首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the rate of dentate granule cell neurogenesis and in the fate of newborn granule cells have been implicated in the development and progression of epilepsies. Strategies to normalize neurogenesis in chronic epilepsy models are thought to increase our understanding of the functional consequences of aberrant neurogenesis in the epileptic brain. Therefore, we modulated neurogenesis in an amygdala kindling paradigm in rats by targeted irradiation of the hippocampus using a medical linear accelerator device. Selective irradiation normalized the hippocampal cell proliferation rate in kindled animals. Both, in kindled and nonkindled rats the number of BrdU/NeuN‐labeled newborn neurons was reduced in response to irradiation. Whereas kindling resulted in a pronounced increase in the number of neuroblasts identified based on doublecortin‐labeling, irradiation prevented the expansion of the neuroblast population. Moreover, irradiation counteracted the kindling‐associated increase in hilar basal dendrites, and kept the fraction of cells with basal dendrites at control levels. Despite the efficacious modulation of neurogenesis, irradiation did not affect the rate of kindling progression. Both, the number of stimulations as well as the cumulative afterdischarge duration to reach respective seizure stages were comparable in animals with and without irradiation. In addition, pre‐ and postkindling thresholds as well as seizure parameters recorded at threshold stimulation remained unaffected by irradiation. In conclusion, the fact that the efficacious modulation of neurogenesis by irradiation did not exert any effects on kindling acquisition and kindled seizures suggests that newborn neurons do not critically contribute to the hyperexcitable state in the chronic epilepsy model used. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
PURPOSE: Adult hippocampal neurogenesis is enhanced in several models for temporal lobe epilepsy (TLE). In this study, we used low-dose whole brain radiation to suppress hippocampal neurogenesis and then studied the effect of this treatment on epileptogenesis in a kindling model for TLE. METHODS: Half of the rats were exposed to a radiation dose of 8 Gy one day before the initiation of a rapid kindling protocol. Afterdischarge threshold (ADT), afterdischarge duration (ADD), clinical seizure severity, and inflammation were compared between groups. On the first and third day after radiation, rats were injected with 5'-bromo-2'-deoxyuridine (BrdU) to evaluate neurogenesis. Seven and 21 days after radiation, numbers of doublecortin (DCX) positive neuroblasts in subgranular zone and granule cell layer were compared between groups. RESULTS: We showed that radiation significantly suppressed neurogenesis and neuroblast production during kindling acquisition. Radiation prevented an increase in ADT that became significantly lower in radiated rats. On the third and fourth kindling acquisition day radiated rats developed more severe seizures more rapidly, which resulted in a significantly higher mean severity score on these days. Differences in ADD could not be demonstrated. DISCUSSION: Our results demonstrate that brain radiation with a relatively low dose effectively suppressed the generation of new granule cells and transiently enhanced excitability during kindling acquisition. Although seizure-induced neurogenesis was lower in the radiated rats we could not detect a strong effect on the final establishment of the permanent fully kindled state, which argues against a prominent role of seizure-induced neurogenesis in epileptogenesis.  相似文献   

3.
The extracellular matrix protein reelin is essential for the proper radial migration of cortical neurons. In reeler mice lacking reelin, there is a malformation of the radial glial scaffold required for granule cell migration. Immunostaining for glial fibrillary acidic protein (GFAP) reveals abundant radial glial cells with long fibers traversing the granular layer in the wild type, but almost exclusively astrocytes in the reeler mutant. With the concept that radial glial cells are precursors of neurons, we hypothesized that the balance between neurogenesis and gliogenesis is altered in the reeler mutant. To this end, adult reeler mutants and their wild-type littermates were injected with bromodeoxyuridine (BrdU), a marker of newly generated cells. When compared to wild-type animals, we found a reduction in the number of BrdU-labeled cells in the adult reeler dentate gyrus. Moreover, whereas there was a dramatic decrease in the number of newly generated granule cells identified by double labeling for BrdU and NeuN, the number of BrdU-labeled, GFAP-positive astrocytes had increased. Decreased neurogenesis in the adult reeler dentate gyrus was confirmed by immunostaining for doublecortin, a marker of newly generated neurons. These results indicate that adult neurogenesis is altered in the reeler dentate gyrus and that newly generated cells preferentially differentiate into astrocytes.  相似文献   

