首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to maternal stress (MS) and mutations in GAD1, which encodes the γ-aminobutyric acid (GABA) synthesizing enzyme glutamate decarboxylase (GAD) 67, are both risk factors for psychiatric disorders. However, the relationship between these risk factors remains unclear. Interestingly, the critical period of MS for psychiatric disorders in offspring corresponds to the period of GABAergic neuron neurogenesis and migration in the fetal brain, that is, in the late stage of gestation. Indeed, decrement of parvalbumin (PV)-positive GABAergic interneurons in the medial prefrontal cortex (mPFC) and hippocampus (HIP) has often been observed in schizophrenia patients. In the present study, we used GAD67-green fluorescent protein (GFP) knock-in mice (that is, mice in which the Gad1 gene is heterozygously deleted; GAD67+/GFP) that underwent prenatal stress from embryonic day 15.0 to 17.5 and monitored PV-positive GABAergic neurons to address the interaction between Gad1 disruption and stress. Administration of 5-bromo-2-deoxyuridine revealed that neurogenesis of GFP-positive GABAergic neurons, but not cortical plate cells, was significantly diminished in fetal brains during MS. Differential expression of glucocorticoid receptors by different progenitor cell types may underlie this differential outcome. Postnatally, the density of PV-positive, but not PV-negative, GABAergic neurons was significantly decreased in the mPFC, HIP and somatosensory cortex but not in the motor cortex of GAD67+/GFP mice. By contrast, these findings were not observed in wild-type (GAD67+/+) offspring. These results suggest that prenatal stress, in addition to heterozygous deletion of Gad1, could specifically disturb the proliferation of neurons destined to be PV-positive GABAergic interneurons.  相似文献   

2.
To begin to unravel the complexities of GABAergic circuits in the superior colliculus (SC), we utilized mouse lines that express green fluorescent protein (GFP) in cells that contain the 67 kDa isoform of glutamic acid decarboxylase (GAD67-GFP), or Cre-recombinase in cells that contain glutamic acid decarboxylase (GAD; GAD2-cre). We used Cre-dependent virus injections in GAD2-Cre mice and tracer injections in GAD67-GFP mice, as well as immunocytochemical staining for gamma amino butyric acid (GABA) and parvalbumin (PV) to characterize GABAergic cells that project to the pretectum (PT), ventral lateral geniculate nucleus (vLGN) or parabigeminal nucleus (PBG), and interneurons in the stratum griseum superficiale (SGS) that do not project outside the SC. We found that approximately 30% of SGS neurons in the mouse are GABAergic. Of these GABAergic neurons, we identified three categories of potential interneurons in the GAD67-GFP line (GABA+GFP ~45%, GABA+GFP + PV ~15%, and GABA+PV ~10%). GABAergic cells that did not contain GFP or PV were identified as potential projection neurons (GABA only ~30%). We found that GABAergic neurons that project to the PBG are primarily located in the SGS and exhibit narrow field vertical, stellate, and horizontal dendritic morphologies, while GABAergic neurons that project to the PT and vLGN are primarily located in layers ventral to the SGS. In addition, we examined GABA and GAD67-containing elements of the mouse SGS using electron microscopy to further delineate the relationship between GABAergic circuits and retinotectal input. Approximately 30% of retinotectal synaptic targets are the presynaptic dendrites of GABAergic interneurons, and GAD67-GFP interneurons are a source of these presynaptic dendrites.  相似文献   

3.
