首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CONTEXT: Brain-derived neurotrophic factor (BDNF) modulates hippocampal plasticity, which is believed to be altered in patients with major depression. OBJECTIVE: To examine the effect of the BDNF Val66Met polymorphism on hippocampal and amygdala volumes in patients with major depression and in healthy control subjects. DESIGN: Cross-sectional comparison between patients and controls. SETTING: Inpatients with major depression from the Department of Psychiatry and Psychotherapy and healthy controls from the community were recruited. PARTICIPANTS: The study population of 120 subjects included 60 patients with major depression and 60 healthy controls. MAIN OUTCOME MEASURES: Using a combined strategy, hippocampal and amygdala volumes were estimated on high-resolution magnetic resonance images, and genotyping was performed for the BDNF Val66Met polymorphism. RESULTS: Patients had significantly smaller hippocampal volumes compared with controls (P = .02). Significantly smaller hippocampal volumes were observed for patients and for controls carrying the Met-BDNF allele compared with subjects homozygous for the Val-BDNF allele (P = .006). With respect to amygdala volumes, no significant differences between patients and controls and no significant main effects for the BDNF Val66Met polymorphism were observed. CONCLUSIONS: These genotype-related alterations suggest that Met-BDNF allele carriers might be at risk to develop smaller hippocampal volumes and may be susceptible to major depression. This study supports findings from animal studies that the hippocampus is involved in brain development and plasticity.  相似文献   

2.
CONTEXT: Relatively little is known about genetic determinants of cognitive dysfunction in schizophrenia. Recent studies suggest that a brain-derived neurotrophic factor (BDNF) prodomain single nucleotide polymorphism resulting in a valine (Val)-to-methionine (Met) substitution is associated with impaired declarative memory in healthy volunteers and patients with schizophrenia. These studies indicate that the BDNF(Met) variant may mediate hippocampal cognitive functions by modulating intracellular trafficking and activity-dependent BDNF release. To our knowledge, the way in which this functional single nucleotide polymorphism affects other neurocognitive measures has not been examined. Its role in determining cognitive deficits in schizophrenia has also not been systematically studied. OBJECTIVES: To characterize the neurocognitive and brain morphometric phenotypic correlates of the BDNF Val66Met polymorphism and to test the specificity of the BDNF(Met) variant on cognitive dysfunction in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS: A comprehensive battery of standardized neuropsychological tests was administered to 144 healthy volunteers and 293 patients with schizophrenia spectrum disorder at a tertiary care university hospital. Approximately two thirds of the sample also underwent high-resolution magnetic resonance imaging brain scans. MAIN OUTCOME MEASURES: Genotype effects (in Met allele carriers vs Val homozygotes) on 5 cognitive domain z scores and magnetic resonance imaging gray matter brain volume measures (Talairach atlas-based cerebral lobes and optimized voxel-based morphometry) were examined using general linear models. RESULTS: On verbal memory, there was a significant genotype effect but no genotype x diagnosis effects. In both patients with schizophrenia and healthy volunteers, Met allele carriers had poorer verbal memory performance than their Val-homozygous counterparts. On visuospatial abilities, there were significant genotype and genotype x diagnosis effects. Met allele-associated visuospatial impairment was specific to patients with schizophrenia but not healthy volunteers. There were significant genotype effects on gray matter volumes within brain regions known to subserve these 2 cognitive domains, with Met allele carriers having smaller temporal and occipital lobar gray matter volumes. Optimized voxel-based morphometry further suggests that parietal heteromodal cortical gray matter deficits may underlie visuospatial impairment in patients with schizophrenia carrying the Met allele. CONCLUSIONS: We replicated the association between the BDNF(Met) variant and poor medial temporal lobe-related memory performance. The consonance of our cognitive and brain morphology findings further suggests that the BDNF(Met) variant may have a specific role in conferring visuospatial dysfunction in schizophrenia.  相似文献   

