, and a long-term benefit of acute MMP-9 block after SCI.  相似文献   

14.
Proliferation of the adult NG2-expressing oligodendrocyte precursor cells has traditionally been viewed as a remyelination response ensuing from destruction of myelin and oligodendrocytes, and not to the axonal pathology that is also a characteristic of demyelinating disease. To better understand the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed by a reduction of cellular NG2 expression to subnormal levels from day 5 to 7 and reappearance of normal appearing NG2+ cells from day 10. Mice that had received repeated injections of bromodeoxyuridine from 24 to 72 h after surgery contained significant numbers of bromodeoxyuridine-incorporating oligodendrocytes in the areas with axonal degeneration at day 7. The results suggest that axonal degeneration induces a unique sequence of changes of NG2+ cells and that a subpopulation of the newly generated NG2+ cells differentiate into oligodendrocytes.  相似文献   

15.
The Fas/FasL system plays an important role in apoptosis, the inflammatory response and gliosis in a variety of neurologic disorders. A better understanding of these mechanisms could lead to effective therapeutic strategies following spinal cord injury (SCI). We explored these mechanisms by examining molecular changes in postmortem human spinal cord tissue from cases with acute and chronic SCI. Complementary studies were conducted using the in vivo Fejota™ clip compression model of SCI in Fas-deficient B6.MRL-Fas-lpr (lpr) and wild-type (Wt) mice to test Fas-mediated apoptosis, inflammation, gliosis and axonal degeneration by immunohistochemistry, Western blotting, gelatin zymography and ELISA with Mouse 32-plex cytokine/chemokine panel bead immunoassay. We report novel evidence that shows that Fas-mediated apoptosis of neurons and oligodendrocytes occurred in the injury epicenter in all cases of acute and subacute SCI and not in chronic SCI or in control cases. We also found significantly reduced apoptosis, expression of GFAP, NF-κB, p-IKappaB and iba1, increased number of CD4 positive T cells and MMP2 expression and reduced neurological dysfunction in lpr mice when compared with Wt mice after SCI. We found dramatically reduced inflammation and cytokines and chemokine expression in B6.MRL-Fas-lpr mice compared to Wt mice after SCI. In conclusion, we report multiple lines of evidence that Fas/FasL activation plays a pivotal role in mediating apoptosis, the inflammatory response and neurodegeneration after SCI, providing a compelling rationale for therapeutically targeting Fas in human SCI.  相似文献   

16.
Deficiency of the major constituent of central nervous system (CNS) myelin, proteolipid protein (PLP), causes axonal pathology in spastic paraplegia type‐2 patients and in Plp1null‐mice but is compatible with almost normal myelination. These observations led us to speculate that PLP's role in myelination may be partly compensated for by other tetraspan proteins. Here, we demonstrate that the abundance of the structurally related tetraspanin‐2 (TSPAN2) is highly increased in CNS myelin of Plp1null‐mice. Unexpectedly, Tspan2null‐mutant mice generated by homologous recombination in embryonic stem cells displayed low‐grade activation of astrocytes and microglia in white matter tracts while they were fully myelinated and showed no signs of axonal degeneration. To determine overlapping functions of TSPAN2 and PLP, Tspan2null*Plp1null double‐mutant mice were generated. Strikingly, the activation of astrocytes and microglia was strongly enhanced in Tspan2null*Plp1null double‐mutants compared with either single‐mutant, but the levels of dysmyelination and axonal degeneration were not increased. In this model, glial activation is thus unlikely to be caused by axonal pathology, and vice versa does not potentiate axonal degeneration. Our results support the concept that multiple myelin proteins have distinct roles in the long‐term preservation of a healthy CNS, rather than in myelination per se. GLIA 2013;61:1832–1847  相似文献   