Shozo Jinno  Toshio Kosaka 《Hippocampus》2009,19(11):1130-1141
There is an increasing body of evidence suggesting that GABAergic dysfunction is involved in various psychiatric disorders. The goal of our study was to investigate the influences of electroconvulsive therapy (ECT), one of the most effective treatments for depression, on the GABAergic system in the hippocampus. In this stereology‐based study, we identified GABAergic neurons by immunostaining for two isoforms of glutamic acid decarboxylase (GAD), GAD65, and GAD67 and estimated the expression changes induced by single or repeated electroconvulsive shock (ECS; an animal model of ECT). The numerical density (ND) of entire population of GABAergic neurons (expressing GAD65 and/or GAD67) was seldom altered by the administration of ECS. GAD67‐positive (GAD67+) neurons were also rarely affected by ECS. On the other hand, the ND of GAD65+ neurons was changed in a layer‐specific manner. In the CA1 region, the ND of GAD65+ neurons was increased in the strata radiatum/lacunosum‐moleculare (SR/SLM) by repeated ECS. In the CA3 region, the ND of GAD65+ neurons was decreased in the stratum oriens and SR/SLM after single ECS. The expression ratio of GAD65 in GABAergic neurons was increased specifically in layers receiving afferents from the entorhinal cortex (EC), i.e., SR/SLM of the CA1 region and molecular layer of the dentate gyrus (DG), after repeated ECS administration, whereas the expression ratio of GAD67 in GABAergic neurons was decreased in several layers by the same treatment. These results indicate that the ECS‐induced changes in ND of GAD65+ or GAD67+ neurons were most likely due to alterations in GAD expression rather than actual increases or decreases in cell numbers. Altogether, the neuronal circuit‐dependent alterations in GABA‐mediated signaling may play a contributory role in the depression treatment process introduced by ECT. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium‐binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67‐GFP knock‐in mice) or PV+ neurons (PV‐Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67‐GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium‐sized (15–20 μm) GFP+ neurons. Most medium and large‐sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast‐firing and spontaneously active in vitro. They exhibited prominent hyperpolarization‐activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV‐Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. J. Comp. Neurol., 521:1225–1250, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
To explore roles for ephrin‐B/EphB signaling in cortical interneurons, we previously generated ephrin‐B (Efnb1/b2/b3) conditional triple mutant (TMlz) mice using a Dlx1/2.Cre inhibitory neuron driver and green fluorescent protein (GFP) reporters for the two main inhibitory interneuron groups distinguished by expression of either glutamic acid decarboxylase 1 (GAD1; GAD67‐GFP) or 2 (GAD2; GAD65‐GFP). This work showed a general involvement of ephrin‐B in migration and population of interneurons into the embryonic neocortex. We now determined whether specific interneurons are selectively affected in the adult brains of TMlz.Cre mice by immunostaining with antibodies that identify the different subtypes. The results indicate that GAD67‐GFP‐expressing interneurons that also express parvalbumin (PV), calretinin (CR) and, to a lesser extent, somatostatin (SST) and Reelin (Rln) were significantly reduced in the cortex and hippocampal CA1 region in TMlz.Cre mutant mice. Neuropeptide Y (NPY) interneurons that also express GAD67‐GFP were reduced in the hippocampal CA1 region, but much less so in the cortex, although these cells exhibited abnormal cortical layering. In GAD65‐GFP‐expressing interneurons, CR subtypes were reduced in both cortex and hippocampal CA1 region, whereas Rln interneurons were reduced exclusively in hippocampus, and the numbers of NPY and vasoactive intestinal polypeptide (VIP) subtypes appeared normal. PV and CR subtype interneurons in TMlz.Cre mice also exhibited reductions in their perisomatic area, suggesting abnormalities in dendritic/axonal complexity. Altogether, our data indicate that ephrin‐B expression within forebrain interneurons is required in specific subtypes for their normal population, cortical layering and elaboration of cell processes.  相似文献   

7.