3.
Childhood stress and genetic factors like the Val66MET polymorphism of the brain derived neurotrophic factor (BDNF) gene are associated with a higher risk for developing major depressive disorder (MDD) and might also influence hippocampal changes. The aim of this study was to determine which hippocampal dentate gyrus and cornu ammonis subfields are altered in MDD compared to healthy controls and which subfields are affected by the BDNF Val66Met polymorphism and child adversity. Adult patients with MDD and healthy matched controls underwent high‐resolution magnetic resonance imaging. Automatic segmentation using the programme FreeSurfer was used to segment the hippocampal subfields dentate gyrus (DG/CA4), CA1 and CA2/3. The history of possible childhood adversity was assessed using the Childhood Trauma Questionnaire and the Val66Met BDNF SNP (rs6265) genotypes were obtained. Patients with MDD had significantly smaller CA4/DG and CA2/3 volumes compared to healthy controls. Furthermore, there was a significant interactive effect of BDNF allele and childhood adversity on CA2/3 and CA4/DG volumes. Met allele carriers without childhood adversity had larger and with childhood adversity smaller CA4/DG and CA2/3 volumes than Val‐allele homozygotes. Our results highlight stress by gene interactions as relevant for hippocampal volume reductions, in particular for the subfield CA2/3 and dentate gyrus. Hum Brain Mapp 35:5776–5783, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) promotes several functions in neurons and modulates neurotransmissions, especially in hippocampal regions. Frontotemporal lobar degeneration (FTLD) has a strong genetic background, but genetic risk factors associated with sporadic disease are unknown. Hippocampal involvement is frequently observed in FTLD. The aims of this study were: i) to evaluate if BDNF genetic variations are associated with an increased risk of developing FTLD; and ii) to assess the neuroimaging profiles associated with BDNF polymorphisms. Ninety-one FTLD patients who underwent SPECT imaging and blood sampling entered the study, and clinical, cognitive, and behavioral examinations were performed. A larger group of FTLD patients (n = 194) and controls (n = 396; 162 healthy subjects and 234 Alzheimer's disease (AD) patients) underwent genetic analyses, considering BDNF polymorphisms (Val66Met, rs2049045 C/G, G11757C). A significant different distribution of G11757C genotype in FTLD (GG 53.1%, GC 42.8%, CC 4.1%) compared to controls (G/G 55.6%, G/C 34.6%, C/C 9.8%, p = 0.020) was found. No other significant differences in genotype and allele distributions were detected. The effect of BDNF polymorphisms on brain perfusion was analyzed. BDNF Val66Met A* carriers (A/A or G/A) showed a significant greater hypoperfusion parahippocampal regions as compared to G/G carriers (p < 0.005). No effect of G11757C polymorphism on brain perfusion was found. rs2049045 C/G was not considered as in linkage disequilibrium with Val66Met polymorphism. BDNF Val66Met polymorphism may play a role as a modulator of the FTLD expression and may drive a selective damage in specific brain region affected by the disease.  相似文献   

5.
Abstract

Objectives. Converging evidence suggests that the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects brain structure. Yet the majority of studies have shown no effect of this polymorphism on hippocampal volumes, perhaps due to small effect size. Methods. We performed a meta-analysis of studies investigating the association between Val66Met BDNF polymorphism and hippocampal volumes in healthy subjects by combining standardized differences between means (SDM) from individual studies using random effect models. Results. Data from 399 healthy subjects (255 Val-BDNF homozygotes and 144 carriers of at least one Met-BDNF allele) in seven studies were meta-analysed. Both the left and right hippocampi were significantly larger in Val-BDNF homozygotes than in carriers of at least one Met-BDNF allele (SDM = 0.41, 95% Confidence Interval = 0.20; 0.62, z = 3.86, P = 0.0001; SDM = 0.41; 95% Confidence Interval = 0.20; 0.61, z = 3.81, P = 0.0001, respectively), with no evidence of publication bias. Conclusions. Healthy carriers of BDNF gene Val66Met polymorphism show bilateral hippocampal volume reduction. The effect size was small, but the same direction of effect was seen in all meta-analyzed studies. The association with the BDNF gene Val66Met polymorphism makes hippocampal volume a potential candidate for an endophenotype of disorders presenting with reduced hippocampal volumes.  相似文献   