17.
18.
In the central nervous system (CNS), myelin sheaths around axons are formed by glial cells named oligodendrocytes (OLs). In turn, OLs are generated by oligodendrocyte precursor cells (OPCs) during postnatal development and in adults, according to a process that depends on the proliferation and differentiation of these progenitors. The maturation of OL lineage cells as well as myelination by OLs are complex and highly regulated processes in the CNS. OPCs and OLs express an array of receptors for neurotransmitters, in particular for the two main CNS neurotransmitters glutamate and GABA, and are therefore endowed with the capacity to respond to neuronal activity. Initial studies in cell cultures demonstrated that both glutamate and GABA signaling mechanisms play important roles in OL lineage cell development and function. However, much remains to be learned about the communication of glutamatergic and GABAergic neurons with oligodendroglia in vivo. This review focuses on recent major advances in our understanding of the neuron–oligodendroglia communication mediated by glutamate and GABA in the CNS, and highlights the present controversies in the field. We discuss the expression, activation modes and potential roles of synaptic and extrasynaptic receptors along OL lineage progression. We review the properties of OPC synaptic connectivity with presynaptic glutamatergic and GABAergic neurons in the brain and consider the implication of glutamate and GABA signaling in activity-driven adaptive myelination.  相似文献   

19.
Inflammation induced by microglial activation plays a pivotal role in progressive degeneration after traumatic spinal cord injury (SCI). Voltage‐gated sodium channels (VGSCs) are also implicated in microglial activation following injury. However, direct evidence that VGSCs are involved in microglial activation after injury has not been demonstrated yet. Here, we show that the increase in VGSC inward current elicited microglial activation followed inflammatory responses, leading to cell death after injury in vitro and in vivo. Isoforms of sodium channel, Nav1.1, Nav1.2, and Nav1.6 were expressed in primary microglia, and the inward current of VGSC was increased by LPS treatment, which was blocked by a sodium channel blocker, tetrodotoxin (TTX). TTX inhibited LPS‐induced NF‐κB activation, expression of TNF‐α, IL‐1β and inducible nitric oxide synthase, and NO production. LPS‐induced p38MAPK activation followed pro‐nerve growth factor (proNGF) production was inhibited by TTX, whereas LPS‐induced JNK activation was not. TTX also inhibited caspase‐3 activation and cell death of primary cortical neurons in neuron/microglia co‐cultures by inhibiting LPS‐induced microglia activation. Furthermore, TTX attenuated caspase‐3 activation and oligodendrocyte cell death at 5 d after SCI by inhibiting microglia activation and p38MAPK activation followed proNGF production, which is known to mediate oligodendrocyte cell death. Our study thus suggests that the increase in inward current of VGSC appears to be an early event required for microglia activation after injury. GLIA 2013;61:1807–1821  相似文献   

20.
Wallerian degeneration (WD), composed of the breakdown and phagocytosis of damaged axons and their myelin sheaths distal to the injury, is a major sequela of spinal cord injury (SCI). To understand the microenvironment within WD that may affect repair following SCI, we investigated the fate of major glial types and axons in this region following acute (1 h), subacute (10 days), and chronic (30 days) dorsal funiculotomy at the eighth thoracic (T8) level. This lesion induces a confined WD in two distinct functional pathways, that is, the corticospinal tract (CST) and dorsal ascending tract (DAT) in opposite directions. Here we report that astrocytes, reactive microglia and macrophages were all significantly increased in areas of WD in both the CST and DAT at subacute and chronic stages compared to the sham‐operated or acute stage. While the level of GFAP+ astrocytes remained stable after the subacute stage, the number of OX‐42+ microglia and ED‐1+ macrophages markedly decreased at the chronic stage. Interestingly, a mild but significant increase in ED‐1+ macrophages was also found in the intact fiber tracts 3 mm proximal to the injury at the chronic stage, coinciding with axonal dieback observed at that level. Axons distal to the injury experienced a continued and prolonged degeneration in both fiber tracts. Finally, although a significant decrease of Olig2+ oligodendrocyte lineage (OL) cells was found in areas of WD, the presence of these cells at the chronic stage indicates that they are available for endogenous repair. Taken together, our data have provided spatiotemporal evidence for the dynamic pathogenic changes of major cellular components in areas of WD remote to an SCI. Information obtained in this study should be useful for designing experiments aimed at modifying this region to accommodate endogenous or exogenous repair following SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号