The dorsal raphe nucleus (DR) contains serotonergic (5‐HT) neurons that project widely throughout the forebrain. These forebrain regions also receive innervation from non–5‐HT neurons in the DR. One of the main groups of non–5‐HT neurons in the DR is γ‐aminobutyric acid (GABA)ergic, but their projections are poorly understood due to the difficulty of labeling these neurons immunohistochemically. To identify GABAergic projection neurons within the DR in the current study, we used a knock‐in mouse line in which expression of green fluorescent protein (GFP) is controlled by the glutamic acid decarboxylase (GAD)67 promotor. Projections of GAD67–GFP neurons to the prefrontal cortex (PFC), nucleus accumbens (NAC), and lateral hypothalamus (LH) were evaluated by using retrograde tract tracing. The location of GAD67–GFP neurons projecting to each of these areas was mapped by rostrocaudal and dorsoventral location within the DR. Overall, 16% of DR neurons projecting to either the PFC or NAC were identified as GAD67–GFP neurons. GAD67–GFP neurons projecting to the PFC were most commonly found ventrally, in the rostral two‐thirds of the DR. NAC‐projecting GAD67–GFP neurons had an overlapping distribution that extended dorsally. GAD67–GFP neurons made a larger contribution to the projection of the DR to the LH, accounting for 36% of retrogradely labeled neurons, and were widespread throughout the DR. The current data indicate that DR GABAergic neurons not only may have the capacity to influence local network activity, but also make a notable contribution to DR output to multiple forebrain targets. J. Comp. Neurol. 520:4157–4167, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Gamma-aminobutyric acid (GABA)ergic neurons in the central nervous system regulate the activity of other neurons and play a crucial role in information processing. To assist an advance in the research of GABAergic neurons, here we produced two lines of glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mouse. The distribution pattern of GFP-positive somata was the same as that of the GAD67 in situ hybridization signal in the central nervous system. We encountered neither any apparent ectopic GFP expression in GAD67-negative cells nor any apparent lack of GFP expression in GAD67-positive neurons in the two GAD67-GFP knock-in mouse lines. The timing of GFP expression also paralleled that of GAD67 expression. Hence, we constructed a map of GFP distribution in the knock-in mouse brain. Moreover, we used the knock-in mice to investigate the colocalization of GFP with NeuN, calretinin (CR), parvalbumin (PV), and somatostatin (SS) in the frontal motor cortex. The proportion of GFP-positive cells among NeuN-positive cells (neocortical neurons) was approximately 19.5%. All the CR-, PV-, and SS-positive cells appeared positive for GFP. The CR-, PV, and SS-positive cells emitted GFP fluorescence at various intensities characteristics to them. The proportions of CR-, PV-, and SS-positive cells among GFP-positive cells were 13.9%, 40.1%, and 23.4%, respectively. Thus, the three subtypes of GABAergic neurons accounted for 77.4% of the GFP-positive cells. They accounted for 6.5% in layer I. In accord with unidentified GFP-positive cells, many medium-sized spherical somata emitting intense GFP fluorescence were observed in layer I.  相似文献   

9.
Persistent alterations in network activity trigger compensatory changes in excitation and inhibition that restore neuronal firing rate to an optimal range. One example of such synaptic homeostasis is the downregulation of inhibitory transmission by chronic inactivity, in part through the reduction of vesicular transmitter content. The enzyme glutamic acid decarboxylase 67 (GAD67) is critical for GABA synthesis, but its involvement in homeostatic plasticity is unclear. We explored the role of GAD67 in activity-dependent synaptic plasticity using a mouse line (Gad1(-/-)) in which GAD67 expression is disrupted by genomic insertion of the green fluorescent protein (GFP). Homozygous deletion of Gad1 significantly reduced miniature inhibitory postsynaptic current (mIPSC) amplitudes and GABA levels in cultured hippocampal neurons. The fractional block of mIPSC amplitude by a low affinity, competitive GABA(A) receptor antagonist was higher in GAD67-lacking neurons, suggesting that GABA concentration in the synaptic cleft is lower in knockout animals. Chronic suppression of activity by the application of tetrodotoxin (TTX) reduced mIPSC amplitudes and the levels of GAD67 and GABA. Moreover, TTX reduced GFP levels in interneurons, suggesting that GAD67 gene expression is a key regulatory target of activity. These in vitro experiments were corroborated by in vivo studies in which olfactory deprivation reduced mIPSC amplitudes and GFP levels in glomerular neurons in the olfactory bulb. Importantly, TTX-induced downregulation of mIPSC was attenuated in Gad1(-/-) neurons. Altogether, these findings indicate that activity-driven expression of GAD67 critically controls GABA synthesis and, thus, vesicular filling of the transmitter.  相似文献   

10.