6.
Unravelling the impact of genetic variants on clinical phenotypes is a challenging task. Apolipoprotein E (ApoE) and brain-derived neurotrophic factor (BDNF) play an important role in cell growth, regeneration, synaptic plasticity, learning and memory processes. The aim of the present study was to examine the impact of BDNF Val66Met- and ApoE-polymorphisms and their interactions on hippocampal morphology and memory functions in healthy young adults. Hippocampal volume and memory performance of 135 healthy individuals, aged 24.6 ± 3.2 years, were assessed, using magnetic resonance imaging and the Inventory for Memory diagnostics. The performance of BDNF-Met66 carriers was significantly lower in working memory (P = 0.03) compared with non carriers, whereas no further differences were observed either in cognitive performance or in hippocampal volumes between the groups. Age, BDNF Val66 Met polymorphism and the interaction factor BDNF genotype x age were significantly associated with the variation of working memory scores (P = 0.01, 0.01, 0.02 respectively). No statistically significant differences were detected in the volumes of hippocampi and in memory phenotypes between individuals carrying the ApoE E4 allele and those without it. The analysis did not reveal an impact of gene-gene interaction between BDNF and ApoE genes on hippocampal volumes or memory performance. BDNF Val66Met polymorphism seems to influence working memory function and modulate the effects of ageing on working memory in healthy young adults.  相似文献   

7.
It is largely unknown why some patients with Alzheimer's disease (AD) decline cognitively more rapidly than others. Genetic differences among patients could influence rate of decline. Brain-derived neurotrophic factor (BDNF) is a neurotrophin important in the survival neurons and in memory function. BDNF levels are reduced in the brain in AD. The Val66Met polymorphism in the BDNF gene modifies neuronal BDNF secretion, and affects hippocampal function and memory performance. We tested the hypothesis that the BDNF Val66Met polymorphism influences rate of cognitive decline in AD. In a sample of 149 AD patients followed for an average of 3.9 years, we found no effect of BDNF Val66Met genotype on rate of change in the Mini Mental State Examination. Results were similar when we excluded patients taking an acetylcholinesterase inhibitor, those placed in a nursing home during the study, or those with a neuropathological diagnosis that included AD plus an entity other than AD. We also found no evidence that the effects of the BDNF Val66Met genotype depend on APOE genotype, which itself had no effect on rate of cognitive change. These findings suggest that the functional BDNF Val66Met variant is not a major determinant of rate of cognitive decline in AD.  相似文献   

8.
Accumulating evidence showed that brain-derived neurotrophic factor (BDNF) may be involved in the pathophysiology of schizophrenia. Recent studies have reported that the Val66Met polymorphism of the BDNF gene may be associated with susceptibility for schizophrenia and age of onset of this disease, with mix results. In the present study, the BDNF Val66Met gene polymorphism was examined in 387 inpatients (259 men and 128 women) meeting the DSM-IV criteria for schizophrenia and unrelated 365 healthy controls (255 men and 110 women). The schizophrenia symptomatology was assessed by the Positive and Negative Syndrome Scale (PANSS). Age of onset was defined as the age at which the psychotic symptoms first appeared. Our results showed that genotype frequency distributions and allelic frequencies did not differ between patients and controls. No interaction was found between sex and genotypes. Analysis of covariance (ANCOVA) showed a significance of the BDNF Val66Met genotypes on the age of onset (F = 3.76, p < 0.02), after adjusting sex, age and duration of illness. Furthermore, ANCOVA showed that the significance of the BDNFVal66Met genotypes on age of onset was increased comparing the Val66Met heterozygotes with the combination of Val66Val and Met66Met homozygotes (F = 5.85, p < 0.01). Our results suggest that the BDNF Val66Met polymorphism may not contribute directly to the susceptibility to schizophrenia, but to the onset of the disease. Furthermore, our results show the heterozygous effect of the BDNF Val66Met gene on the clinical variability of schizophrenia phenotype.  相似文献   