4.
Aberrant reorganization of dentate granule cell axons, the mossy fibers, occurs in human temporal lobe epilepsy and rodent epilepsy models. Whether this plasticity results from the remodeling of preexisting mossy fibers or instead reflects an abnormality of developing dentate granule cells is unknown. Because these neurons continue to be generated in the adult rodent and their production increases after seizures, mossy fibers that arise from either developing or mature granule cells are potential substrates for this network plasticity. Therefore, to determine whether seizure-induced, mossy fiber synaptic reorganization arises from either developing or mature granule cell populations, we used low-dose, whole-brain x-irradiation to eliminate proliferating dentate granule cell progenitors in adult rats. A single dose of 5 Gy irradiation blocked cell proliferation and eliminated putative progenitor cells in the dentate subgranular proliferative zone. Irradiation 1 d before pilocarpine-induced status epilepticus significantly attenuated dentate granule cell neurogenesis after seizures. Two irradiations, 1 d before and 4 d after status epilepticus, essentially abolished dentate granule cell neurogenesis but failed to prevent mossy fiber reorganization in the dentate molecular layer. These results indicate that dentate granule cell neurogenesis in the mature hippocampal formation is vulnerable to the effects of low-dose ionizing irradiation. Furthermore, the development of aberrant mossy fiber remodeling in the absence of neurogenesis suggests that mature dentate granule cells contribute substantially to seizure-induced network reorganization.  相似文献   

5.
Neurogenesis in the adult mammalian hippocampus resulting in long-term persistence of new neurons with features of capacity for functional activation is recognized. Many stimuli are capable of increasing the rate of neurogenesis, including seizure activity. Whether these insults result in an increased number of new functionally active neurons over and above the baseline rate of neurogenesis is not known. The rapid electrical amygdala kindling (REAK) model of seizures isolates the effects of seizures alone in the absence of neuronal death and the resulting seizures induce expression of c-Fos in the vast majority of dentate gyrus (DG) granule cells. C57BL/6 mice were exposed to REAK then injected with bromodeoxyuridine (BrDU) to label dividing cells, then re-exposed to REAK after a delay period to allow detection of functional activation in new neurons by measurement c-Fos expression in response to seizures. Adult subgranular zone cells migrated into the DG granule cell layer (GCL), assumed a neuronal phenotype and demonstrated seizure-dependent responsiveness. Larger absolute numbers of new neurons demonstrating seizure-dependent activation were found in the GCL of previously kindled mice. Seizures are capable of increasing the number of new neurons with the capacity for functional activation laid down in the postseizure period and incorporated into seizure-activated circuitry.  相似文献   

6.
New neurons continue to be generated throughout adulthood in the dentate gyrus of mammals. This process of neurogenesis is believed to play a role in some forms of learning and memory. Hippocampal-dependent learning tasks have been shown to specifically enhance the survival of new granule neurons. The present study examined the effects of kindled seizures in rats on the survival of young neurons born before the kindling began. Kindled seizures within the perforant path input to the dentate gyrus triggered between 1 and 2 weeks following the injection of bromodeoxyuridine (BrdU), were found to increase the number of BrdU and NeuN co-labeled cells in the granule cell layer by 128% 1 month later. The number of co-labeled cells was not correlated with measures of seizure severity. These results demonstrate that kindled seizures enhance the survival of new born neurons in the adult rat dentate gyrus which may reflect the actions of an activity-dependent mechanism normally involved in hippocampal-dependent learning and memory.  相似文献   