Gonadotropin‐releasing hormone (GnRH) neurons play a pivotal role in reproductive function. GnRH is released in distinct pulses that are regulated by neurotransmitters or neuromodulators. With immunohistochemistry and GAD67‐GFP knockin mice, this study shows for the first time that a subset of GnRH neurons in the forebrain of adult mouse is γ‐aminobutyric acid (GABA)‐ergic. There is a gender difference in the percentage of GnRH neurons expressing GAD67‐GFP in female vs. male mice. The percentage of GnRH neurons expressing GAD67‐GFP decreased after castration of female mice and increased to the normal female level after estradiol treatment. The percentage of GnRH neurons expressing GAD67‐GFP did not change significantly in intact, castrated, or castration + testosterone propionate‐treated male mice. During the female estrous cycle, the percentage of GnRH neurons expressing GAD67‐GFP was higher during the estrous stage than during the diestrous stage. During sexual maturation of postnatal development, GnRH neurons did not express GAD67‐GFP until postnatal day (P) 15, and the gender differences were first detected at P30, which corresponds to the maturation stage. In conclusion, our data suggest that 1) a subset of GnRH neurons in mouse forebrain is GABA‐ergic, 2) expression of GAD67‐GFP in GnRH neurons is at least in part regulated by estrogen, and 3) GnRH neurons secrete GABA to regulate themselves. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
γ‐Aminobutyric acid (GABA) regulates the proliferation and migration of olfactory bulb (OB) interneuron progenitors derived from the subventricular zone (SVZ), but the role of GABA in the differentiation of these progenitors has been largely unexplored. This study examines the role of GABA in the differentiation of OB dopaminergic interneurons using neonatal forebrain organotypic slice cultures prepared from transgenic mice expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (Th) gene promoter (ThGFP). KCl‐mediated depolarization of the slices induced ThGFP expression. The addition of GABA to the depolarized slices further increased GFP fluorescence by inducing ThGFP expression in an additional set of periglomerular cells. These findings show that GABA promoted differentiation of SVZ‐derived OB dopaminergic interneurons and suggest that GABA indirectly regulated Th expression and OB dopaminergic neuron differentiation through an acceleration of the maturation rate for the dopaminergic progenitors. Additional studies revealed that the effect of GABA on ThGFP expression required activation of L‐ and P/Q‐type Ca2+ channels as well as GABAA and GABAB receptors. These voltage‐gated Ca2+ channels and GABA receptors have previously been shown to be required for the coexpressed GABAergic phenotype in the OB interneurons. Together, these findings suggest that Th expression and the differentiation of OB dopaminergic interneurons are coupled to the coexpressed GABAergic phenotype and demonstrate a novel role for GABA in neurogenesis. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The inferior colliculus (IC) is partitioned into three subdivisions: the dorsal and lateral cortices (DC and LC) and the central nucleus (ICC), and serves as an integration center of auditory information. Recent studies indicate that a certain population of IC neurons may represent the non‐GABAergic phenotype, while they express well‐established cortical/hippocampal GABAergic neuron markers. In this study we used the optical disector to investigate the phenotype of IC neurons expressing parvalbumin (PV) and/or nitric oxide synthase (NOS) in C57BL/6J mice during the late postnatal period. Four major types of IC neurons were defined by the presence (+) or absence (–) of PV, NOS, and glutamic acid decarboxylase 67 (GAD67): PV+/NOS?/GAD67+, PV+/NOS+/GAD67+, PV+/NOS?/GAD67?, and PV?/NOS+/GAD67?. Fluorescent in situ hybridization for vesicular glutamate transporter 2 mRNA indicated that almost all GAD67? IC neurons represented the glutamatergic phenotype. The numerical densities (NDs) of total GAD67+ IC neurons remained unchanged in all subdivisions. The NDs of PV+/NOS?