9.
OBJECTIVE: Factors underlying progressive brain volume changes in schizophrenia remain poorly understood. The authors investigated whether a gene polymorphism influencing neuroplasticity may contribute to longitudinal brain volume alterations. METHOD: High-resolution magnetic resonance (MR) images of the whole brain were obtained for 119 patients with recent-onset schizophrenia spectrum disorders. Changes in brain volumes over an average of 3 years were compared between brain-derived neurotrophic factor (BDNF) val66met genotype groupings. Exploratory analyses were conducted to examine relationships between antipsychotic treatment and brain volume changes as well as the effects of BDNF genotype on changes in cognition and symptoms. RESULTS: Significant genotype effects were observed on within-subject changes in volumes of frontal lobe gray matter, lateral ventricles, and sulcal CSF. Met allele carriers had significantly greater reductions in frontal gray matter volume, with reciprocal volume increases in the lateral ventricles and sulcal (especially frontal and temporal) CSF than Val homozygous patients. Independent of BDNF genotype, more antipsychotic exposure between MRI scans correlated with greater volume reductions in frontal gray matter, particularly among patients who were initially treatment naive. There were no statistically significant genotype effects on within-subject changes in cognition or symptoms. CONCLUSIONS: BDNF(Met) variant may be one of several factors affecting progressive brain volume changes in schizophrenia.  相似文献   

10.
Altered hippocampal volume, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and neuroticism have each been implicated in the etiology of psychiatric disorders, especially depression. However, the relationship between these variables is not well understood. Here, we determined the effects of the BDNF Val66met polymorphism on the five-factor personality dimensions (assessed using the NEO-FFI), trait depression (assessed with the DASS-21) in a cross-sectional cohort of 467 healthy volunteers. A large matched subset of this cohort was also assessed for grey matter volume of the hippocampus and contiguous temporal cortical regions using magnetic resonance imaging. In Met carriers, elevations in neuroticism and trait depression and stress were associated with lower mean hippocampal volume, but there were no such associations in Val homozygotes. Trait depression, in particular, was found to moderate the effects of BDNF genotypes on hippocampal volume. Met carriers with high trait depression showed a reduction in grey matter volume of the mean hippocampus compared with Val homozygotes. These findings suggest that even in otherwise healthy subjects, trait depression may contribute to the susceptibility of Met carriers to hippocampal grey matter loss.  相似文献   

11.
Abnormal neurodevelopment in midline structures such as the adhesio interthalamica (AI), as well as in the medial temporal lobe structures has been implicated in schizophrenia, while its genetic mechanism is unknown. This magnetic resonance imaging study investigated the effect of the genotypic combination of the dopamine D3 receptor (DRD3) Ser9Gly and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms on the AI length and volumetric measures of the medial temporal lobe structures (amygdala, hippocampus, and parahippocampal gyrus) in 33 schizophrenia patients and 29 healthy controls. The subjects with a combination of the Ser/Ser genotype of DRD3 and Met-containing genotypes of BDNF (high-risk combination) had a shorter AI than those without it in the healthy controls, but not in the schizophrenia patients. The subjects carrying the high-risk combination had a smaller posterior hippocampus than those without it for both diagnostic groups. These genotypic combination effects on brain morphology were not explained by the independent effect of each polymorphism. These findings suggest the effect of gene-gene interaction between the DRD3 and BDNF variations on brain morphology in midline and medial temporal lobe structures, but do not support its specific role in the pathogenesis of schizophrenia.  相似文献   