7.
Neurogenesis is a well‐characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long‐term effects of T cell–mediated central nervous system inflammation on hippocampal neurogenesis. 5‐Bromodeoxyuridine (BrdU)‐labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
The expression level of the mRNAs encoding the Flip and Flop versions of the AMPA-selective glutamate receptor subunits A, B, C and D was studied using in situ hybridization in the hippocampus of rats kindled by Schaffer collateral/commissural fibre stimulation. The expression levels of the Flip variant of GluR-A, B and C mRNAs were bilaterally enhanced in the dentate granule neurons of fully kindled animals 24 h after the last seizure. These changes were already observed after the sixth kindling stimulation (preconvulsive-stage), but not after a single afterdischarge. Four weeks after the last seizure, when the animals were still hypersensitive to kindling stimulations, only GluR-A Flip expression was enhanced. These results suggest that kindling epileptogenesis is accompanied by an increased number and enhanced sensitivity of the expressed AMPA type glutamate receptors in the fascia dentata, leading to an enhanced excitatory synaptic transmission which may contribute to the process of kindling epileptogenesis.  相似文献   

9.
Repeated electrical stimulation of limbic structures has been reported to produce the kindling effect together with morphological changes in the hippocampus such as mossy fiber sprouting and/or neuronal loss. However, to argue against a causal role of these neuropathological changes in the development of kindling-associated seizures, we examined mossy fiber sprouting in amygdala (AM)-kindled rats using Timm histochemical staining, and evaluated the hippocampal neuronal degeneration in AM-kindled rats by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labelling (TUNEL). Amygdala kindling was established by 10.3 +/- 0.7 electrical stimulations, and no increase in Timm granules (neuronal sprouting) was observed up to the time of acquisition of a fully kindled state. However, the density and distribution of Timm granules increased significantly in the dentate gyrus compared with unkindled rats after 29 after-discharges or more than 10 kindled convulsions. In addition, no significant increase in TUNEL-positive cells was found in the hilar polymorphic neurons or in CA3 pyramidal neurons of the kindled rats that had fewer than 29 after-discharges. However, a significant increase of TUNEL-positive cells was found in the granule cell layer in the dentate gyrus of the stimulated side after 18 after-discharges or 10 kindled convulsions. Our result show that AM kindling develops without evidence of mossy fiber sprouting, and that mossy fiber sprouting may appear after repeated kindled convulsions, following death of the granule cells in the dentate gyrus.  相似文献   

10.
The hippocampal dentate gyrus in adult animals is known to contain neural progenitors that proliferate and differentiate into neurons in response to brain injury. Little has been observed, however, on regeneration of the granule cell layer of the dentate gyrus that has been directly injured. Using trimethyltin (TMT)-treated mice as an in vivo model, we evaluated the ability of this layer to regenerate after injury. The administration of TMT induced neuronal death in the dentate gyrus selectively 2 days later, with recovery of granule neurons on day 14 and thereafter. At an early stage (days 2-5) after the damage by TMT treatment, 5-bromo-2'-deoxyuridine (BrdU) incorporation into at least two different types of cells was facilitated in the dentate gyrus: BrdU-positive/neuronal nuclear antigen (NeuN)-negative cells were found predominantly in the subgranular zone and granule cell layer, whereas BrdU-positive/NeuN-positive cells were numerous in the dentate molecular layer and hilus. In addition, expression of proliferating cell nuclear antigen, nestin, NeuroD3, and doublecortin, which are markers for proliferating cells and neural progenitors/neuronal precursors, was extremely enhanced in the dentate gyrus at the early stage after treatment. Double staining revealed that BrdU was colocalized with nestin and doublecortin in the subgranular zone. Behavioral analysis revealed that TMT-induced cognition impairment was ameliorated by day 14 after the treatment. Taken together, our data indicate that the hippocampal dentate gyrus itself is capable of regenerating the neuronal cell layer through rapid enhancement of neurogenesis after injury.  相似文献   