/GAD67+ neurons and PV?/NOS+/GAD67? neurons were reduced with age in the ICC, while they remained unchanged in the DC and LC. By contrast, the NDs of PV+/NOS+/GAD67+ neurons and PV+/NOS?/GAD67? neurons were increased with age in the ICC, although there were no changes in the DC and LC. The cell body size of GAD67+ IC neurons did not vary according to the expression of PV with or without NOS. The present findings indicate that the expression of PV and NOS may shift with age within the GABAergic and glutamatergic phenotypes of IC neurons during the late postnatal period. J. Comp. Neurol. 525:868–884, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
It has been widely reported that in autism, the number of Purkinje cells (PCs) is decreased, and recently, decreased expression of glutamic acid decarboxylase 67 (GAD67) mRNA in Purkinje cells also has been observed. However, the autism literature has not addressed key GABAergic inputs into Purkinje cells. Inhibitory basket and stellate cell interneurons in the molecular layer of the cerebellar cortex provide direct key GABAergic input into Purkinje cells and could potently influence the output of Purkinje cells to deep cerebellar nuclei. We investigated the capacity for interneuronal synthesis of gamma-amino butyric acid (GABA) in both types of interneurons that innervate the remaining PCs in the posterolateral cerebellar hemisphere in autism. The level of GAD67 mRNA, one of the isoforms of the key synthesizing enzymes for GABA, was quantified at the single-cell level using in situ hybridization in brains of autistic and aged-matched controls. The National Institutes of Health imaging system showed that expression of GAD67 mRNA in basket cells was significantly up-regulated, by 28%, in eight autistic brains compared with that in eight control brains (mean +/- SEM pixels per cell, 1.03 +/- 0.05 versus 0.69 +/- 0.05, respectively; P < 0.0001 by independent t test). Stellate cells showed a trend toward a small increase in GAD67 mRNA levels, but this did not reach significance. The results suggest that basket cells likely provide increased GABAergic feed-forward inhibition to PCs in autism, directly affecting PC output to target neurons in the dentate nucleus and potentially disrupting its modulatory role in key motor and/or cognitive behaviors in autistic individuals.  相似文献   

14.
Neurons expressing the calcium binding proteins (CaBPs) parvalbumin (PV) and calbindin (CB) have shown age‐related density changes throughout the ascending auditory system of both rodents and macaque monkeys. In the cerebral cortex, neurons expressing these CaBPs express markers of γ‐aminobutyric acidergic neurotransmission, such as GAD67, and have well‐understood physiological response properties. Recent evidence suggests that, in the rodent auditory brainstem, CaBP‐containing cells do not express GAD67. It is unknown whether PV‐ and CB‐containing cells in subcortical auditory structures of macaques similarly do not express GAD67, and a better understanding of the neurotransmission of neurons expressing these proteins is necessary for understanding the age‐related changes in their density throughout the macaque auditory system. This was investigated with immunofluorescent double‐labeling techniques to coregister PV‐ and CB‐expressing neurons with GAD67 in the superior olivary complex and the inferior colliculus of young and aged rhesus macaques. The proportions of GAD67‐expressing PV‐ and CB‐positive neurons were computed with unbiased sampling techniques. Our results indicate that between 42% and 62% of PV‐ and CB‐positive neurons in the auditory brainstem and midbrain express GAD67, which is significantly less than in the cerebrum. In general, fewer PV+ neurons and more CB+ neurons expressed GAD67 as a function of age. These results demonstrate that the inhibitory molecular profile of PV‐ and CB‐expressing neurons can change with age in subcortical auditory structures and that these neurons are distinct from the well‐described inhibitory interneurons that express these proteins in the cerebral cortex. J. Comp. Neurol. 