12.
The measures of prefrontal cognition have been used as endophenotype in molecular-genetic studies. Brain-derived neurotrophic factor (BDNF) has been implicated in cognitive functions and in the pathogenesis of major psychoses. This study investigates the relationship between Val66Met polymorphisms of the BDNF gene and prefrontal cognitive function in 129 patients with schizophrenia and 111 patients with bipolar mood disorder. Cognitive tests included the Wisconsin Card Sorting Test (WCST), with such domains as number of perseverative errors, non-perseverative errors, completed corrected categories, conceptual level responses, and set to the first category, and the N-back test, where mean reaction time and percent of correct reactions were measured. Genotyping for Val66Met BDNF polymorphism was done by polymerase chain reaction method. In schizophrenia, no relationship between Val66Met polymorphism of the BDNF gene and the results of the WCST was observed. Patients with Val/Val genotype had a higher percentage of correct reactions in the N-back test than those with the remaining genotypes. Bipolar patients with Val/Val genotype obtained significantly better results on three of five domains of the WCST. No relationship between BDNF polymorphism and the results of the N-back test was found in this group. A limitation to the results could be variable psychopathological state and medication during cognitive testing and lack of Hardy-Weinberg equilibrium in schizophrenia group. Val66Met polymorphism of the BDNF gene may be associated with cognitive performance on the WCST in bipolar mood disorder but not in schizophrenia. An association of this polymorphism with performance on the N-back test in schizophrenia and not in bipolar illness may suggest that in schizophrenia, the BDNF system may be connected with early phases of information processing.  相似文献   

13.

Objective

Genetic imaging is used to investigate the mechanism by which genetic variants influence brain structure. In a previous study, a structural change of the dorsolateral prefrontal cortex was associated with symptom modulation in post-traumatic stress disorder patients. This study examined the effect of a polymorphism in the gene encoding brain-derived neurotrophic factor (BDNF) on regional gray matter (GM) volumes and the correlations between the dorsolateral prefrontal GM volume and the stress level in healthy volunteers.

Methods

Sixty-one volunteers underwent genotyping for the BDNF Val66Met single nucleotide polymorphism (SNP) and completed the Stress Response Inventory (SRI). Magnetic resonance images were also acquired, and the effect of each subject''s BDNF genotype and SRI subscore on his or her dorsolateral prefrontal GM volume was evaluated.

Results

The Val/Val homozygotes had significantly larger GM volumes in the prefrontal cortex and the precuneus, the uncus, and the superior temporal and occipital cortices than Met carriers. The Met homozygotes demonstrated a higher stress response in depression domain than Val/Val and Val/Met groups. A negative correlation between the middle frontal cortex GM volume and the SRI depression subscore was found.

Conclusion

These findings indicate an interaction between genes and brain structure, and they suggest that differences in dorsolateral prefrontal GM volume related to the BDNF Val66Met SNP are associated with resilience to stressful life events, particularly in the dimension of emotion.  相似文献   

14.
Background: Brain-derived neurotrophic factor (BDNF) plays a crucial role in the survival, development and maintenance of neuronal systems, and the Val66Met polymorphism has been implicated in memory functions. Method: We examined the association of BDNF with general intellectual ability in 161 individuals including 53 early-onset patients with schizophrenia (EOS), 91 healthy biological relatives, and 17 relatives with major depressive disorder (MDD), using the Wechsler Intelligence Scales (WISC). Results: Regardless of diagnosis, individuals with the Met66 allele had a significantly higher performance score than those homozygous for Val66 on vocabulary, block design and object assembly subtests of the WISC. EOS probands showed poor performance on all IQ subtests compared with relatives with and without MDD. Limitations: Relatively smaller sample size of individual genotypes. Conclusions: BDNF genotype may play a role in specific cognitive functions and dimensions of intelligence. The Met allele appears to be associated with superior performance in IQ compared with relatives Val/Val genotype.  相似文献   