11.
PURPOSE: Kindled seizures are widely used to model epileptogenesis, but the molecular mechanisms underlying the attainment of kindling status are largely unknown. Recently we showed that achievement of kindling status in the Sprague-Dawley rat is associated with a critical developmental interval of 25 +/- 1 days; the identification of this long, well-defined developmental interval for inducing kindling status makes possible a dissection of the cellular and genetic events underlying this phenomenon and its relation to normal and pathologic brain function. METHODS: By using proteomics on cerebral tissue from our new rat kindling model, we undertook a global analysis of protein expression in kindled animals. Some of the identified proteins were further investigated by using immunohistochemistry. RESULTS: We report the identification of a modified variant of the Rieske iron-sulfur protein, a component of the mitochondrial cytochrome bc1 complex, whose isoelectric point is shifted toward more alkaline values in the hippocampus of kindled rats. By immunohistochemistry, the Rieske protein is well expressed in the hippocampus, except in the CA1 subfield, an area of selective vulnerability to seizures in humans and animal models. We also noted an asymmetric, selective expression of the Rieske protein in the subgranular neurons of the dorsal dentate gyrus, a region implicated in neurogenesis. CONCLUSIONS: These results indicate that the Rieske protein may play a role in the response of neurons to seizure activity and could give important new insights into the molecular pathogenesis of epilepsy.  相似文献   

12.
Declined production and diminished dendritic growth of new dentate granule cells in the middle-aged and aged hippocampus are correlated with diminished concentration of fibroblast growth factor-2 (FGF-2). This study examined whether increased FGF-2 concentration in the milieu boosts both production and dendritic growth of new dentate granule cells in the middle-aged hippocampus. The FGF-2 or vehicle was infused into the posterior lateral ventricle of middle-aged Fischer (F)344 rats for 2 weeks using osmotic minipumps. New cells born during the first 12 days of infusions were labeled via daily intraperitoneal injections of 5'-bromodeoxyuridine (BrdU) and analysed at 10 days after the last BrdU injection. Measurement of BrdU(+) cells revealed a considerably enhanced number of new cells in the subgranular zone (SGZ) and granule cell layer (GCL) of the dentate gyrus (DG) ipsilateral to FGF-2 infusions. Characterization of beta-III tubulin(+) neurons among newly born cells suggested an increased addition of new neurons to the SGZ/GCL ipsilateral to FGF-2 infusions. Quantification of DG neurogenesis at 8 days post-infusions via doublecortin (DCX) immunostaining also revealed the presence of an enhanced DG neurogenesis ipsilateral to FGF-2 infusions. Furthermore, DCX(+) neurons in FGF-2-infused rats exhibited enhanced dendritic growth compared with their counterparts in vehicle-infused rats. Thus, subchronic infusion of FGF-2 is efficacious for stimulating an enhanced DG neurogenesis from neural stem/progenitor cells in the middle-aged hippocampus. As dentate neurogenesis is important for hippocampal-dependent learning and memory and DG long-term potentiation, strategies that maintain increased FGF-2 concentration during ageing may be beneficial for thwarting some of the age-related cognitive impairments.  相似文献   

13.
The development of kindling was examined in adult rats exposed to ethanol prenatally. Pregnant Wistar rats were fed a liquid diet containing either 6.7% ethanol or pair fed an isocaloric equivalent. At birth, the litters were cross fostered to surrogate mothers. At 80 days of age, a bipolar electrode was placed either in the right basolateral amygdala or the right angular bundle of entorhinal cortex. Kindling stimulations were administered three times a day until each rat had exhibited three class 5 kindled motor seizures. The total number of kindling stimulations required to exhibit class 1 through class 5 motor seizures was significantly greater in the rats exposed to ethanol prenatally. Further, the retardation in kindling development was due to a slower progression from class 0 to class 1 kindled motor seizures. Progression between other stages was not different between the two groups. Similar results were obtained in both amygdala and angular bundle kindling experiments. Kindling is retarded in a similar fashion by partial destruction of the dentate granule cells of the hippocampal formation. Further, the pattern of dentate granule cell axonal projections to hippocampal CA3 pyramidal neurons is altered in rats exposed to ethanol prenatally. Taken together, these data suggest the possibility that a defect in the neuronal circuitry within the hippocampal formation of fetal alcohol rats may underlie a retardation in their kindling progression. This proposed defect may have functional implications related to learning deficiencies in rats and children exposed to ethanol prenatally.  相似文献   