522:4074–4084, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The characteristics of GABAergic neurons involved in respiratory control have not been fully understood because identification of GABAergic neurons has so far been difficult in living tissues. In the present in vitro study, we succeeded in analysing the electrophysiological as well as morphological characteristics of GABAergic neurons in the pre‐Bötzinger complex. We used 67‐kDa isoform of glutamic acid decarboxylase‐green fluorescence protein (GAD67‐GFP) (Δneo) knock‐in (GAD67GFP/+) mice, which enabled us to identify GABAergic neurons in living tissues. We prepared medullary transverse slices that contained the pre‐Bötzinger complex from these neonatal mice. The fluorescence intensity of the pre‐Bötzinger complex region was relatively high among areas of the ventral medulla. Activities of GFP‐positive neurons in the pre‐Bötzinger complex were recorded in a perforated whole‐cell patch‐clamp mode. Six of 32 GFP‐positive neurons were respiratory and the remaining 26 neurons were non‐respiratory; the respiratory neurons were exclusively inspiratory, receiving excitatory post‐synaptic potentials during the inspiratory phase. In addition, six inspiratory and one expiratory neuron of 30 GFP‐negative neurons were recorded in the pre‐Bötzinger complex. GFP‐positive inspiratory neurons showed high membrane resistance and mild adaptation of spike frequency in response to depolarizing current pulses. GFP‐positive inspiratory neurons had bipolar, triangular or crescent‐shaped somata and GFP‐negative inspiratory neurons had multipolar‐shaped somata. The somata of GFP‐positive inspiratory neurons were smaller than those of GFP‐negative inspiratory neurons. We suggest that GABAergic inhibition not by expiratory neurons but by inspiratory neurons that have particular electrophysiological and morphological properties is involved in the respiratory neuronal network of the pre‐Bötzinger complex.  相似文献   

16.
17.
Periglomerular (PG) cells in the rodent olfactory bulb are heterogeneous anatomically and neurochemically. Here we investigated whether major classes of PG cells use gamma-aminobutyric acid (GABA) as a neurotransmitter. In addition to three known subtypes of PG cells expressing tyrosine hydroxylase (TH), calbindin D-28k (CB), and calretinin (CR), we identified a novel PG cell population containing the GABAA receptor alpha5 subunit. Consistent with previous studies in the rat, we found that TH-positive cells were also labeled with antibodies against GABA, whereas PG cells expressing CB or the alpha5 subunit were GABA-negative. Using GAD67-GFP knockin mice, we found that all PG cell subtypes expressed GAD67-GFP. Calretinin labeled the major fraction (44%) of green fluorescent protein (GFP)-positive cells, followed by TH (16%), CB (14%), and the alpha5 subunit (13%). There was no overlap between these neuronal populations, which accounted for approximately 85% of GAD67-GFP-positive cells. We then demonstrated that PG cells labeled for TH, CB, or CR established dendrodendritic synapses expressing glutamic acid decarboxylase (GAD) or the vesicular inhibitory amino acid transporter, VGAT, irrespective of their immunoreactivity for GABA. In addition, CB-, CR-, and TH-positive dendrites were apposed to GABAA receptor clusters containing the alpha1 or alpha3 subunits, which are found in mitral and tufted cells, and the alpha2 subunit, which is expressed by PG cells. Together, these findings indicate that all major subtypes of PG cells are GABAergic. In addition, they show that PG cells provide GABAergic input to the dendrites of principal neurons and are interconnected with other GABAergic interneurons, which most likely are other PG cells.  相似文献   

18.