15.
Cognitive impairment is one of the core symptoms in schizophrenia, which reflects the neurodevelopmental deficits in the etiology of this disease. Brain-derived neurotrophic factor (BDNF) plays an important role in various neurodevelopmental processes. Growing evidence has shown that BDNF may be involved in the etiology of schizophrenia. The aim of this study was to examine the association of the BDNF Val66Met polymorphism with cognition in patients with schizophrenia. Various neuropsychological tests including the Wechsler Adult Intelligence Scale-Revised, the Wechsler Memory Scale-Revised, and the Wisconsin Card Sorting Test (WCST) were employed in a sample of 112 antipsychotic-na?ve patients with schizophrenia and 63 healthy controls. We examined the Val66Met polymorphism in the 112 patients and 394 controls. Among the patients, cognition was compared between Met allele carriers and non-Met allele carriers. A wide range of cognitive deficits were demonstrated in the schizophrenic patients, compared with the controls (Ps?相似文献   

16.
Summary. Catechol-O-methyltransferase (COMT) gene is one of the candidate genes for schizophrenia because it codes an enzyme that participates in the metabolic inactivation of dopamine and noradrenaline and a limiting factor of dopamine metabolism in the prefrontal cortex. COMT gene lies on chromosome 22q11.2, which has been associated with schizophrenia susceptibility. A single-nucleotide polymorphism of COMT gene at position 108/158 results in an amino acid substitution from valine (val) to methionine (met), which modifies its enzymatic activity and may change the brain morphology and expressional behaviors. On the other hand, brain-derived neurotrophic factor (BDNF) plays a critical role in the development of mesolimbic dopaminergic- related systems. BDNF also contains a functional single-nucleotide polymorphism at codon 66 (Val66Met) of its prodomain and this polymorphism is responsible for schizophrenia susceptibility. In this study, we first investigated the relationship between COMT Val108/158Met polymorphism and age at onset as well as levels of clinical symptoms in 158 of chronic schizophrenia inpatients and then we investigated the gene-by-gene interaction between COMT Val108/158Met polymorphism and BDNF Val66Met polymorphism with age- and sex-matched control subjects (n = 318). We concluded that the COMT Val108/158Met polymorphism was not related to either the onset at age or the levels of clinical symptoms after long-term antipsychotic treatment in schizophrenia.  相似文献   

17.
Magnetic resonance (MR) imaging studies have identified hippocampal structural alterations in the pathogenesis of schizophrenia. Brain-derived neurotrophic factor (BDNF) is one of the neurotrophins that is widely expressed in the hippocampal formation and has been implicated in the neurobiology of schizophrenia. Polymorphisms in the BDNF gene may therefore confer risk for schizophrenia through hippocampal pathogenesis and/or making the hippocampus more susceptible to environmental insults. In this study, we investigated whether val66met, a functional and abundant missense polymorphism in the coding region of the BDNF gene, was associated with the volume of the hippocampal formation in 19 patients with first-episode schizophrenia and 25 healthy volunteers. A total of 124 contiguous T1-weighted coronal MR images (slice thickness=1.5 mm) were acquired through the whole head using a 3D Fast SPGR IR Prep sequence on a 1.5 T GE imaging system. Volumes of the right and left hippocampal formation were measured manually by an operator blind to group status and genotype. All participants were genotyped for the BDNF val66met locus. Mixed model analyses revealed a main effect of BDNF val66met genotype such that in the combined sample of patients and healthy volunteers, val/val homozygotes (N=27) had larger volumes of the hippocampal formation compared to val/met heterozygotes (N=17). In separate analyses by group, however, val66met genotype accounted for a greater proportion of the variance in the volume of the hippocampal formation in patients compared to healthy volunteers. These findings implicate genetic involvement of BDNF in variation of human hippocampal volume and suggest that this effect may be greater among patients compared to healthy volunteers.  相似文献   