14.
Neurogenesis in the subgranular zone of the dentate gyrus persists throughout the lifespan of mammals, and the resulting newly born neurons are incorporated into existing hippocampal circuitry. Seizures increase the rate of neurogenesis in the adult rodent brain and result in granule cells in the dentate gyrus with basal dendrites. Using doublecortin (DCX) immunocytochemistry to label newly generated neurons the current study focuses on the electron microscopic features of DCX-labeled cell bodies and dendritic processes in the dentate gyrus of rats with pilocarpine-induced epilepsy. At the base of the granule cell layer clusters of cells that include up to six DCX-labeled cell bodies were observed. The cell bodies in these clusters lacked a one-to-one association with an astrocyte cell body and its processes, a relationship that is typical for newly born granule cells in control rats. Also, DCX-labeled basal dendrites in the hilus had immature synapses while those in control rats lacked synapses. These results indicate that increased neurogenesis after seizures alters the one-to-one relationship between astrocytes and DCX-labeled newly generated neurons at the base of the granule cell layer. The data also suggest that the synapses on DCX-labeled hilar basal dendrites contribute to the persistence of hilar basal dendrites on neurons born after pilocarpine-induced seizures.  相似文献   

15.
The pilocarpine‐induced status epilepticus rodent model has been commonly used to analyze the mechanisms of human temporal lobe epilepsy. Recent studies using this model have demonstrated that epileptic seizures lead to increased adult neurogenesis of the dentate granule cells, and cause abnormal cellular organization in dentate neuronal circuits. In this study, we examined these structural changes in rats with seizures of varying severity. In rats with frequent severe seizures, we found a clear loss of Prox1 and NeuN expression in the dentate granule cell layer (GCL), which was confined mainly to the suprapyramidal blade of the GCL at the septal and middle regions of the septotemporal axis of the hippocampus. In the damaged suprapyramidal region, the number of immature neurons in the subgranular zone was markedly reduced. In contrast, in rats with less frequent severe seizures, there was almost no loss of Prox1 and NeuN expression, and the number of immature neurons was increased. In rats with no or slight loss of Prox1 expression in the GCL, ectopic immature neurons were detected in the molecular layer of the suprapyramidal blade in addition to the hilus, and formed chainlike aggregated structures along the blood vessels up to the hippocampal fissure, suggesting that newly generated neurons migrate at least partially along blood vessels to the hippocampal fissure. These results suggest that seizures of different severity cause different effects on GCL damage, neurogenesis, and the migration of new neurons, and that these structural changes are selective to subdivisions of the GCL and the septotemporal axis of the hippocampus.  相似文献   