γ‐Aminobutyric acid (GABA)ergic interneurons play a vital role in modulating the activity of the cerebral cortex, and disruptions to their function have been linked to neurological disorders such as schizophrenia and epilepsy. These cells originate in the ganglionic eminences (GE) of the ventral telencephalon and undergo tangential migration to enter the cortex. Currently, little is known about the signaling mechanisms that regulate interneuron migration. We therefore performed a microarray analysis comparing the changes in gene expression between the GABAergic interneurons that are actively migrating into the cortex with those in the GE. We were able to isolate pure populations of GABAergic cells by fluorescence‐activated cell sorting of cortex and GE from embryonic brains of glutamate decarboxylase 67 (GAD67)‐green fluorescent protein (GFP) transgenic mice. Our microarray analysis identified a number of novel genes that were upregulated in migrating cortical interneurons at both E13.5 and E15.5. Many of these genes have previously been shown to play a role in cell migration of both neuronal and non‐neuronal cell types. In addition, several of the genes identified are involved in the regulation of migratory processes, such as neurite outgrowth, cell adhesion, and remodeling of the actin cytoskeleton and microtubule network. Moreover, quantitative polymerase chain reaction and in situ hybridization analyses confirmed that the expression of some of these genes is restricted to cortical interneurons. These data therefore provide a framework for future studies aimed at elucidating the complexities of interneuron migration and, in turn, may reveal important genes that are related to the development of specific neurological disorders. J. Comp. Neurol. 518:1232–1248, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
To determine whether reactive astrocytes stimulated by brain injury can transdifferentiate into functional new neurons, we labeled these cells by injecting a glial fibrillary acidic protein (GFAP) targeted enhanced green fluorescence protein plasmid (pGfa2‐eGFP plasmid) into the striatum of adult rats immediately following a transient middle cerebral artery occlusion (MCAO) and performed immunolabeling with specific neuronal markers to trace the neural fates of eGFP‐expressing (GFP+) reactive astrocytes. The results showed that a portion of striatal GFP+ astrocytes could transdifferentiate into immature neurons at 1 week after MCAO and mature neurons at 2 weeks as determined by double staining GFP‐expressing cells with βIII‐tubulin (GFP+‐Tuj‐1+) and microtubule associated protein‐2 (GFP+‐MAP‐2+), respectively. GFP+ neurons further expressed choline acetyltransferase, glutamic acid decarboxylase, dopamine receptor D2‐like family proteins, and the N‐methyl‐d ‐aspartate receptor subunit R2, indicating that astrocyte‐derived neurons could develop into cholinergic or GABAergic neurons and express dopamine and glutamate receptors on their membranes. Electron microscopy analysis indicated that GFP+ neurons could form synapses with other neurons at 13 weeks after MCAO. Electrophysiological recordings revealed that action potentials and active postsynaptic currents could be recorded in the neuron‐like GFP+ cells but not in the astrocyte‐like GFP+ cells, demonstrating that new GFP+ neurons possessed the capacity to fire action potentials and receive synaptic inputs. These results demonstrated that striatal astrocyte‐derived new neurons participate in the rebuilding of functional neural networks, a fundamental basis for brain repair after injury. These results may lead to new therapeutic strategies for enhancing brain repair after ischemic stroke. GLIA 2015;63:1660–1670  相似文献   

20.
The neural circuits of the piriform cortex mediate field potential oscillations and complex functions related to integrating odor cues with behavior, affective states, and multisensory processing. Previous anatomical studies have established major neural pathways linking the piriform cortex to other cortical and subcortical regions and major glutamatergic and GABAergic neuronal subtypes within the piriform circuits. However, the quantitative properties of diverse piriform interneurons are unknown. Using quantitative neural anatomical analysis and electrophysiological recording applied to a GAD65-EGFP transgenic mouse expressing GFP (green fluorescent protein) under the control of the GAD65 promoter, here we report a novel inhibitory network that is composed of neurons positive for GAD65-EGFP in the posterior piriform cortex (PPC). These interneurons had stereotyped dendritic and axonal properties that were distinct from basket cells or interneurons expressing various calcium-binding proteins (parvalbumin, calbindin, and calretinin) within the PPC. The GAD65-GFP neurons are GABAergic and outnumbered any other interneurons (expressing parvalbumin, calbindin, and calretinin) we studied. The firing pattern of these interneurons was highly homogenous and is similar to the regular-spiking nonpyramidal (RSNP) interneurons reported in primary sensory and other neocortical regions. Robust dye coupling among these interneurons and expression of connexin 36 suggested that they form electrically coupled networks. The predominant targets of descending axons of these interneurons were the dendrites of Layer III principal cells. Additionally, synapses were found on dendrites and somata of deep Layer II principal neurons and Layer III basket cells. A similar interneuronal subtype was also found in GAD65-EGFP-negative mouse. The extensive dendritic bifurcation at superficial lamina IA among horizontal afferent fibers and unique axonal targeting pattern suggests that these interneurons may play a role in direct feedforward inhibitory and disinhibitory olfactory processing. We conclude that the GAD65-GFP neurons may play distinct roles in regulating information flow and olfactory-related oscillation within the PPC in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号