18.
Mea  E.  Franzini  A.  D&#;Amico  D.  Leone  M.  Cecchini  A. Proietti  Tullo  V.  Chiapparini  L.  Bussone  G. 《Neurological sciences》2011,32(1):117-123
Brain derived neurotrophic factor (BDNF) regulates several CNS physiological and pathological processes. To investigate in multiple sclerosis (MS) patients, the relationship between the Val66Met polymorphism of BDNF and clinical markers of disease activity and MRI markers of focal and diffuse brain pathologies. 45 MS patients and 34 healthy controls (HCs) were genotyped and subjected to clinical-MRI examination. Global white matter fraction (gWM-f), gray matter-f (GM-f), cerebrospinal fluid-f (CSF-f), and abnormal WM-f were measured. We studied 26 Val/Val and 19 Val/Met patients and 23 Val/Val and 11 Val/Met HCs. We found that Val/Val patients had lower GM-f and higher CSF-f than Val/Val HCs; such differences were not statistically significant comparing Val/Met patients to HCs. The regression analysis showed that both Val/Met genotype and relapse number were associated with lower CSF-f. Our data suggest that Met allele might be a protective factor against MS as it is associated to a lower brain atrophy.  相似文献   

19.

Objective

Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disorder with a high prevalence. Since behavioral disturbances, such as psychotic symptoms, represent a key feature of AD, genes related to dopamine, serotonin and brain derived neurotrophic factor (BDNF), are considered as candidate genes for AD. BDNF is a neurotrophin that regulates neurodevelopment, neuroplasticity, and neuronal functions. BDNF is involved in the etiopathogenesis of psychiatric and neurodegenerative disorders. A single base pair polymorphism (BDNF Val66Met) was reported to be associated with AD and/or schizophrenia, as well as other psychoses, although some studies failed to replicate these findings. The aim of the study was to evaluate the association between BDNF Val66Met variants and AD, as well as onset of AD or presence of psychotic symptoms in AD.

Method

BDNF Val66Met was analyzed in 211 patients with AD and in 402 aged healthy control subjects. All subjects were ethnically homogenous Caucasians from Croatia, and were subdivided according to the gender, onset of AD, and presence of psychotic symptoms. A χ2 test, with Bonferroni correction and standardized residuals were used to evaluate the data.

Results

Distribution of the BDNF Val66Met genotypes differed significantly between male and female AD patients with or without psychotic symptoms. This difference was due to the significant contribution of the Met/Val genotype and the combined Met/Met and Met/Val genotypes between psychotic and non-psychotic symptoms in male, but not in female patients with AD. The frequency of the gene variants of the BDNF Val66Met did not differ significantly among male and female patients with AD and control subjects, or between male and female patients with early or late onset AD. There were significant sex related differences in age, duration of illness and scores of dementia between patients with AD.

Conclusion

Our male patients were younger, had shorter duration of illness, and had less severe dementia and higher cognitive performance than female AD patients. The gene variants of the BDNF Val66Met polymorphism were significantly associated with the presence of psychotic symptoms in male, but not in female patients with AD. The results had adequate statistical power to suggest that BDNF Val66Met was not related to susceptibility to AD or the onset of AD, but that presence of one or two Met alleles of BDNF Val66Met polymorphism might present a risk factor for psychosis in AD.  相似文献   

20.
A polymorphism (Val66Met) in the gene encoding brain-derived neurotrophic factor (BDNF) has previously been associated with impaired hippocampal function and scores on the Logical Memory subtest of the Wechsler Memory Scale-Revised (WMS-R). Despite its widespread expression in the brain, there have been few studies examining the role of BDNF on cognitive domains, other than memory. We examined the association between BDNF Val66Met genotype and non-verbal reasoning, as measured by Raven's standard progressive matrices (Raven), in two cohorts of relatively healthy older people, one aged 79 (LBC1921) and the other aged 64 (ABC1936) years. LBC1921 and ABC1936 subjects had reasoning measured at age 11 years, using the Moray House Test (MHT), in the Scottish Mental Surveys of 1932 and 1947, respectively. BDNF genotype was significantly associated with later life Raven scores, controlling for sex, age 11 MHT score and cohort (P = 0.001). MHT, Verbal Fluency and Logical Memory scores were available, in later life, for LBC1921 only. BDNF genotype was significantly associated with age 79 MHT score, controlling for sex and age 11 MHT score (P = 0.016). In both significant associations, Met homozygotes scored significantly higher than heterozygotes and Val homozygotes. This study indicates that BDNF genotype contributes to age-related changes in reasoning skills, which are closely related to general intelligence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号