16.
Recent evidence showed that epileptic seizures increase hippocampal neurogenesis in the adult rat, but prolonged seizures result in the aberrant hippocampal neurogenesis that often leads to a recurrent excitatory circuitry and thus contributes to epileptogenesis. However, the mechanism underlying the aberrant neurogenesis after prolonged seizures remains largely unclear. In this study, we examined the role of activated astrocytes and microglia in the aberrant hippocampal neurogenesis induced by status epilepticus. Using a lithium‐pilocarpine model to mimic human temporal lobe epilepsy, we found that status epilepticus induced a prominent activation of astrocytes and microglia in the dentate gyrus 3, 7, 14, and 20 days after the initial seizures. Then, we injected fluorocitrate stereotaxicly into the dentate hilus to inhibit astrocytic metabolism and found that fluorocitrate failed to prevent the seizure‐induced formation of ectopic hilar basal dendrites but instead promoted the degeneration of dentate granule cells after seizures. In contrast, a selective inhibitor of microglia activation, minocycline, inhibited the aberrant migration of newborn neurons at 14 days after status epilepticus. Furthermore, with stereotaxic injection of lipopolysaccharide into the intact dentate hilus to activate local microglia, we found that lipopolysaccharide promoted the development of ectopic hilar basal dendrites in the hippocampus. These results indicate that the activated microglia in the epileptic hilus may guide the aberrant migration of newborn neurons and that minocycline could be a potential drug to impede seizure‐induced aberrant migration of newborn neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Recent studies have demonstrated that mice lacking protein L-isoaspartate (D-aspartate) O-methyltransferase (Pcmt1-/- mice) have alterations in the insulin-like growth factor-I (IGF-I) and insulin receptor pathways within the hippocampal formation as well as other brain regions. However, the cellular localization of these changes and whether the alterations might be associated with an increase in cell number within proliferative regions, such as the dentate gyrus, were unknown. In this study, stereological methods were used to demonstrate that these mice have an increased number of granule cells in the granule cell layer and hilus of the dentate gyrus. The higher number of granule cells was accompanied by a greater number of cells undergoing mitosis in the dentate gyrus, suggesting that an increase in neuronal cell proliferation occurs in this neurogenic zone of adult Pcmt1-/- mice. In support of this, increased doublecortin labeling of immature neurons was detected in the subgranular zone of the dentate gyrus. In addition, double immunofluorescence studies demonstrated that phosphorylated IGF-I/insulin receptors in the subgranular zone were localized on immature neurons, suggesting that the increased activation of one or both of these receptors in Pcmt1-/- mice could contribute to the growth and survival of these cells. We propose that deficits in the repair of isoaspartyl protein damage leads to alterations in metabolic and growth-receptor pathways, and that this model may be particularly relevant for studies of neurogenesis that is stimulated by cellular damage.  相似文献   

18.
Granule cell dispersion (GCD) in the dentate gyrus is a frequent feature of Ammon's horn sclerosis (AHS) which is often associated with temporal lobe epilepsy (TLE). It has been hypothesized that GCD may be caused by an abnormal migration of newly born granule cells. To test this hypothesis, we used markers of proliferation and neurogenesis and immunocytochemical methods as well as quantitative Western blot and real-time RT-PCR analyses in surgically resected hippocampi from TLE patients and controls. Below the age of 1 year, Ki-67-immunopositive nuclei were detected in the subgranular zone of the dentate gyrus, but not in the dentate of TLE patients independent of age. The expression of the proliferation marker minichromosome maintenance protein 2 (mcm2) and of doublecortin (DCX) decreased significantly with age in controls and in TLE patients, but the expression of both proteins was independent of the degree of AHS and GCD. Quantitative real-time RT-PCR confirmed these findings at the level of gene expression. In contrast, immunocytochemistry for glial fibrillary acidic protein (GFAP) and vimentin as well as Golgi staining revealed a radially aligned glial network in the region of GCD. GFAP-positive fiber length significantly increased with the severity of GCD. These results indicate that epileptic activity does not stimulate neurogenesis in the human dentate gyrus and that GCD probably does not result from a malpositioning of newly generated granule cells, but rather from an abnormal migration of mature granule cells along a radial glial scaffold.  相似文献   

19.
Fluoxetine, a selective serotonin‐reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input‐specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase‐67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle‐aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle‐aged hippocampus shows greater sensitivity to fluoxetine‐induced input‐specific synaptic remodeling than the hippocampus in adulthood with the stratum‐oriens of CA1 exhibiting heightened structural plasticity. The input‐specific changes and circuit‐level modifications in middle‐age were associated with modest enhancement in contextual fear memory precision, anxiety‐like behavior and antidepressant‐like behavioral responses. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号